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a b s t r a c t

As a unique and reliable biometric characteristic, palmprint verification has achieved a great success.
However, palmprint alone may not be able to meet the increasing demand of highly accurate and robust
biometric systems. Recently, palmvein, which refers to the palm feature under near-infrared spectrum,
has been attracting much research interest. Since palmprint and palmvein can be captured simulta-
neously by using specially designed devices, the joint use of palmprint and palmvein features can effec-
tively increase the accuracy, robustness and anti-spoof capability of palm based biometric techniques.
This paper presents an online personal verification system by fusing palmprint and palmvein informa-
tion. Considering that the palmvein image quality can vary much, a dynamic fusion scheme which is
adaptive to image quality is developed. To increase the anti-spoof capability of the system, a liveness
detection method based on the image property is proposed. A comprehensive database of palmprint–
palmvein images was established to verify the proposed system, and the experimental results demon-
strated that since palmprint and palmvein contain complementary information, much higher accuracy
could be achieved by fusing them than using only one of them. In addition, the whole verification proce-
dure can be completed in 1.2 s, which implies that the system can work in real time.

� 2010 Published by Elsevier Ltd.
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1. Introduction

Biometric characteristics, including fingerprint, facial features,
iris, voice, signature, and palmprint, etc. (Jain, Bolle, & Pankanti,
1999) are now widely used in security applications. Each biometric
characteristic has its own advantages and limitations. Among var-
ious biometric techniques, palmprint recognition is getting popular
in personal authentication because it provides robust features from
a large palm area and the palmprint image can be captured with a
cost-effective device. In general, a typical palmprint acquisition de-
vice operates under visible light and can acquire three kinds of fea-
tures: principal lines (usually the three dominant lines on the
palm), wrinkles (weaker and more irregular lines) and ridges (pat-
terns of raised skin similar to fingerprint patterns). A resolution of
about 100 dpi (dots per inch) (Han, Cheng, Lin, & Fan, 2003; Zhang,
Kong, You, & Wong, 2003) can be used to acquire principal lines
and wrinkles while a higher resolution, usually 500 dpi, is required
to acquire ridge features. However, such a high resolution will in-
crease significantly the computational cost to extract ridge features
because of the large image size of palm, and hence prevents the
system from being implemented in real time. Therefore, most of
the palmprint base systems capture low resolution palmprint
images using CCD (charge-coupled device) cameras and many
algorithms have been proposed for feature extraction and match-
83
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ing (Connie, Jin, Ong, & Ling, 2005; Han et al., 2003; Hennings-Yeo-
mans, Kumar, & Savvides, 2007; Hu, Feng, & Zhou, 2007; Kong &
Zhang, 2004; Kumar & Zhang, 2005; Ribaric & Fratric, 2005; Su,
2009a, 2009b; Wu, Zhang, & Wang, 2003; Zhang et al., 2003).

Although palmprint recognition has achieved a great success, it
has some intrinsic weaknesses. For example, some people may
have similar palm lines, especially principal lines (Zhang et al.,
2003); also it is not so difficult to forge a fake palmprint (Kong,
Zhang, & Kamel, 2009). These problems can be addressed by using
multi-biometric systems, such as fusing facial trait and palmprint
trait (Yao, Jing, & Wong, 2007) or fusing iris and palmprint traits
(Wu, Zhang, Wang, & Qi, 2007). However, such systems are clumsy
as they involve two separate sensors to sense two traits.

One way to improve the discriminativeness and anti-spoofing
capability of palmprint systems is to use more features from the
palm, such as the veins of the palm. The veins of the palm mainly
refer to the inner vessel structures beneath the skin and the palm-
vein images can be collected using both far infrared (FIR) and near-
infrared (NIR) light (Zharov et al., 2004). Obviously, palmvein is
much harder to fake than palmprint. There is a long history of
using NIR and FIR to collect vein biometrics (Cross & Smith,
1995; Kono, Ueki, & Umemura, 2002; Lin & Fan, 2005; Macgregor
& Welfold, 1991; Socolinsky, Wolff, Neuheisel, & Eveland, 2001;
Wang, Leedham, & Cho, 2008; Wu & Ye, 2009), while recently
palmvein system has also been proposed (Watanabe, Endoh, Shio-
hara, & Sasaki, 2005). Intuitively, since both palmprint and palm-
vein are from the palm, it is possible to establish a convenient
almvein verification. Expert Systems with Applications (2010), doi:10.1016/
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Fig. 1. The prototype system.
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multi-biometric system to acquire and use the two traits jointly,
and the complementary information provided by the two traits
will make the system more accurate in personal identification
and more robust to spoof-attack.

A number of studies have been conducted to fusing palmprint
and palmvein information for personal recognition. Wang, Yau,
Suwandy, and Sung (2008) developed such a system and obtained
good results but their system uses two separate cameras and re-
quires a time-consuming registration procedure, which makes it
difficult to use in real-time. Hao, Sun, and Tan (2007) evaluated
various image level fusion schemes of palmprint and palmvein
images. However, they evaluated the method using a very small
database (only 84 images), making it hard to draw strong conclu-
sions. Toh et al. (2006) captured the palm image under IR (infrared)
lighting and then extracted the palmvein and palmprint features
separately; however, since there was only one IR light source, some
valuable palmprint information was lost.

In this paper, we design and construct a new device that can ac-
quire palmprint and palmvein images simultaneously and in real-
time. The device involves one CCD camera and two light sources
(one NIR light source for palmvein and one visible blue light source
for palmprint). The light sources switch quickly and the two
images can then be acquired within 1 s. More details of the device
are provided in Section 2. With the captured palmprint and palm-
vein images, the personal verification framework has four main
parts. (1) First, it does liveness detection by analyzing the bright-
ness and texture of the acquired image. (2) Second it performs tex-
ture coding to extract palmprint features. (3) Third, it uses
matched filters to extract the palmvein features. (4) At last, a fu-
sion matching score is computed through dynamic weight sum
by considering the palmvein image quality.

The rest of the paper is organized as follows. Section 2 describes
the joint palmprint and palmvein system structure. Section 3 intro-
duces the verification framework of the system. Section 4 reports
experimental results on the established comprehensive database.
Section 5 makes the conclusion and suggests some future work
directions.
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2. System description

The developed data acquisition device is made up of two light
sources, a light controller (which is used to switch the lights on
or off), a grey level CCD camera, lens, and an A/D (analogue-to-dig-
ital) converter connecting the CCD and the computer. The CCD is
fixed at the bottom of the device. We use both visible white light
and NIR light as the illumination sources. The palm lines can be
clearly acquired under the visible light, while it is possible to ac-
quire the vein structures beneath the palm skin but not palm lines
or wrinkles under the NIR light. The uniformly distributed 880 nm
LEDs (light emitting diode) are used for the NIR illumination. The
light within range 700–1000 nm can penetrate human skin to a
depth of 1–3 mm and it has been shown that 880–930 nm NIR light
can provide a relatively good contrast of subcutaneous veins (Zha-
rov et al., 2004). In order for a wider spectrum range for more com-
plementary information, the uniformly distributed Blue LEDs
(peaking at 470 nm) is used as the visible light.

In order to reduce the cost of imaging system, a standard CCTV
(Closed Circuit Television) camera, instead of a near-infrared sensi-
tive camera, is used in our system. Its sensitivity in the NIR range is
not as strong as that of NIR sensitive camera but has a much lower
price. On the other hand, since this camera is also used to capture
the palmprint image under the visible light illumination, no NIR fil-
ter is used with the camera to cut out visible light. As a result, the
quality of NIR palmvein images captured by our device is not as
good as those by NIR cameras and/or with an NIR filter. However,
Please cite this article in press as: Zhang, D., et al. Online joint palmprint and p
j.eswa.2010.08.052
as we will see in this paper, the fusion of palmvein can still contrib-
ute much in improving the performance of palmprint recognition.

Fig. 1 shows the prototype of our system. The images can be
captured in two different sizes, 352 * 288 and 704 * 576. Users
are asked to put their palms on the platform with several pegs
serving as control points for the placement of the hand. The com-
puter then collects one palmprint image and one palmvein image
under two different lighting conditions. The switching between
two types of light is very fast and allows us to capture the two
images in a very short time (<1 s). As shown in Fig. 2, the transla-
tion or rotation is very small between the two images, so registra-
tion between the two images can be omitted.

Before feature extraction, it is necessary to extract from the
original images a specific portion to work with. This is known as
extraction of region of interest (ROI). The ROI extraction has two
important advantages. First, it serves as a pre-processing to remove
the translation and rotation of palmprint/palmvein images
introduced in the data collection process. Second, ROI extraction
extracts the most informative area in the images. It reduces a lot
the data amount without losing much useful information. This will
speed up the following feature extraction and matching processes.
In this study, we set up ROI coordinates on palmprint image using
the algorithm proposed in Zhang et al. (2003) and then use the
coordinates to crop the ROI from palmprint and palmvein images.
Fig. 3 shows some samples of ROI.
3. Joint palmprint and palmvein verification

The flowchart of proposed online joint palmprint and palmvein
verification system is illustrated in Fig. 4. It has four main stages.
First the ROI is extracted; then a liveness detection algorithm
based on image brightness and texture is applied; if the input
images pass the liveness detection, palmprint features will be ex-
tracted by texture coding and palmvein features will be extracted
by matched filters; finally, the score level fusion is applied through
dynamic weighted sum for decision making. The details of ROI
extraction can be found in Zhang et al. (2003). In the following
we discuss the processing of other stages.
3.1. Liveness detection

There are various liveness detection methods in biometric sys-
tems. For example, perspiration detection in a sequence of finger-
print images (Parthasaradhi, Derakhshani, Hornak, & Schuckers,
almvein verification. Expert Systems with Applications (2010), doi:10.1016/
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Fig. 3. ROI sample images. The top row shows the palmprint ROIs and the second row shows the associated palmvein ROIsQ2 .
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2005); using additional hardware to acquire life signs; utilizing
inherent liveness features such as facial thermograms (Schukers,
2002). However, these methods can be time-consuming, require
addition hardware and costly. In our system, the low-cost NIR
LED is used for illumination. It has been proved that 700–
1000 nm NIR light could penetrate human skin 1–3 mm inside,
and blood will absorb more NIR energy than the surrounding tis-
sues (e.g. fat or melanin), so the vein structure is darker than other
areas in the palmvein image (Zharov et al., 2004). However, since
the skin of some people, especially female, is relatively thicker
(Lee & Hwang, 2002), their palmvein structures cannot be clearly
captured (e.g. Fig. 3f). On the other hand, the fake palm made by
some materials can also lead to dark lines under NIR illumination
by using our system, e.g. Fig. 5a. Therefore, it will be difficult to ap-
ply liveness detection by detecting only the existence of dark lines
in the palmvein image.

As human skin has special reflectance and absorbance proper-
ties under the NIR spectral, the features associated with these
properties can be extracted from the image brightness and texture
for telling true palm from fake palms. Fig. 5 shows the palmvein
images of several fake palms we made from different materials.
After observing these images and palmvein images from true
palms, we found that the image brightness and gray level co-occur-
rence matrix (GLCM) (Haralick, Shanmugam, & Dinstein, 1973)
Please cite this article in press as: Zhang, D., et al. Online joint palmprint and p
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entropy could provide enough discriminant information to distin-
guish them. Thus, we propose a liveness detection algorithm by
analyzing palmvein image brightness and texture features.

The brightness feature is defined as the average of the intensity
over the image:

B ¼ 1
M�N

XM

x¼1

XN

y¼1

f ðx; yÞ; ð1Þ

where f(x, y) represents the gray value at pixel (x, y), and M and N
represent the numbers of rows and columns in the image. On the
other hand, the GLCM is a widely used texture operator in image
processing and pattern recognition. For a given angle h and distance
d, a GLCM is defined as:

ph;dði; jÞ

¼#f½ðx1;y1Þ; ðx1þDx;y1þDyÞ� 2 Sjf ðx1;y1Þ ¼ i&f ðx1þDx;y1þDyÞ ¼ jg
#S

;

ð2Þ

where Dx = d*cosh and Dy = d*sinh. S is the set of pixels in the im-
age and ‘‘#” means the number of the elements in a set. (i, j) is the
coordinate in the GLCM.

With GLCM, several statistics could be computed, such as entro-
py, contrast, correlation, energy, and homogeneity. Among them,
almvein verification. Expert Systems with Applications (2010), doi:10.1016/
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entropy is a popular feature to represent the uniformity of image
texture. The more uniform the texture distributes, the bigger the
entropy is. The GLMC entropy is computed as

E ¼
XL

i¼1

XL

j¼1

pði; jÞ�ð� ln pði; jÞÞ; ð3Þ

where L is the level of quantization.
Fig. 5. NIR palmvein images of fake palms made from (a) cardboard; (b) foam;

Table 1
The brightness and GLCM entropy of true and fake palm samples.

3b 3d 3f 5a 5b

B 105.9 104.6 107.1 110.2 108.0

E 5.5 5.1 5.1 6.6 7.5

Please cite this article in press as: Zhang, D., et al. Online joint palmprint and p
j.eswa.2010.08.052
Table 1 shows the brightness and GLCM entropy of the palm-
vein images in Figs. 3 and 5. We can see the brightness and GLCM
entropy values of fake palms and true palms are very different.
Therefore, with some training samples, a classifier can be learned
to tell the true palm from fake palms. In Section 4, we will establish
a training dataset and learn the classifier. A testing dataset is also
built to test the liveness detection method.

3.2. Palmprint feature extraction and matching

In general there are three kinds of palmprint feature extraction
algorithms, subspace learning (Connie et al., 2005; Hu et al., 2007;
Ribaric & Fratric, 2005; Wu et al., 2003), line detection (Han et al.,
2003) and texture-based coding (Kong & Zhang, 2004; Zhang et al.,
2003). Among them, orientation texture-based coding (Kong &
Zhang, 2004) is preferred for online system as it could achieve high
accuracy. It is also fast for matching and can be easily implemented
in real-time.

The orientation of palm lines is stable and can serve as distinc-
tive features for personal identification. To extract the orientation
features, six Gabor filters along different orientations (hi = jp/6,
where j = {0, 1, 2, 3, 4, 5}) are applied to the palmprint image. Here
the real part of the Gabor filter is used and it is defined as:

wðx; y;x; hÞ ¼ xffiffiffiffiffiffiffiffiffiffi
2pj
p e�

x2

8j2ð4x02þy02Þ eixx0 � e�
j2
2

� �
; ð4Þ

where x0 = (x � x0)cosh + (y � y0)sinh, y0 = �(x � x0)sinh + (y � y0)cos
h, (x0, y0) is the center of the function; x is the radial frequency in
radians per unit length and h is the orientation of the Gabor functions

in radians. j is defined by j ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

2dþ1
2d�1

� �
, where d is the half-

amplitude bandwidth of the frequency response. To reduce the influ-
ence of illumination, the direct current is removed from the filter.
(c) glove; (d) plaster; (e) plastic; (f) plasticine; (g) print paper; and (f) wax.

5c 5d 5e 5f 5g 5h

115.5 126.7 113.9 71.1 127.6 114.4

7.2 6.3 6.5 6.8 6.6 6.5

almvein verification. Expert Systems with Applications (2010), doi:10.1016/
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By regarding palm lines as the negative lines, the orientation
corresponding to the minimal Gabor filtering response (i.e. the
negative response but with the highest magnitude) is taken as
the feature for this pixel (Kong & Zhang, 2004). Because the con-
tour of Gabor filters is similar to the cross-section profile of palm
lines, the higher the magnitude of the response, the more likely
there is a line. Since six filters are used to detect the orientation
of each pixel, the detected orientation {0, p/6, p/3, p/2, 2p/3, 5p/
6} can then be coded by using three bits {000, 001, 011, 111,
110, 100} (Kong & Zhang, 2004). Fig. 6 shows an example of the ex-
tracted orientation feature map, where different gray levels repre-
sent different orientation.

Based on the extracted 3-bit orientation feature maps, the Ham-
ming distance between two maps can be calculated as follows:

DðP;QÞ ¼
PM

y¼0

PN
x¼0

P3
i¼1ðP

b
i ðx; yÞ � Qb

i ðx; yÞÞ
3M�N

; ð5Þ

where P and Q are two feature maps, Pb
i Qb

i

� �
is the ithbit plane of

P(Q) and � is bitwise exclusive OR. To further reduce the influence
of imperfect ROI extraction, we translate one of the two feature
maps vertically and horizontally from �4 to 4 when matching with
another feature map. The minimal distance obtained by translated
matching is regarded as the final distance.

3.3. Palmvein feature extraction and matching

It is observed that the cross-sections of palmveins are similar to
Gaussian functions. Fig. 7 shows some examples. Based on this
observation, the matched filters (Hoover, Kouznetsova, & Gold-
baum, 2000; Zhang, Li, You, & Bhattacharya, 2007), which are
widely used in retinal vessel extraction, can be a good technique
to extract these palmveins. The matched filters are Gaussian-
shaped filters along angle h:

gr
h ðx; yÞ ¼ � exp � x02

r2

� �
�m; for jx0j 6 3r; jy0j 6 L=2; ð6Þ

where x0 = xcosh + ysinh, y0 = �xsinh + ycosh, r is the standard devi-
ation of Gaussian, m is the mean value of the filter, and L is the
length of the filter in y direction which is set empirically. In order
to suppress the background pixels, the filter is designed as a zero-
sum. For one r, four different angle filters (hj = jp/4, where j = {0,
1, 2, 3}) are applied for each pixel, and the maximal response among
these four directions is kept as the final response for the given
scale1:
372

373

374

375

1 Different from the CompCode in Section 3.2 where the minimal response is used,
here, the shape of used matched filters is identical to the cross-section of vein, thus
the maximal response is kept.
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Rr
F ¼max Rr

hj
ðx; yÞ

� �
; j ¼ f0;1;2;3g;

Rr
hj
ðx; yÞ ¼ gr

hj
ðx; yÞ�f ðx; yÞ;

ð7Þ

where f(x, y) is the original image and * denotes the convolution
operation.

As shown in Bao, Zhang, and Wu (2005), Zhang et al. (2007), the
multi-scale product of filtering responses is a good way to enhance
the edge structures and suppress noise. The product of matched fil-
ter responses at two scales r1 and r2 is defined as:

Pðx; yÞ ¼ Rr1
F ðx; yÞ � R

r2
F ðx; yÞ: ð8Þ

The scale parameters r1 and r2 are set empirically. After computing
the multi-scale production, we binarize it by using a threshold
which is empirically set based on a training dataset. The vein pixel,
whose scale production response is greater than the threshold, is
represented by ‘‘1”, while the background pixel is represented by
‘‘0”. At last, some post-processing operations are performed to re-
move some small regions. Fig. 8 illustrates the whole procedure of
palmvein extraction.

The extracted palmvein maps are binary images, and the dis-
tance between two palmvein maps is computed as:

DðP;QÞ ¼ 1�
PM

y¼0

PN
x¼0ðP

bðx; yÞ&Q bðx; yÞÞPM
y¼0

PN
x¼0ðP

bðx; yÞjQ bðx; yÞÞ
; ð9Þ

where P and Q are two palmvein feature maps, ‘‘& ” is bitwise AND
operator and ‘‘j” is bitwise OR operator. The dissimilarity measure-
ment in (9) is different from the Hamming distance used in Zhang et
al. (2007). This is because most of pixels in the palmvein map are
non-palmvein pixels. For example, in our database the average ratio
of non-palm-vein pixels is about 86%. Such an uneven distribution
of palm-vein and non-palm-vein pixels makes the Hamming dis-
tance less the discriminative (Daugman, 2003).

Similar to that in palmprint feature map matching, we translate
one of the palmvein feature maps vertically and horizontally from
�4 to 4 and match it with another palmvein feature map. The min-
imal distance obtained by translated matching is regarded as the
final distance.

3.4. Palmprint and palmvein fusion

The information presented by multiple traits can be fused at
various levels: image level, feature level, matching score level or
decision level (Ross, Nadakumar, & Jain, 2006). Although image
and feature level fusion can integrate the information provided
by different biometric, the required registration procedure is too
time-consuming (Wang et al., 2008). As to matching score fusion
and decision level fusion, it has been found (Ross et al., 2006) that
the former usually works better than the later because match
scores contain more information about the input pattern and it is
easy to access and fuse the scores generated by different matchers.
For these reasons, matching score level fusion is the most com-
monly used approach in multimodal biometric systems. In this
work, we test sum and weighted sum on palmprint and palmvein
matching score fusion:

FDSum ¼ DPalmprint þ DPalmvein; ð10Þ
FDWeight sum ¼WPalmprintDPalmprint þWPalmveinDPalmvein; ð11Þ

where DPalmprint and DPalmvein are the palmprint and palmvein
matching scores obtained by Eqs. (5) and (9), respectively. WPalmprint

and WPalmvein are the weights for palmprint and palmvein feature in
the fusion.

Considering that not all palmvein images have clear vein struc-
tures (referring to Fig. 3), it is intuitive that good quality palmvein
images should have higher weight in the fusion than those poor
almvein verification. Expert Systems with Applications (2010), doi:10.1016/
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quality images. Here a dynamic weighted sum fusion scheme by
incorporating the palmvein image quality is proposed. We define
an objective criterion (Daugman, 2003) to evaluate the palmvein
image quality:

d0 ¼ jlvein � lnon-veinjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

vein þ r2
non-vein

� �
=2

q ; ð12Þ

where lvein and lnon-vein are the average intensity values of vein pix-
els and non-vein pixels extracted by in Section 3.3, and rvein and
rnon-vein are the standard deviation of vein and non-vein pixels,
respectively. For a clear palmvein image, the boundary between
vein and non-vein structures is clear, so a higher d0 will be obtained.
While for an unclear palmvein image, the boundary is not clear and
the d0 will be smaller. For example, the d0 values of Fig. 3b, d and f
are 1.63, 1.11 and 0.16, respectively. It shows that these images
could be well classified by the proposed criterion.

By incorporating the palmvein image quality into consideration,
a dynamic weighted sum scheme is proposed as:

FDWeight sum ¼WPalmprintDPalmprint þWPalmveinDPalmvein

¼ 1�
�d0

2

 !
DPalmprint þ

�d0

2
DPalmvein; ð13Þ

�d0 ¼ d0 � d0min

d0max � d0min

; ð14Þ

where d0min and d0max are the minimal and maximal value of d0 com-
puted by a training dataset. As shown in (13), if quality of palmvein
image is very good, the weights of both palmprint and palmvein
Please cite this article in press as: Zhang, D., et al. Online joint palmprint and p
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will be close to 0.5; if quality of palmvein image is very poor, the
system will depend on palmprint solely. The experiments in Section
4.4 will validate the effectiveness of our dynamic fusion scheme.
4. Experimental results

4.1. Database establishment

By using the developed joint palmprint and palmvein device,
we established a database which includes palmprint and palmvein
images from 500 different palms. The subjects were mainly volun-
teers from the Shenzhen Graduate School of Harbin Institute of
Technology and The Hong Kong Polytechnic University. In this
database, 396 palms are from male and age ranges from 20 to
60. The images were captured by two separate sessions. The aver-
age time interval between two sessions was 9 days. On each ses-
sion, the subject was asked to provide six samples from his/her
palms. For each shot, the device collected one palmprint and one
palmvein image simultaneously (less than 1 s). Finally, the data-
base contains 6000 palmprint and palmvein images of resolution
352 * 288.
4.2. Experimental results of liveness detection

We established a fake palm database, which includes 489
images from the fake palms made by eight different materials:
cardboard, foam, glove, plaster, plastic, plasticine, print paper,
and wax. This data set is randomly partitioned into two equal
parts, a training set and a test set. The same division strategy is
almvein verification. Expert Systems with Applications (2010), doi:10.1016/
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applied to the true palm database. The distribution of brightness
(B, refer to Eq. (1)) and entropy (E, refer to Eq. (3)) of the training
Please cite this article in press as: Zhang, D., et al. Online joint palmprint and p
j.eswa.2010.08.052
and test sets are plotted in Fig. 9. Because the skin reflectance
and absorbance are different from those eight materials, we can
almvein verification. Expert Systems with Applications (2010), doi:10.1016/
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see there is a clear boundary between them. In most of cases, dif-
ferent materials are clustered into specific regions as they have
specific properties under NIR illumination. Four thresholds (i.e.
the boundaries of the rectangle in Fig. 9) are computed based on
the training samples:

Bmin ¼ minðBðTSÞÞ � rBðTSÞ; Bmax ¼maxðBðTSÞÞ þ rBðTSÞ;

Emin ¼minðEðTSÞÞ � rEðTSÞ; Emax ¼maxðEðTSÞÞ þ rEðTSÞ;
ð15Þ

where TS represents the whole training set, rB(TS) and rE(TS) are the
standard deviation values of B and E in the training set, respectively.

With these four thresholds, all of the training samples could be
correctly classified as shown in Fig. 9a. For the test set, only one
genuine palmvein is wrongly rejected as shown in Fig. 9b. In prac-
tice, we can use more strict thresholds to reject the imposter
palms. In case the user is wrongly rejected, he/she may put his/
her palm one more time on the system for verification. Currently,
the fake palm database is a relatively small, and setting up a large
fake palm database and investigate more advance feature extrac-
tion methods will be our future focus.
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Fig. 9. Brightness and GLCM entropy distribution of fake and true palm under NIR
illumination. The rectangle is the boundary learned from the training set. (a)
Distribution of the training set. (b) Distribution of the test set.
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4.3. Experimental results on palmprint verification

To obtain the verification accuracy for palmprint, each
palmprint image is matched with all the other palmprint images.
A match is counted as genuine matching if the two palmprint
images are from the same palm; otherwise, the match is counted
as impostor matching. The total number of palmprint matches is
6000 � 5999/2 = 17,997,000, and among them there are 33,000
(12 * 11/2 * 500) genuine matching, others are impostor matching.
Equal error rate (EER), a point when false accept rate (FAR) is equal
to false reject rate (FRR), is used to evaluate the performance.

The distance distribution of genuine and impostor is shown in
Fig. 10 and the receiver operating characteristic (ROC) curve is
showed in Fig. 11. Using palmprint, we can get FRR = 2.10% when
FAR = 5.6e�6%. The EER is about 0.0352%. The accuracy on
palmprint is comparable to those of state-of-the-art (EER:
0.024%, multi-scale feature extraction) (Zuo, Yue, Wang, & Zhang,
2008) on the public palmprint database (PolyU Palmprint
Database, 2006) collected under white illumination.

4.4. Experimental results on palmvein verification

Using the same matching scheme as in Section 4.3, the distance
distribution of genuine and impostor of palmvein images is illus-
trated in Fig. 12. The ROC curve is displayed in Fig. 13. For compar-
ison, the curve by using Hamming distance as in Zhang et al. (2007)
is also plotted.

From Fig. 13, we can see the proposed dissimilarity measure-
ment could improve the verification accuracy significantly over
the widely used Hamming distance. The EER of palmvein verifica-
tion is about 0.3091%, which is not as accurate as palmprint verifi-
cation but better than the result reported in Zhang et al. (2007)
(98.8% GAR when FAR = 5.5%). This is largely due to the relatively
low quality of palmvein images. As discussed in Section 2, in order
to capture palmprint and palmvein image simultaneously, by using
our developed device the palmvein image quality is not as good as
that of palmprint.

To better evaluate the effect of image quality on the verification
accuracy, we partition the palmvein images into three equal sets
by the proposed criterion d0: good quality images, average quality
images and poor quality images. The ROC curves for three sets are
plotted in Fig. 14. Good quality palmvein image set has much bet-
ter results than poor quality image set. The EER values for good,
average and poor quality image sets are is 0.0898%, 0.1214% and
0.3199%, respectively.
Fig. 10. Matching distance distribution of palmprint.

almvein verification. Expert Systems with Applications (2010), doi:10.1016/

http://dx.doi.org/10.1016/j.eswa.2010.08.052
http://dx.doi.org/10.1016/j.eswa.2010.08.052


492

493

494

495

496

497

498

499

500

501

503503

504

505

506

507

508

509

510

Fig. 11. ROC curve of palmprint.

Fig. 12. Matching distance distribution of palmvein.

Fig. 13. ROC curve of palmvein.

Fig. 14. ROC curves of palmvein on different image quality.

Fig. 15. ROC curves for different fusion schemes.

D. Zhang et al. / Expert Systems with Applications xxx (2010) xxx–xxx 9

ESWA 5101 No. of Pages 11, Model 5G

3 September 2010

Please cite this article in press as: Zhang, D., et al. Online joint palmprint and p
j.eswa.2010.08.052
4.5. Experimental results by palmprint and palmvein fusion

The distance distributions of palmprint and palmvein are differ-
ent, which can be seen in Figs. 10 and 12. For example, the impos-
tor scores of palmprint concentrate on 0.45 with standard
deviation being 0.015, and that of palmvein concentrates on 0.89
with standard deviation being 0.023. Thus normalizing the match-
ing scores before fusion is necessary. As the impostor distribution
looks like a Gaussian shape, the z-normalization (Ross et al., 2006)
is used here:

DN ¼
D� limpostor

rimpostor
: ð16Þ

The ROC curves of palmprint and palmvein fusion are shown in
Fig. 15. The EER values of sum (Eq. (11)) and weighted sum (Eq.
(12)) are 0.0212% and 0.0158%, respectively. Because palmvein
contains complementary information to palmprint, the fusion of
them could improve the system accuracy significantly. Fig. 16
shows an example, the two palms have similar palmprint patterns
and they will be falsely accepted by using only palmprint images as
almvein verification. Expert Systems with Applications (2010), doi:10.1016/
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Table 2
Execution time.

Time (ms)

Image acquisition <1000
ROI extraction 63
Liveness detection 0.67
Palmprint feature extraction 36
Palmvein feature extraction 21
Palmprint matching 0.10
Palmvein matching 0.19

Fig. 16. An example pair of palms with similar palmprint which may be recognized
wrongly by palmprint, but different palmvein features could separate them well.
(a)–(b) from one palm; (c)–(d) from another palm.
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inputs. However, their palmvein patterns are very different. Thus,
by combining palmprint with palmvein, they could be separated
easily. Since the proposed weighted sum fusion incorporates palm-
vein image quality, better accuracy could be achieved as shown in
Fig. 15. Compared with the sum rule, the weighted sum could re-
duce the EER up to 25%.

4.6. Speed

The system is implemented using Visual C++6.0 on a Windows
XP, T6400 CPU (2.13 GHz) and 2 GB Ram PC. The execution time for
each step is listed in Table 2. The total execution time of verifica-
tion is less than 1.2 s, which is fast enough for real-time applica-
tion. As the speed of matching is fast, it can be easily extended
to identification system. For example, for 1-to-1000 identification,
the total time cost is only 1.4 s which could meet the real-time
application.

5. Conclusion

In this paper, we designed and developed an online palmprint
verification system by fusing palmvein information. To improve
anti-spoofing ability of the system, a liveness detection algorithm
Please cite this article in press as: Zhang, D., et al. Online joint palmprint and p
j.eswa.2010.08.052
based on the analysis of brightness and texture of image is pro-
posed, and the experiment results show the effectiveness of the
proposed method. Because the palmprint and palmvein informa-
tion is very different, the improvement of simple sum is significant
better than either information alone. Further improvement could
be achieved by the proposed fusion scheme. Through experiments
on a large database, our system shows that it can verify a person in
1.2 s with EER only about 0.0158%.

In summary, we conclude that fusion of palmprint and palm-
vein is a good method to get an accurate and robust personal ver-
ification system. For further improvement of the system we will
focus on three directions: (1) to investigate image and feature level
fusion schemes; (2) to improve the palmvein image quality; (3) to
collect more fake palm samples.
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