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Abstract

While impressive progress has been achieved, video in-
stance segmentation (VIS) methods with per-clip input of-
ten fail on challenging videos with occluded objects and
crowded scenes. This is mainly because instance queries
in these methods cannot encode well the discriminative em-
beddings of instances, making the query-based segmenter
difficult to distinguish those ‘hard’ instances. To address
these issues, we propose to mine discriminative query em-
beddings (MDQE) to segment occluded instances on chal-
lenging videos. First, we initialize the positional embed-
dings and content features of object queries by considering
their spatial contextual information and the inter-frame ob-
ject motion. Second, we propose an inter-instance mask
repulsion loss to distance each instance from its nearby
non-target instances. The proposed MDQE is the first VIS
method with per-clip input that achieves state-of-the-art re-
sults on challenging videos and competitive performance on
simple videos. In specific, MDQE with ResNet50 achieves
33.0% and 44.5% mask AP on OVIS and YouTube-VIS 2021,
respectively. Code of MDQE can be found at https:
//github.com/MinghanLi/MDQE_CVPR2023.

1. Introduction
Video instance segmentation (VIS) [51] aims to obtain

pixel-level segmentation masks for instances of different
classes over the entire video. The current VIS methods
can be roughly divided into two paradigms: per-frame in-
put based methods [3, 18, 20, 26, 47, 51, 52] and per-clip
input based methods [1, 19, 27, 45, 46, 48, 53]. The for-
mer paradigm first partitions the whole video into individual
frames to segment objects frame by frame, and then asso-
ciate the predicted instance masks across frames, while the
latter takes per-clip spatio-temporal features as input to pre-
dict multi-frame instance masks with the help of embedding
learning [1], graph neural networks [41] and transformer
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networks [17, 19, 45, 46].
The recently proposed per-clip VIS methods [19, 45,

46, 48] have set new records on the YouTube-VIS datasets
[51], achieving significant performance improvement over
the per-frame VIS methods [3, 5, 12, 14, 26, 52, 54]. Seq-
Former [46] and VITA [17] locate an instance in each frame
and aggregate temporal information to learn powerful rep-
resentations of video-level instances via a naive weighted
manner and a video-level decoder, respectively. However,
on the challenging OVIS dataset [37], which includes oc-
cluded or similar-looking instances in crowded scenes, the
per-clip VIS methods lag behind the per-frame ones. Ac-
tually, the recently developed per-frame method IDOL [47]
records state-of-the-art performance on OVIS by introduc-
ing contrastive learning [10, 35, 44] to learn inter-frame in-
stance embeddings. We argue that the per-clip VIS meth-
ods should be able to exploit richer spatial-temporal fea-
tures and achieve better performance than their per-frame
counterparts. However, there are two main issues that limit
the existing per-clip methods to achieve this goal.

First, existing query-based VIS methods adopt zero or
random input as the positional embeddings and content fea-
tures of object queries in decoder layers, which cannot en-
code spatio-temporal prior of objects, resulting in poor re-
sults on challenging videos. Second, during training, the
existing mask prediction loss mainly forces each query to
match the pixels of its target instance [21,42] and mismatch
the pixels of other instances and the background. No fur-
ther inter-instance clue has been exploited to teach the seg-
menter to distinguish mutually occluded instances.

To address the above issues, we propose to mine dis-
criminative query embeddings (MDQE) to better segment
hard instances on challenging videos for per-clip VIS meth-
ods. First, we propose to improve the initialization of ob-
ject queries to specify discriminative spatial-temporal pri-
ors. We divide the activation map of each frame into several
patches via a grid and select the peak point in each patch as
the initial positions of frame-level queries, and then asso-
ciate them across frames by embedding similarity to ensure
that frame-level queries in the same grid of the video clip

https://github.com/MinghanLi/MDQE_CVPR2023
https://github.com/MinghanLi/MDQE_CVPR2023


Figure 1. (a) The proposed MDQE architecture consists of a backbone and encoder that extract multi-scale features F from a video clip,
a query initialization module that produces temporally-aligned frame-level queries qt, a decoder that decodes discriminative clip-level
queries q, and a Mask Net that generates mask features D. The mask features D and clip-level queries q are combined via a linear
combination to obtain the clip-level instance mask M̂ , which is supervised by our proposed inter-instance mask repulsion loss in Sec. 3.3.
(b) The frame-level query initialization consists of two steps: grid-guided query selection and inter-frame query association, resulting in
temporally-aligned frame-level queries. Please refer to Sec. 3.2 for more details.

can correspond to the same object. Second, to teach the
query-based segmenter to distinguish occluded instances,
we replace the original mask prediction loss with an inter-
instance mask repulsion loss, which forces each query to ac-
tivate the pixels of its target instance and suppress the pixels
of its surrounding non-target instances.

The proposed VIS method with per-clip input, namely
MDQE, is the first to achieve contrastive learning of in-
stance embeddings via query initialization and the inter-
instance mask repulsion supervision, which can effectively
segment hard instances on challenging videos. Our exper-
iments on both OVIS and YouTube-VIS datasets validate
that MDQE with per-clip input achieve competitive perfor-
mance with its per-frame competitors.

2. Related work

Our work is related to the many per-frame VIS methods,
the recently proposed per-clip VIS methods, as well as the
methods for learning query embeddings.

Per-frame input based VIS methods. A popular VIS
pipeline [5, 12, 18, 20, 26, 28, 31, 47, 51, 52] is to extend
the representative image instance segmentation methods
[4,6,8,15,39] by adapting a frame-to-frame instance tracker.
For example, in [12, 18, 51], the clues such as category
score, box/mask IoU and instance embedding similarity are
integrated into the tracker. However, these trackers may
struggle in distinguishing instances with similar appear-
ance. Inspired by contrastive learning [7, 10, 23, 35, 44],
IDOL [47] learns discriminative instance embeddings for
multiple object tracking frame by frame, achieving state-
of-the-art results on OVIS [37]. Besides, clip-to-clip track-
ers [3,28,37] propagates the predicted instance masks from
a key frame to other frames using deformable convolution

[3, 9], non-local block [28], correlation [26, 37], graph neu-
ral network [41], etc. By exploiting the temporal redun-
dancy among overlapped frames, clip-to-clip trackers im-
prove much the performance of per-frame methods.

Per-clip input based VIS methods. A clip-in clip-
out VIS pipeline was firstly proposed in [1] to model a
video clip as a single 3D spatio-temporal pixel embed-
ding. In recent years, transformer based per-clip methods
[19,45,46,48,53] have achieved impressive progress on the
YouTube-VIS datasets [51]. VisTR [45] views the VIS task
as a direct end-to-end parallel sequence prediction problem,
but it needs a large memory to store spatio-temporal fea-
tures. To solve the issue, IFC [19] transfers inter-frame in-
formation via efficient memory tokens, and SeqFormer [46]
locates an instance in each frame and aggregates temporal
information to predict video-level instances. To keep object
temporal consistency, EfficientVIS [48] transfers inter-clip
query embeddings via temporal dynamic convolution.

However, per-clip VIS methods do not perform well on
the challenging OVIS videos [37] with occluded objects in
crowded scenes. Actually, occlusion-aware models have
been developed for related tasks [21, 33, 43, 50]. For in-
stance, a bilayer convolutional network is developed in [22]
to infer the occluder and occluded instances in image seg-
mentation. A repulsion detection loss is designed in [43]
to distance the bounding box of an object from the sur-
rounding non-target objects for detecting individual pedes-
trian in a crowd. Inspired by these works, we propose an
inter-instance mask repulsion loss to distinguish the pixels
of each instance from its nearby non-target instances.

Query initialization. Existing query-based VIS meth-
ods adopt zero-initialized (e.g., DETR [6]) or randomly-
initialized (e.g., Deformable DETR [55]) inputs as initial
queries. The initial queries cannot encode well the spatio-



temporal priors of objects, making the query-based seg-
menter difficult to distinguish occluded instances with sim-
ilar appearance. Actually, query initialization with contex-
tual and positional information has been used in many com-
puter vision tasks [2, 13, 25, 36] for higher performance or
faster convergence. However, it has not been well explored
in VIS. In this paper, we thus propose a query initialization
method to obtain temporally-aligned frame-level queries.

3. Methodology

We outline the proposed MDQE from the perspective
of query-based mask prediction in Sec. 3.1, then introduce
the two major parts of MDQE: object query initialization
in Sec. 3.2 and the inter-instance mask repulsion loss in
Sec. 3.3. Finally, we present the training loss and near-
online inference process in Sec. 3.4.

3.1. Framework Overview

An input video is partitioned into a few video clips, each
with T frames. As illustrated in the left of Fig. 1, during
training, a video clip first passes through the backbone and
encoder to obtain its multi-scale features F , where the one
at the largest scale is represented as F 0. The feature F 0 is
then used as the input to our proposed query initialization
module in Sec. 3.2 to produce temporally-aligned frame-
level queries {qt}Tt=1 (denoted by circles), which will be fed
into the decoder to obtain discriminative clip-level queries
q (denoted by squares). On the other hand, the multi-scale
features F are input into the Mask Net to generate mask
features D, which are then combined with the clip-level
queries q to produce clip-level instance masks M̂ using lin-
ear combination [4,39]. Finally, the predicted masks M̂ are
supervised by our proposed inter-instance mask repulsion
loss in Sec. 3.3 to distance each instance from its nearby
non-target instances, implementing contrastive learning of
instance masks.

3.2. Frame-level Query Initialization

In this subsection, we initialize frame-level queries with
instance-specific information and improve the decoder ar-
chitecture to mine discriminative instance embeddings.

Existing query-based VIS methods typically adopt zero
or random input as the initial positional embeddings and
content features of object queries, following DETR [6] and
deformable DETR [55]. However, a recent method [36]
called grid-guided query selection was proposed to endow
object queries with positional and contextual information
of the input image, as shown in the top of Fig. 1(b). This
method inputs the features F 0 into a semantic segmentation
head (ϕs with three linear layers) to predict the class-aware
activation map: S = ϕs(F

0) ∈ Rc×T×H0×W 0

, where c
is the number of categories and H0,W 0 are the height and

Figure 2. Architecture comparison of the first decoder layer be-
tween (a) Seqformer [46] and (b) MDQE, where ‘SA’, ‘CA’ and
‘TCA’ refer to self-attention, cross-attention and temporal cross-
attention layer, respectively. Please refer to Sec. 3.2 for details.

width of features. The activation map is evenly divided into
several patches through a grid, and the peak point with the
highest response (the white dots) in each patch is selected.
The coordinates p ∈ R2 and features F 0

p ∈ Rd of the peak
point are then assigned as the initial positions and content
features of the query, where d is the dimension of features.

However, the grid-guided query selection may not be
able to cover an object with the same grid across multiple
frames because object motion or camera jitters will cause
position shifts over time. To improve temporal consistency,
we extend the grid-guided query selection by incorporat-
ing the inter-frame query association, as illustrated in the
bottom of Fig. 1(b). For a video clip, we first perform
the above grid-guided query selection frame by frame to
obtain the initial frame-level queries, and then input the
content features of these queries into an embedding head
( ϕe with three linear layers) and output their embeddings:
ep = ϕe(F

0
p ) ∈ Rde , where p represents the query po-

sition and de is the dimension of embeddings. To ob-
tain temporally-aligned queries, we calculate the embed-
ding similarity between each query in the central frame
and neighboring queries within a large window in the non-
central frame. The query in the non-central frame with the
highest similarity is assigned as the matched query. Note
that the size of the window increases if two frames are far
apart. After applying the above inter-frame query associa-
tion, frame-level queries within the same grid are roughly
aligned across multiple frames.

In training, we employ the commonly used focal loss
[29] to supervise the class-aware activation map, denoted as
Linit-sem. Besides, we employ contrastive learning [35, 47]
to pull the query embeddings with the same instance ID over



multiple frames closer, and push them away from each other
otherwise. For an object query at position p, its contrastive
loss of embeddings is defined as:

Linit-reid = − log
exp(ep · er+p′ )

exp(ep · er+p′ ) +
∑

r− exp(ep · er−p′ )
,

where ep represents its query embeddings, er+p′ and er−p′ de-
note the embeddings vectors of its neighbouring queries at
position p′ with the same instance ID and with different in-
stance IDs, respectively.

Since our query initialization can provide instance-
specific spatial-temporal information for frame-level
queries, we further adjust the decoder architecture to take
full advantage of it. We compare the architectures of the
first decoder layer of SeqFormer [46] and our MDQE in
Fig. 2. As shown in Fig. 2(a), SeqFormer employs ran-
dom input as clip-level queries, calculates cross-attention
between clip-level queries and per-frame encoded features
to specify frame-level queries in each frame, and finally
updates clip-level queries as the weighted combination of
frame-level queries. We refer to this architecture of coping
embeddings from clip-level instance queries to frame-level
object queries as ‘I2O’.

Our MDQE utilizes a different decoder architecture, as
shown in Fig. 2(b). it first computes cross-attention and
then self-attention, and integrates frame-level object queries
into clip-level instance queries (‘O2I’ for short). The clip-
level queries q ∈ RN×d are calculated similarly to Seq-
Former [46]: q =

∑T
t=1 wt ·qt, where qt ∈ RN×d indicates

frame-level queries, and wt = FFN(qt) ∈ RN×1 is the time
weight of each frame in the clip. Additionally, we add an
extra temporal cross-attention (TCA) layer to mine and inte-
grate discriminative features of instances in a larger spatio-
temporal receptive field. The attention module in TCA ex-
tracts deformable points from multi-frame single-scale fea-
ture maps [55]. Our proposed query initialization can early
associate instances across frames, providing a good warm-
up to the decoder with the ‘O2I’ architecture. This helps to
reduce confusing masks among crowded instances.

3.3. Inter-instance Mask Repulsion Loss

The clip-level instance masks M̂ ∈ RN×T×H×W can
be produced by the linear combination of mask features
D ∈ Rd×T×H×W and clip-level queries q ∈ RN×d:
M̂ = qD, as shown in Fig. 1(a). During training, the pre-
dicted instance masks M̂ are supervised by the ground-truth
instance masks M via the binary cross-entropy (BCE) loss
and the Dice loss [11, 34]. The typical instance mask pre-
diction loss thus can be formulated as:

Lmask = LBCE(M̂, M) + LDice(M̂, M), (1)

where M ∈ RK×T×H×W is the ground-truth (GT) instance
mask, and K is the number of matched GT instances. The

Figure 3. Schematic diagram of the inter-inst mask repulsion loss
on the instance with ID i, corresponding to the instance with green
circles in Fig. 1.

formula of Dice loss is as follows:

LDice(M̂, M) =
1

K

∑K

i=1
1− 2|M̂i ⊙Mi|

|M̂i|+ |Mi|
(2)

where ⊙ denotes the point-wise matrix multiplication and
| · | sums the values in the matrix.

However, the mask prediction supervision gives priority
to match the pixels of its target instance, and then mismatch
the pixels of other instances and the background. This may
make the query-based segmenter converge to a shortcut of
object spatial locations, resulting in imprecise segmentation
prediction and confusing masks on occluded instances.

In fact, the relative relationship between each instance
and its surrounding instances can provide contrastive fea-
tures to the query-based segmenter. Inspired by the suc-
cess of contrastive learning [7, 21, 44], we design an inter-
instance mask repulsion loss to suppress the pixels belong-
ing to the nearby non-target instances. For the i-th instance,
we define its nearby non-target instances via the intersection
of union of bounding boxes (BIoU):

oi = {j | max
t∈[1,T ]

IoU(Bti, Btj)>ϵ, ∀j∈ [1,K], j ̸= i}, (3)

where ϵ is a threshold to control the number of nearby
non-target samples, which is set to 0.1 by default. Let the
union of nearby GT instance masks be the complementary
GT inter-instance mask, i.e., Moi = ∪j∈oiMj , which con-
tains all pixels of its nearby non-target instances, as illus-
trated in Fig. 3. Since most annotations used in instance
segmentation are not mutually exclusive, we further set
Moi = Moi ∩ (1 − Mi) to remove pixels contained in the
GT mask and the GT inter-instance mask at the same time.

Typically, the supervision for predicting instance masks
includes the BCE and Dice losses in Eq. (1). In order to train
the segmenter to perceive the relative relationships between
each instance and its surroundings, we enhance the original
BCE and Dice losses by incorporating inter-instance repul-
sion supervision, named inter-instance BCE loss and inter-
instance Dice loss, respectively. Specifically, we adopt a
weighted BCE loss to assign a larger weight for the pix-
els belonging to the target instance and its nearby instances.



The formula of the inter-instance BCE loss is:

LBCE-inter =
1

|Wi|
∑N

p=1
Wip BCE(M̂ip,Mip), (4)

where p and N indicate the pixel position index and the total
number of points in the mask, respectively. The correspond-
ing inter-instance weight Wip is set to α (2 by default), if
Mip = 1 or Moip = 1, otherwise 1.

On the other hand, we introduce an inter-instance mask
repulsion loss, which involves Moi into the Dice loss to ex-
plicitly suppress the pixels of nearby non-target instances.
The formula of inter-instance Dice loss is:

LDice-inter = 1− 2|M̂i ⊙Mi| + |(1− M̂i)⊙Moi |
|M̂i| + |Mi| + |Moi |

. (5)

If an instance is isolated to other instances, i.e., |Moi | = 0,
the inter-instance Dice loss degrades to the original Dice
loss in Eq. (2). In terms of gradient back-propagation, the
pixels that belong to the target instance and its nearby in-
stances will have a larger gradient value compared to other
pixels in the image.

Finally, our inter-instance mask repulsion loss is

Linter-mask =
1

K

∑K

i=1
LBCE-inter(M̂i,Mi,Moi)

+ LDice-inter(M̂i,Mi,Moi). (6)

The above loss considers both the matching of pixels be-
longing to the target instance and the mismatching of pixels
belonging to the nearby non-target instances, therefore pro-
viding instance discriminative information to the segmenter
for producing more accurate instance masks.

3.4. Training and Inference Details

We employ Deformable DETR [55] as the transformer
framework, and SeqFormer [46] as the clip-level VIS base-
line. The training losses of our proposed MDQE is:

Ltotal = λ1 Lcls + λ2 Lbox + λ3 Linter-mask

+ λ4 Linit-sem + λ5 Linit-reid,

where we adopt the focal loss for classification, and the
smooth L1 loss and the generalized IoU loss [38] for bound-
ing box regression. During training, we empirically set
λ1 = 2, λ2 = 2, λ3 = 4, λ4 = 2, and λ5 = 0.5.

During inference, MDQE processes the testing video
clip by clip in a near-online fashion. Multiple frames (more
than T frames) are loaded into the backbone and encoder
to obtain encoded features, which are then extracted clip by
clip to the decoder to output clip-level queries. Overlapping
frames between clips are only used in the decoder, making
MDQE fast. In each clip, instances with classification con-
fidence below a threshold are removed, and their masks and

Figure 4. Near-online inference with a clip-by-clip tracker.

embeddings are added to the memory pool to remember ob-
jects from previous clips. For a new clip, denoted as the l-th
video clip for clarity, MDQE generates instance masks M̂
and clip-level embeddings q with high classification confi-
dence, and extracts memory-based instance masks M̂m and
embeddings qm from the previous Tmem clips. The Hungar-
ian matching algorithm is applied on the score matrix S to
associate instances across clips:

S = β1 mIoU(M̂m, M̂) + β2 sim(qm, q), (7)

where ‘mIoU’ and ’sim’ measure the mask IoU of instance
masks and embedding similarity of instance queries be-
tween the memory pool and the current clip, respectively.
β1 and β2 balance the proportions of the two losses, which
are set to 1 by default. This process is illustrated in Fig. 4.

4. Experimental Results
4.1. Experiments setup

Datasets. YouTube-VIS [51] 2019/2021 respectively
contain 2,283/2,985 training, 302/421 validation, and
343/453 test videos over 40 categories. All the videos are
annotated for every 5 frames. The number of frames per
video is between 19 and 36. OVIS [37] includes 607 train-
ing, 140 validation and 154 test videos, scoping 25 ob-
ject categories. Different from YouTube-VIS series, OVIS
dataset includes longer videos, up to 292 frames, with more
objects per frame and varying occlusion levels. The propor-
tions of objects with no occlusion, slight occlusion, and se-
vere occlusion are 18.2%, 55.5%, and 26.3%, respectively.
Note that 80.2% of the instances are severely occluded in
at least one frame, and only 2% of the instances are not oc-
cluded in any frame.

Evaluation metrics. The commonly used metrics, in-
cluding average precision (AP) at different IoU thresholds,
average recall (AR) and the mean value of AP (mAP), are
adopted for VIS model evaluation. OVIS divides all in-
stances into three groups called slightly occluded (APso),
moderately occluded (APmo) and heavily occluded (APho),



Init. Arch. TCA mAP AP50 AP75 APso APmo APho

I2O 15.4 31.3 14.3 31.8 17.3 3.2
✓ I2O 19.8 40.6 18.2 36.3 22.6 6.5
✓ O2I 24.2 47.5 22.9 40.9 27.3 8.4
✓ O2I ✓ 25.6 49.1 24.9 41.9 29.0 11.2

(a) Initialization for frame-level queries.

w Assoc. mAP AP50 AP75 APso APmo APho

0 28.5 53.0 26.9 47.6 32.5 11.9
3 ✓ 29.7 55.6 27.1 48.9 34.5 12.2
5 ✓ 30.6 57.2 28.2 49.3 35.1 13.6
7 ✓ 30.5 57.1 28.6 49.1 33.7 13.7

(b) Inter-frame query association, where w controls the window size.

LBCE-inter LDice-inter ϵ mAP AP50 AP75 APso APmo APho

29.0 51.6 29.5 44.7 31.3 11.8
2 0.1 30.5 55.6 29.5 46.7 33.1 12.9
2 ✓ 0.1 31.2 56.8 30.4 48.6 34.5 13.5
2 ✓ 0.5 30.9 56.4 30.5 47.2 34.2 13.3

(c) Inter-instance mask repulsion loss.

β1 β2 Tmem mAP AP50 AP75 APso APmo APho

1 - 29.1 54.1 27.7 46.5 32.8 12.9
1 10 28.3 53.4 27.1 47.1 31.3 11.6

1 1 10 30.6 57.2 28.2 49.3 35.1 13.6
1 1 5 30.4 56.4 28.7 49.4 35.2 13.2

(d) Tracking. β1 and β2 control the proportions of mIoU and similarity.
Table 1. Ablation studies of MDQE on OVIS valid set, where the input video is 480p, the clip length is T = 4, and the number of
overlapped frames across clips is T − 1, respectively. ϵ controls the number of nearby non-target samples.

Figure 5. Segmentation on heavily occluded objects by MDQE with typical mask prediction loss and our inter-instance mask repulsion
loss. The red, green and blue dots highlight the initial query positions selected by our proposed query initialization method. The last two
rows display the predicted masks on the occluded instance and the occluder instance.

where the occlusion scores of instances are in the range of
[0, 0.25], [0.25, 0.5] and [0.5, 0.75], respectively, whose
proportions are 23%, 44% and 49% accordingly.

Implementation details. Our method is implemented
on top of detectron2 [49]. Following [46], we set six layers
with multi-scale deformable attention module in encoder
and decoder, and employ 200 object queries with dynamic
one-to-many label assignment as in [47]. We first pre-train
our model on COCO [30], and then finetune it on VIS
datasets [37, 51]. In pre-training, we sample an image as
the key frame, and resize it in a relative range [0.6, 1] as
the reference frame. All models with ResNet50 backbone
[16] are trained on eight GeForce RTX 3090 GPUs with
24G RAM, and models with Swin Large backbone [32] are
trained on four NVIDIA RTX A6000 with 48G RAM. The
initial learning rate is 0.0001, and it decays by 0.1 at 20k
and 24k iterations. During training and inference, unless
specified, all frames are resized to a shorter edge size of
360 on YouTube-VIS datasets or 480 on OVIS dataset, and
the clip length is taken as T = 4 on ResNet50 backbone

and T = 3 on Swin Large backbone, respectively.

4.2. Ablation study
This section performs ablation studies on MDQE and

discusses the impact of query embeddings on the segmen-
tation performance. The OVIS valid set is used.

Query initialization. In Table 1a, we explore the perfor-
mance improvements brought by query initialization. The
baseline Seqformer [46] with ‘I2O’ decoder architecture
achieves 15.4% mask AP. By using grid-guided query se-
lection to initialize frame-level queries, the performance is
improved to 19.8% mask AP. By employing both query
initialization and the ‘O2I’ decoder architecture, the mask
AP and AP50 increase to 24.2% and 47.5%, respectively.
Additionally, the temporal cross-attention layer (TCA) fur-
ther improves mask AP by about 1%. The proposed query
initialization significantly enhances instance detection and
segmentation accuracy in challenging videos.

Inter-frame query association. In Table 1b, we investi-
gate the impact of window size w on inter-frame query as-
sociation for query initialization. Without inter-frame query



Type Methods YouTube-VIS 2021 OVIS FPS ParamsAP AP50 AP75 AR1 AR10 AP AP50 AP75 AR1 AR10

Per-frame
(360p)

MaskTrack [51] 28.6 48.9 29.6 - - 10.8 25.3 8.5 7.9 14.9 20.0 58.1M
STMask [26] 31.1 50.4 33.5 26.9 35.6 15.4 33.9 12.5 8.9 21.4 28.0 -
CrossVIS [52] 33.3 53.8 37.0 30.1 37.6 14.9 32.7 12.1 10.3 19.8 39.8 37.5M
InstFormer [24] 40.8 62.4 43.7 36.1 48.1 20.0 40.7 18.1 12.0 27.1 - 44.3M
IDOL [47] 43.9 68.0 49.6 38.0 50.9 24.3 45.1 23.3 14.1 33.2 30.6 43.1M
MinVIS [18] 44.2 66.0 48.1 39.2 51.7 26.3 47.9 25.1 14.6 30.0 52.4 44.0M

Per-clip
(360p)

VisTR∗ [45] 31.8 51.7 34.5 29.7 36.9 10.2 25.7 7.7 7.0 17.4 30.0 57.2M
IFC∗ [19] 36.6 57.9 39.3 - - 13.1 27.8 11.6 9.4 23.9 46.5 39.3M
TeViT [53] 37.9 61.2 42.1 35.1 44.6 17.4 34.9 15.0 11.2 21.8 68.9 161.8M
SeqFromer∗ [46] 40.5 62.4 43.7 36.1 48.1 15.1 31.9 13.8 10.4 27.1 72.3 49.3M
VITA [17] 45.7 67.4 49.5 40.9 53.6 19.6 41.2 17.4 11.7 26.0 33.7 57.2M
MDQE (our) 44.5 67.1 48.7 37.9 49.8 29.2 55.2 27.1 14.5 34.2 37.8 51.4M

720p IDOL [47] - - - - - 30.2 51.3 30.0 15.0 37.5 - 43.1M
MDQE (ours) - - - - - 33.0 57.4 32.2 15.4 38.4 13.5 51.4M

Table 2. Quantitative performance comparison of VIS methods with ResNet50 backbone on benchmark YouTube-VIS 2021 and OVIS
datasets. Note that MinVIS and VITA adopt stronger masked-attention decoder layers proposed in Mask2Former [8]. FPS is computed on
YouTube-VIS 2021 valid set, and symbol ”-” means the results are not available or applicable. Best in bold, second with underline.

Figure 6. Ablation study on clip length with near-online inference.

association (w = 0), the performance is only 28.5% mask
AP. When the window size is set to 3, 5 and 7, the mask
AP increases by 1.2%, 2.1% and 2.0%, receptively. So we
set the default size as 5. The top row of Fig. 5 visualizes
the initial query positions selected by our proposed query
initialization method. We see that it keeps temporal consis-
tency and avoids confusion between occluded objects. Vi-
sualization of the initial query positions on more videos can
be found in the supplementary materials.

Inter-instance mask repulsion loss. In Table 1c, we
compare the performance of typical mask prediction loss
and our inter-instance mask repulsion loss. MDQE with
the typical mask prediction loss achieves only 29.0% mask
AP, and performs poorly in all occluded objects. When
the weight α of the inter-instance BCE loss is set to 2,
the performance increases to 30.5% mask AP, and intro-
ducing inter-instance Dice loss further increases mask AP
to 31.2%. If we set a higher threshold ϵ in Eq. (3) to
only consider heavily occluded objects, the performance
drops by 1.4% APso on slightly occluded objects. Over-
all, our inter-instance mask repulsion loss brings significant
improvements on all occlusion metrics, 3.9% APso, 3.2%
APmo and 1.7% APho, respectively, resulting in better in-

Type Methods AP APso APmo APho

Per-frame IDOL [47] 24.3 34.8 29.0 8.1
MinVIS [18] 26.3 45.8 31.6 9.9

Per-clip
SeqFormer [46] 15.1 31.8 17.3 3.2
VITA [17] 19.6 32.3 20.4 8.2
MDQE (ours) 29.2 46.6 33.9 13.1

Table 3. Occlusion metrics of SOTA methods on OVIS valid set.

stance segmentation results on challenging videos. The vi-
sual comparison of instance masks on a video with heavily
occluded objects is displayed in Fig. 5.

Tracking. In Table 1d, we compare the performance of
clip-by-clip tracker using different weights in the score ma-
trix in Eq. (7). Using only the mIou term (β1 = 1) or the
embedding similarity term (β2 = 1) respectively achieves
29.1% and 28.3% mask AP, while the mIou term performs
better on moderately and heavily occluded objects. By en-
abling both the two terms, the mask AP increases to 30.6%
and all occlusion metrics improve significantly. If the num-
ber of frames Tmem in memory pool is reduced from 10 to 5
frames, the performance will drop slightly.

Effect of the clip length. In Fig. 6, we explore the
VIS results by varying the clip length. MDQE with T = 1
achieves 27% mask AP, slightly higher than the state-of-the-
art per-frame input method MinVIS [18] in Table 2. The
mask AP fluctuates between 30.0% and 31% with the in-
crease of the frame number of input clip, peaks at around
31.0% mask AP with 7-frame per clip, and then falls to
29% mask AP with 9-frame per clip. When T = 9, the
performance drops because of the complex trajectories of
objects in long clips, which can be alleviated by increasing
the training samples of long videos.



Data Methods AP AP50 AP75 AR1 AR10

YT21

IDOL [47] 56.1 80.8 63.5 45.0 60.1
MinVIS [18] 55.3 76.6 62.0 45.9 60.8
SeqFromer [46] 51.8 74.6 58.2 42.8 58.1
VITA [17] 57.5 80.6 61.0 47.7 62.6
MDQE (ours) 56.2 80.0 61.1 44.9 59.1

OVIS

MinVIS [18] 41.6 65.4 43.4 18.6 44.9
VITA [17] 27.7 51.9 24.9 14.9 33.0
MDQE (ours) 41.0 67.9 42.7 18.3 45.2
IDOL † [47] 42.6 65.7 45.2 17.9 49.6
MDQE † (ours) 42.6 67.8 44.3 18.3 46.5

Table 4. Quantitative performance comparison of VIS meth-
ods with Swin Large (SwinL) backbone [40] on benchmark VIS
datasets. Symbol ‘†’ means that the input video is of 720p.

4.3. Main Results

With ResNet50 backbone, we compare in Table 2 the
proposed MDQE with state-of-the-art methods on OVIS
and YouTube-VIS 2021 datasets. For those methods
marked by ‘∗’, we employ video-in video-out offline infer-
ence on YouTube-VIS valid sets (less than 84 frames), and
clip-in clip-out inference with overlapping frames between
clips on OVIS (at most 292 frames). The occlusion metrics
of SOTA methods on OVIS is provided in Table 3 as well.
In addition, we report the performance comparison between
recently proposed VIS methods with Swin Large backbone
in Table 4. Due to the limit of space, the experiments on
ResNet101 backbone and YouTube-VIS 2019 valid set can
be found in the supplementary materials.

YouTube-VIS [51] 2021 valid set. From Table 2, we can
see that early VIS methods [5, 26, 51, 52] using dense an-
chors only obtain around 30% mask AP, while recently pro-
posed VIS methods [17, 18, 47] using sparse object queries
can reach more than 44% mask AP. Since the videos in
YouTube-VIS 2021 are short and simple, the performance
gap between per-frame input and per-clip input based meth-
ods is not significant. Based on the strong decoder layers
proposed in Mask2Former, the frame-level method Min-
VIS [18] and the clip-level method VITA [17] respectively
reset new state-of-the-arts with 44.2% and 45.7% mask AP.
Without using the masked-attention in Mask2Former, our
proposed MDQE achieves 44.5% mask AP, which is only
slightly lower than VITA [17].

OVIS [37] valid set. OVIS is much more difficult
than YouTube-VIS. Its videos have much longer duration
with occluded and similar-looking objects. The early per-
frame methods MaskTrack R-CNN [51] and CrossVIS [52]
achieve only 10.8% and 14.9% mask AP, respectively. The
recent per-frame methods with query-based transformer de-
coder layers, IDOL [47] and MinVIS [18], bring impressive
improvements, achieving 24.3% and 26.3% mask AP, re-

spectively. However, the query-based transformer methods
with per-clip input show unexpectedly low performance,
such as 15.1% by Seqformer [46]. By introducing object to-
ken association between frames, VITA [17] achieves 19.6%
mask AP. In comparison, our MDQE can reach 29.2% mask
AP, bringing 9.6% performance improvement. Besides, by
using videos of 720p, our MDQE can further improve the
mask AP from 29.2% to 33.0%, which is the best result us-
ing ResNet50 backbone by far.

We compare the occlusion metrics of competing VIS
methods on OVIS valid set in Table 3. One can see that
MDQE achieves impressive improvements on APmo and
APho metrics, validating that MDQE can handle the mod-
erately and heavily occluded objects very well.

Swin Large backbone. VIS models with the Swin
Large backbone can have higher detection and segmenta-
tion abilities on challenging videos. Due to limited space,
only the recently developed transformer-based methods are
compared in Table 4. IDOL [47], SeqFormer [46] and
our MDQE adopt the deformable DETR transformer ar-
chitecture, while VITA [17] and MinVIS [18] employ the
stronger masked-attention transformer architecture. On
both YouTube-VIS 2021 and OVIS valid sets, MDQE ob-
tains competitive performance with VITA [17] and MinVIS
[18]. With 720p video input, IDOL [47] with inter-frame
object re-association obtains 42.6% mask AP on OVIS. Due
to our limited computational memory, we only take 2-frame
video clips as inputs to train our MDQE; however, it can
still reach 42.6% mask AP. We believe MDQE can achieve
higher performance if more frames are used in the clip.

Parameters and Speed. We follow Detectron2 [49] to
calculate the parameters and FPS. As shown in Table 2,
compared with the latest per-clip method VITA [17], our
MDQE has 51.4M parameters and runs at 37.8 FPS, saving
about 9.4% parameters and speeding up 12% the run-time.

The visualization of example segmentation results on
challenging videos by the competing VIS methods can be
found in the supplementary materials.

5. Conclusions
We proposed to mine discriminative query embeddings

to segment occluded instances on challenging videos. We
first initialized the positional and content embeddings of
frame-level queries by considering instance spatio-temporal
features. We then performed contrastive learning on in-
stance embeddings by proposing a new inter-instance mask
repulsion loss. The proposed per-clip VIS method, termed
as MDQE, was validated on OVIS and YouTube-VIS
datasets. The experimental results showed that the mined
discriminative embeddings of instance queries can teach the
query-based segmenter to better distinguish occluded in-
stances in crowded scenes, improving significantly perfor-
mance on the challenging OVIS dataset.
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