
Supplementary File:
Second-order Attention Network for Single Image Super-resolution

Tao Dai1,2,∗,‡ , Jianrui Cai3,∗ , Yongbing Zhang1, Shu-Tao Xia1,2, Lei Zhang3,4,§
1Graduate School at Shenzhen, Tsinghua University, Shenzhen, China

2 PCL Research Center of Networks and Communications, Peng Cheng Laboratory, Shenzhen, China
3Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

4DAMO Academy, Alibaba Group
{dait14, zhang.yongbing, xiast}@sz.tsinghua.edu.cn, {csjcai, cslzhang}@comp.polyu.edu.hk

Abstract

In this supplementary file, we first give more details
about the forward propagation (FP) and backward prop-
agatio (BP) of covariance normalization. Then we pro-
vide the convergence analysis of some very deep networks
to verify the effectiveness of the proposed non-locally en-
hanced residual group (NLRG) structure. Meanwhile, we
provide more comparison results with the state-of-the-art
CNN-based SR methods under the Bicubic (BI) degradation
model. All quantitative results are evaluated in terms of
PSNR and SSIM metrics.

1. FP and BP of Covariance Normalization
FP of Newton-Schulz Iteration. Traditional convariance

normalization relies heavily on EIG, which is however not

well supported on GPU platform, thus leading to inefficient

training. As explored in [7], we also relied on Newton-

Schulz iteration to speed up the computation of covariance

normalization. Given Y0 = Σ,Z0 = I, for n = 1, · · · , N ,

the Newton-Schulz iteration is then updated alternately as

follows:

Yn = 1
2Yn−1(3I− Zn−1Yn−1),

Zn = 1
2 (3I− Zn−1Yn−1)Zn−1. (1)

After enough iterations, Yn and Zn quadratically converges

to Y and Y−1. Such iterative operation is suitable for par-

allel implementation on GPU. In practice, one can achieve
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approximate solution with few iterations, e.g., no more than

5 iterations in our method.

FP of Pre-normalization. Since Newton-Schulz iteration

only converge locally, to guarantee the convergence, we

pre-normalize Σ first via

Σ̂ =
1

tr(Σ)
Σ, (2)

where tr(Σ) =
∑C

i λi denotes the trace of Σ. In such case,

it can be inferred that the ||Σ − I||2 equals to the largest

singular value of (Σ− I), i.e., 1− λi∑
i λi)

less than 1, which

thus satisfies the convergence condition.

FP of Post-compensation. After Newton-Schulz iteration,

we apply a post-compensation procedure to compensate the

data magnitude caused by pre-normalization, thus produc-

ing the final normalized covariance matrix

Ŷ =
√

tr(Σ)YN . (3)

BP of Post-compensation. Given L the loss function and
∂L

∂Ŷ
, then the chain rule can be formulated as

tr((
∂L

∂Ŷ
)T dŶ = tr((

∂L

∂YN
)T dYN + (

∂L

∂Σ
)T dΣ), (4)

where dŶ is variation of Ŷ. After some simplifications, we

can obtain

∂L

∂Σ
|post =

1

2
√

tr(Σ)
tr

((
∂L

∂Ŷ

)T

YN

)
I,

∂L

∂YN
=
√

tr(Σ)
∂L

∂Ŷ
. (5)

BP of Newton-Schulz iteration. The next step is to com-

pute the derivatives of the loss function L w.r.t. ∂L
∂Yn

and
∂L
∂Zn

, n = N − 1, · · · , 1, with ∂L
∂YN

obtained and ∂L
∂ZN

= 0.
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Since Σ is symmetric, it can be easily inferred that Yn and

Zn are also symmetric. Based on chain rules of BP and after

some simplifications, n = N, · · · , 2, we can have

∂L

∂Yn−1
=

1

2
(
∂L

∂Yn
(3I−Yn−1Zn−1)− Zn−1Yn−1

∂L

∂Yn

− Zn−1
∂L

∂Zn
Zn−1)

∂L

∂Zn−1
=

1

2
((3I−Yn−1Zn−1)

∂L

∂Zn
− ∂L

∂Zn
Zn−1Yn−1

−Yn−1
∂L

∂Yn
Yn−1). (6)

The last step of this layer is associated with the partial

derivative w.r.t. ∂L

∂Σ̂
, which can be formulated as

∂L

∂Σ̂
=

1

2

(
∂L

∂Y1

(
3I− Σ̂

)
− ∂L

∂Z1
− Σ̂

∂L

∂Y1

)
. (7)

BP of Pre-normalization. From Eqn. (3), we can see that

we also need to compute the gradient of the L w.r.t. Σ,

backpropagated from the post-compensation layer. Based

on Eqn. (3), ∂L
∂Σ can be easily inferred. More details can be

seen in the supplementary file. Σ = tr(Σ)Σ̂, and after some

manipulations and we can thus obtain similar formulations:

∂L

∂Σ
=− 1

(tr(Σ))2
tr

((
∂L

∂Σ̂

)T

Σ

)
I+

1

tr(Σ)

∂L

∂Σ̂

+
∂L

∂Σ
|post. (8)

Based on ∂L
∂Σ obtained, the gradient of the loss function

L w.r.t. the input X can be easily derived as follows:

∂L

∂X
= ĪX

(
∂L

∂Σ
+

(
∂L

∂Σ

)T
)
. (9)

2. Experiments
2.1. Convergence Analysis

We conduct experiments about convergence analysis

of our non-locally enhanced residual group (NLRG). As

shown in Fig. 1, The green line (NLRG Base) denotes

the NLRG structure with only one skip connection at the

tail of each RG. In contrast, the blue lines (NLRG SSC)

denotes the each RG is connected through share-source

skip connections (SSC). Based on NLRG SSC, the black
line (NLRG FOCA) denotes the NLRG contains first-

order channel attention (FOCA) in each RG. The red

line (NLRG SOCA) denotes the our proposed NLRG with

second-order channel attention (SOCA) in each RG. All

these four networks are trained from scratch. From Fig. 1

we can have some observations:
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Figure 1. Convergence analysis on four variants of our proposed

non-locally enhanced residual group (NLRG). All the four net-

works contain 20 residual groups (RG) and 10 residual blocks in

each RG, thus producing over 400 residual blocks. The green line

(NLRG Base) denotes the NLRG structure with skip connections

at the tail of each RG. In contrast, the blue lines (NLRG SSC) de-

notes the each RG is connected through share-source skip connec-

tions (SSC). Based on NLRG SSC, the black line (NLRG FOCA)

denotes the NLRG contains first-order channel attention (FOCA)

in each RG. The red line (NLRG SOCA) denotes the the NLRG

contains our proposed second-order channel attention (SOCA) in

each RG. The curves report PSNR values on Set5 (2×) in 50

epochs.

(1). Share-source skip connection plays a key role in

the training of very deep CNN-based SR methods. We

can see that NLRG Base and NLRG SSC both start at a

relatively low performance, and gradually converge to the

stable performance. With the increase of training epochs,

NLRG SSC would outperform NLRG Base. This is mainly

because the NLRG SSC could allow more abundant LR in-

formation to be bypassed through share-source skip con-

nections, which shows the effectiveness of the share-source

skip connections.

(2). Channel attention is also important for further im-

proving better SR performance. NLRG with first-order

channel attention (NLRG FOCA) or with second-order



channel attention (NLRG SOCA) both produce more sta-

ble PSNR curves and outperform NLRG Base after some

training epochs. The main reason is that channel attention

exploits channel statistics among channels, thus enhancing

the discriminative ability of the network.

(3). Second-order channel attention (SOCA) plays a

more significant role in the training of deep networks.

We can observe that the proposed NLRG SOCA obtains

the best performance. Specifically, it starts a relatively

high and stable performance and converges faster than

NLRG FOCA, NLRG SSC and NLRG Base. These im-

provements mainly come from our proposed SOCA mod-

ule, which exploits channel-wise feature statistics higher

than first-order.

In summary, to build a deep trainable network for image

SR, our NLRG structure plus share-source skip connections

and second-order channel attention is a proper choice. The

following experiments further demonstrate the effectiveness

of our proposed non-locally enhanced attention networks

(SAN).

2.2. Visual Results with Bicubic Degradation (BI)

For visual quality, We compare our SAN with several

state-of-the-art CNN-based SR methods: SRCNN [2], FS-

RCNN [3], VDSR [5], LapSRN [6], EDSR [8], SRMD [9],

DBPN [4], RDN [11] and RCAN [10]. As shown in Figs. 2-

3, we can see that the early developed methods, such as SR-

CNN, VDSR, and LapSRN fail to restore the main struc-

tures and even produce blurry outputs, while RCAN and

our SAN can output more faithful results. Compared with

RCAN, our SAN can recover more image details.
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Urban100 (4×):
img 006

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 20.52/0.4909 21.36/0.5669 21.51/0.5786 21.96/0.6046

EDSR [8] DBPN [4] RDN [11] RCAN [10] SAN

22.87/0.6465 22.80/0.6428 22.89/0.6477 22.92/0.6480 22.92/0.6482

Manga109 (4×):
Donburakokko

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 23.51/0.7574 25.67/0.8478 25.68/0.8469 26.32/0.8796

SRMD [9] EDSR [8] DBPN [4] RDN [11] SAN

26.87/0.8881 27.72/0.0.9128 27.91/0.9119 27.59/0.9124 27.93/0.9137

Urban100 (4×):
img 026

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 25.42/0.6126 26.52/0.6428 26.64/0.6479 27.44/0.6860

EDSR [8] DBPN [4] RDN [11] RCAN [10] SAN

28.76/0.7265 28.32/0.7142 28.59/0.7225 28.81/0.7305 28.47/0.7268

Urban100 (4×):
img 046

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 22.76/0.6844 23.16/0.7200 23.18/0.7213 23.39/0.7411

SRMD [9] EDSR [8] DBPN [4] RCAN [10] SAN

23.44/0.7437 23.91/0.7748 23.75/0.7671 23.96/0.7772 23.84/0.7733

Manga109(4×):
ShimatteIkouze vol019

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 23.89/0.8436 27.67/0.9147 28.14/0.9164 29.75/0.9455

SRMD [9] EDSR [8] DBPN [4] RDN [11] SAN

30.32/0.9496 32.27/0.9632 32.16/0.9632 32.37/0.9639 32.40/0.9640

Urban100 (4×):
img 060

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]
PSNR/SSIM 21.08/0.4420 21.73/0.5049 21.82/0.5112 22.10/0.5340

EDSR [8] DBPN [4] RDN [11] RCAN [10] SAN

22.83/0.5962 22.74/0.5850 22.83/0.5958 22.94/0.6037 22.85/0.5985

Figure 2. Visual comparison for 4× SR with BI model on Urban100 and Manga109 datasets. The best results are highlighted



Urban100 (4×):
img 062

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 19.91/0.6521 20.67/0.7253 20.62/0.7263 20.86/0.7551

SRMD [9] EDSR [8] DBPN [4] RDN [11] SAN

21.01/0.7671 22.54/0.8499 21.81/0.8239 22.34/0.8424 22.54/0.8520

Urban100 (4×):
img 067

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 17.02/0.7101 18.39/0.8023 18.21/0.7994 18.66/0.8406

SRMD [9] EDSR [8] DBPN [4] RDN [11] SAN

18.93/0.8500 21.17/0.9052 20.31/0.8910 20.87/0.9023 21.34/0.9081

Urban100 (4×):
img 074

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 22.20/0.5672 22.77/0.6242 22.78/0.6223 23.19/0.6622

SRMD [9] EDSR [8] DBPN [4] RDN [11] SAN

23.28/0.6695 24.27/0.7429 24.04/0.7312 24.34/0.7518 24.47/0.7579

Urban100 (4×):
img 076

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 21.59/0.6325 22.5619/0.7316 22.0382/0.6807 22.03/0.6948

SRMD [9] EDSR [8] DBPN [4] RDN [11] SAN

22.26/0.7008 23.95/0.7750 23.21/0.7455 24.08/0.7801 24.53/0.7925

Urban100 (4×):
img 078

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 25.73/0.6783 26.56/0.7316 26.48/0.7328 26.74/0.7519

SRMD [9] EDSR [8] DBPN [4] RDN [11] SAN

26.98/0.7567 27.92/0.7929 27.67/0.7830 27.98/0.7925 28.46/0.7950

Urban100 (4×):
img 093

HR Bicubic SRCNN [1] FSRCNN [3] LapSRN [6]

PSNR/SSIM 23.60/0.8042 26.12/0.8743 26.68/0.8849 27.33/0.9100

SRMD [9] EDSR [8] DBPN [4] RDN [11] SAN

27.39/0.9079 29.45/0.9304 28.16/0.9219 28.51/0.9257 30.88/0.9393

Figure 3. Visual comparison for 4× SR with BI model on Urban100 dataset. The best results are highlighted


