
 

 

 

Abstract—Blind image quality assessment (BIQA) aims to 

evaluate the perceptual quality of a distorted image without 

information regarding its reference image. Existing BIQA models 

usually predict the image quality by analyzing the image statistics 

in some transformed domain, e.g., in the DCT domain or wavelet 

domain. Though great progress has been made in recent years, 

BIQA is still a very challenging task due to the lack of a reference 

image. Considering that image local contrast features convey 

important structural information that is closely related to image 

perceptual quality, we propose a novel BIQA model that utilizes 

the joint statistics of two types of commonly used local contrast 

features: the gradient magnitude (GM) map and the Laplacian of 

Gaussian (LOG) response. We employ an adaptive procedure to 

jointly normalize the GM and LOG features, and show that the 

joint statistics of normalized GM and LOG features have desirable 

properties for the BIQA task. The proposed model is extensively 

evaluated on three large scale benchmark databases, and shown to 

deliver highly competitive performance with state-of-the-art 

BIQA models, as well as with some well-known full reference 

image quality assessment models. 

 
Index Terms—blind image quality assessment, gradient 

magnitude, LOG, jointly adaptive normalization  
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I. INTRODUCTION 

ISUAL signals play a profound role in our communication 

and interaction with the surrounding world. With the rapid 

development of digital imaging and network technologies, 

billions of digital images are available on the internet, and the 

number of people that share pictures on social network websites 

continues to increase. Indeed, it is estimated that by 2015 

consumers in the U.S. will capture more than 100 billion digital 

pictures annually [1]. Since a variety of image distortions can be 

introduced during image acquisition, compression, transmission, 

and storage, etc., the output images may be unsatisfactory in 

terms of subjective quality. This is particularly true for images 

captured under less than ideal conditions and by low end 

devices such as smartphone cameras. A quantitative index on 

the perceptual quality of images is highly desirable for 

evaluating practical systems, benchmarking image processing 

algorithms, designing imaging systems, and monitoring image 

acquisition and transmission [2]. Thus, research on image 

quality assessment (IQA) has been extensively conducted for 

decades. In applications where information regarding the 

reference image and the distortion process is not available, the 

development of general purpose blind IQA (BIQA) models has 

become an important yet very challenging problem. 

When a natural image is distorted with a known procedure, 

the introduced distortions can be made measureable using some 

specific features. For example, blur can be measured by edge 

width in the spatial domain [3] or kurtosis in some transformed 

domain [4]; blockiness introduced by JPEG/JPEG2000 

compression can be quantified by statistical differences between 

adjacent pixels or by the zero-crossing rate around block 

boundaries [5]. Most of these models have been proposed to 

deal with a single given distortion type and they are usually 

referred to as distortion specific IQA models [6]. When a 

natural image is distorted via unknown distortion channels, the 

corresponding quality prediction problem becomes 

distortion-agnostic, and it becomes much more difficult to find 

specific features to measure the image quality. Fortunately, in 

the past two decades numerous studies have shown that high 

quality natural images exhibit statistical regularities [34]. When 

the image structures are distorted or damaged, the image 

statistics will be changed accordingly, making the inference of 
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image perceptual quality possible. The quality can be measured 

by directly computing the distance between the statistics of high 

quality natural images and distorted images [7]. However, such 

an unsupervised BIQA model learning approach often cannot 

deliver high quality prediction accuracy. Alternatively, 

supervised BIQA model learning can help to bridge the 

semantic gap between image statistics and image perceptual 

quality. Most modern BIQA methods [8-12, 14-16] are based 

on the supervised learning principle, while their differences 

mainly lie in what statistics are employed. 

Moorthy et al. [8] trained a support vector machine (SVM) 

[17] to detect image distortion types using statistical models of 

wavelet coefficients, and then trained a support vector 

regression (SVR) model [17] to predict the perceptual severity 

of each distortion type. A similar distortion identification and 

quality prediction framework is employed in [16], where the 

features are extracted in the wavelet domain. Saad et al. trained 

a probabilistic model based on contrast and statistical features 

such as kurtosis and anisotropy in the DCT domain [9, 15]. In 

[10], three sets of statistical features are extracted from complex 

wavelet transform coefficients, and then three regression 

models are trained on each feature set. A weighted combination 

of the three regression models is used to estimate image quality. 

In [12], a sparse representation based classifier originally 

developed for face recognition [13] is used to infer image 

quality scores. A summary of commonly used statistical features 

and regression algorithms for BIQA can be found in [18]. 

Almost all these methods follow a two stage framework: 

statistical feature extraction, followed by regression model 

learning from subjective human scores1. The most widely used 

regression algorithm is SVR with a RBF (radial basis function) 

kernel. The natural scene statistic (NSS) features that are 

employed in these BIQA models are mainly derived from the 

statistical distributions (histograms) of image coefficients in 

some bandpass transformed domain. The model parameters of 

best-fitted distributions (e.g., Laplacian, generalized Gaussian) 

to bandpass image coefficients are widely used as 

quality-predictive features.  

Since natural images are high dimensional signals that 

contain a rich amount of redundancies, the extraction of 

statistical features may be viewed as a process of removing the 

redundancies to reveal the low dimensional manifold space of 

image perceptual quality. Complementary to distribution-based 

statistical description of natural images, the elementary 

structures of natural images can be reflected in the receptive 

field of retinal and cortical neurons [21]. Indeed, the principal 

components of natural images strongly resemble the directional 

derivatives of 2D Gaussian functions [19]. The work on 

independent components based image analysis [20] has 

revealed that the diverse scale- and orientation- sensitivities of 

retino-cortical receptive fields can also be closely modeled by 

 
1 Strictly speaking, learning an IQA model from a training dataset with certain 

types of distortions cannot be said as a truly “blind” method. Considering that 

the majority of such methods in literature (e.g., [8-10, 12, 15-16]) are called as 

BIQA methods, we follow this naming in this paper.  

Gaussian derivative functions. The work of Field and Olshausen 

[21] validates that natural images can be sparsely expanded over 

an overcomplete set of simple atoms. This finding also accounts 

for the ‘sparsity prior’ of bandpass image coefficients. 

Image luminance changes convey most of the meaningful 

information of an image. Bandpass image responses, in 

particular Gaussian derivative responses, can be used to 

characterize various image semantic structures, such as lines, 

edges, corners, and blobs, etc., which closely relate to human 

subjective perception of image quality. Many models have been 

proposed to extract and analyze these kinds of ‘singular’ 

structures in natural images, such as the Gaussian smoothed 

gradient magnitude [23], Laplacian of Gaussian (LOG) operator 

[22], discrete wavelet transform (DWT) [24], discrete cosine 

transform (DCT) [25], first-order Markov models [36], partial 

differential equations (PDE) [27], and so on.  

While many BIQA models use DCT, DWT and other 

multiscale bandpass transforms to de-correlate images, some 

state-of-the-art full/reduced reference IQA models [28-33] rely 

on local spatial contrast features, e.g., the gradient magnitude 

(GM) and the LOG to predict image quality. These two types of 

features share the common property that they are computed 

using isotropic differential operators, i.e., without angular favor. 

LOG filters have a center-surrounded profile that is 

symmetrically sensitive to intensity changes across all 

orientations, while GM features reflect the maximum intensity 

variation regardless of orientation. To the best of our knowledge, 

no existing general purpose BIQA models have explicitly made 

use of these Gaussian derivative features, despite their 

physiological similarities to the receptive field responses of 

neurons along the visual pathway. One possible exception is 

BRISQUE model [14], which computes center-surrounded 

mean-subtracted contrast normalized (MSCN) coefficients as 

features. Such features can be viewed as simplified LOG 

response signals with contrast masking. However, BRISQUE 

does not utilize the complementary GM-like features. 

By contrast with existing NSS-based BIQA models, here we 

show that low-order Gaussian derivative operators, exemplified 

by GM and LOG, can be employed to develop high 

performance BIQA models. The GM and LOG features can be 

used to build the basic elements (i.e., local contrast) of image 

semantic structures, and they are hence closely related to the 

perceptual quality of natural images. The LOG operator 

responds to intensity contrast in a small spatial neighborhood, 

and it is a good model of the receptive field of retinal ganglion 

cells [22, 34]. The GM feature measures the strength of local 

luminance change. A contour formed by the locally maximum 

GM pixels may be regarded as an image edge profile. The GM 

and LOG features also align with the classical ‘edge’ and ‘bar’ 

types of features described in [35], which resemble the 

independent components (IC) of natural images. Rather than 

computing expensive IC-based NSS features, we use the 

easy-to-compute GM and LOG features to perform BIQA tasks. 

Indeed, such low-order Gaussian derivative operators have been 

employed in many computer vision applications, including, for 



 

 

example, the Harris corner detection [47], the SIFT/SUFR [48, 

49] operators for object matching, and the HOG [50] features 

used for human detection, to name a few. The effectiveness of 

these Gaussian derivative based features in the above 

applications motivated us to introduce them into the task of 

BIQA.  

The novelty of our work lies in that we propose to use the 

joint statistics of simple GM and LOG features for BIQA model 

learning. In particular, we propose the joint adaptive 

normalization (JAN) operation to boost the performance of GM 

and LOG features on image quality prediction, and introduce 

the dependency index to describe the interaction between them 

and to refine the GM and LOG joint statistics. Our work is the 

first attempt to use simple LOG and GM features to conduct 

BIQA and it achieves leading performance in terms of quality 

prediction accuracy, distortion robustness and database 

generalization.  

The rest of the paper is organized as follows. Section II 

presents in detail the features we used and the proposed 

methodology. Section III conducts extensive experiments to 

validate the proposed BIQA models. Section IV concludes the 

paper. 

II. METHODOLOGY 

As discussed in the Introduction section, GM and LOG 

features are basic elements that are commonly used to form 

image semantic structures. As we will see, they are also strong 

features to predict image local quality. In this section, we show 

how the joint statistics of GM and LOG can be adapted to the 

BIQA problem. 

A.  Gradient magnitude (GM) and Laplacian of Gaussian 

(LOG) 

Luminance discontinuities convey most of the structural 

information of a natural image, and they can be effectively 

detected from the responses of the GM and LOG operators. 

Denote by I an image. Its GM map can be computed as 

 
22
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G I h I h ,      (1) 

where “ ” is the linear convolution operator and hd, d{x, y}, 

is the Gaussian partial derivative filter applied along the 

horizontal (x) or vertical (y) direction: 
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Filter templates of hx, hy, and hLOG are displayed in Fig. 1. 

The empirical marginal distributions of GM features of 

natural (photographic) images can be modeled as obeying a 

Weibull distribution [36], while those of LOG responses can be 

well modeled as following a generalized Gaussian distribution 

[37]. Fig. 2 shows two natural images with different contents 

and a blurred chessboard image with contrast increasing linearly 

from top-left to bottom-right. The (cropped and zoomed) GM 

and LOG feature maps and their empirical distributions for the 

three images are depicted in the middle column of Fig. 2. For the 

first image Houses, there are many large GM coefficients and 

strong LOG responses, while for the second image Hats, there 

are many fine-texture induced small GM coefficients and LOG 

responses. Although both images are of high quality, they have 

very different GM and LOG distributions, implying that it is 

difficult to directly use the GM and LOG statistics for BIQA 

tasks. On the other hand, for the simulated chessboard image, 

the distributions of its GM and LOG features are rather similar 

to those of image Hats. Therefore, we can draw the conclusion 

that the marginal distributions of GM and LOG features are not 

stable statistical features for BIQA. 

B. Joint adaptive normalization 

GM and LOG operators could remove a significant amount of 

image spatial redundancies, whereas certain correlations 

between neighboring pixels will remain. This is also true for 

other bandpass feature extraction methods such as wavelet 

transform [38], DCT [15], MSCN [14], etc. To further remove 

local correlations, adaptive gain control [40] or divisive 

normalization models [38, 39] have been developed, both 

aiming to model nonlinear cortical function and to conduct 

objective IQA. Generally speaking, these techniques 

decompose an image into channels of different frequencies and 

orientations, then normalize each coefficient by the average 

energy over a local neighborhood centered at the current 

coefficient. Such a divisive normalization process can 

effectively whiten the coefficients and remove local contrast 

variations, resulting in a stable statistical image representation. 

We decompose each image into just two channels, the GM 

channel and the LOG channel. As in [38, 39], we propose to 

normalize the GM and LOG coefficients to obtain stable 

statistical image representations. Unlike [38, 39], where 

normalization is applied individually to each channel of 

 

Figure 1: The templates used for computing the GM and LOG responses. 

 



 

 

different orientation and frequency, here we normalize jointly 

the GM and LOG channels. Let  

2 2
( , ) ( , ) ( , )i j i j i j 

I I I
F G L .       (5) 

Then a locally adaptive normalization factor is computed at 

each location (i, j): 

,
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where Ωi,j is a local window centered at (i, j), ω(l, k) are positive 

weights satisfying 
,

( , ) 1
l k

l k  . In our implementation, we set 

ω(l,k) to be a spatially truncated Gaussian kernel rescaled to 

unit sum. The GM and LOG feature maps are normalized as: 

  
I I I

G G N ,        (7) 
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I I I

L L N ,        (8) 

where ε is a small positive constant to avoid numerical 

instability when NI is small. We call the above normalization 

procedure joint adaptive normalization (JAN). 

Generally speaking, the JAN process will not change image 

semantic structures because it only adjusts the local image 

contrast scale. The benefit of JAN lies in the fact that it makes 

the local contrast scales of GM and LOG maps consistent across 

the image, and thus removes the uncertainties caused by 

illumination changes, varying magnitudes of edges and other 

structures, etc. The right column of Fig. 2 shows the GM and 

LOG maps of the three images after JAN. The marginal 

distributions of the corresponding GM and LOG maps are also 

shown. After JAN, the GM and LOG maps become more 

stationary across the whole image. The GM distributions of the 

two natural images Houses and Hats become very similar after 

JAN, though their contents are very different. So do their LOG 

distributions. However, for the artificial image Chessboard, the 

GM and LOG distributions after JAN become very different 

from those of the natural images Houses and Hats. 

Let’s examine more carefully how JAN adjusts the statistics 

of GM and LOG maps by taking image Hats as an example. Figs. 

 

Figure 2: The GM and LOG maps as well as their marginal distributions before (middle column) and after (right column) joint adaptive normalization. (a) 

Houses; (b) Hats; and (c) Chessboard. 
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(c) 

 
(d) 

 
(e) 

Figure 3: Profile of GM and LOG signals along the three lines (highlighted in red) A, B and C in (a). (b) and (d) show the GM and LOG profiles before JAN, 

while (c) and (e) show the corresponding profiles after JAN. 

 



 

 

3(b) and 3(d) plot the GM and LOG profiles of three edges 

(highlighted by red lines in the zoomed patches) before JAN, 

respectively, while Figs. 3(c) and 3(e) plot these profiles after 

JAN. Clearly, after JAN the differences between the profiles of 

the three edges are much reduced, and they tend to have more 

similar shapes and scales. The JAN operation reduces the 

dependency of image statistics on local image content. 

C. Statistical feature description 

The GM and LOG features describe local image structures from 

different aspects, and the interaction between them can play an 

important role in predicting perceptual image quality. Let us use 

an example to investigate the interaction between GM and LOG. 

The first column of Fig. 4 shows a step edge signal and several 

of its distorted counterparts: two Gaussian noise corrupted 

versions and two DCT compressed (quantized) versions. The 

second and third columns show the GM and LOG responses to 

the original and distorted step edges, while the right column of 

Fig. 4 shows the scatter plots of GM vs. LOG. Although 

distortions of the step edge can be reflected in the GM and LOG 

features, the GM-LOG scatter plot can better describe the signal 

distortions. The scatter plot of the original step signal is very 

smooth and regular. When the step edge is distorted, the shape 

of the scatter plot changes accordingly. The more severe the 

distortion is, the greater the change will be in the scatter plot. In 

addition, the change in shape of the scatter plot caused by 

Gaussian noise corruption is very different from that caused by 

DCT compression. More specifically, the scatter plots of the 

GM and LOG responses to the DCT compressed step edge are 

more regular than those of the noise corrupted ones. The above 

observations inspire us to explore the interaction between GM 

and LOG and use it to conduct BIQA. 

After applying JAN to the GM and LOG features, the joint 

empirical distribution of ( , )i j
I

G
 
and ( , )i j

I
L  can be computed 

and used to learn a prediction model. We quantize ( , )i j
I

G  into 

M levels  1 2
, ,...,

M
g g g  and ( , )i j

I
L  into N levels  1 2

, ,...,
N

l l l . 

For conciseness of notation, we denote ( , )i j
I

G  by G and 

denote ( , )i j
I

L  by L. The joint empirical probability function of 

G and L can be denoted by 

,
( , )

m n m n
P G g L l  K , m= 1, …, M; n= 1, …, N.    (9) 

In other words, Km,n is the normalized bivariate histogram of G 

and L. Although Km,n contains a rich amount of statistical 

information regarding ( , )i j
I

G  and ( , )i j
I

L , it has a high 

dimensionality (M×N). 

Instead of using Km,n to learn the prediction model, it is 

desirable to extract a smaller set of quality-predictive features 

from Km,n for this task. Intuitively, the marginal probability 

functions of ( , )i j
I

G and ( , )i j
I

L , denoted by PG and PL, 

respectively, are straightforward choices: 
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Because of the JAN process, the marginal probability 

functions PG and PL of natural images with different contents 

will have similar shapes. However, when a natural image is 

distorted, the shapes of its PG and PL will deviate from those of 

high quality natural images. Fig. 5 shows the marginal 

probability functions of the distorted images of a reference 

image from the LIVE database [41]. To better illustrate how the 

marginal distributions vary with the degree of degradation, we 

plot the histograms of PG and PL across various DMOS 

(Difference Mean Opinion Score) levels. It can be seen that PG 

and PL gradually change with the increase of distortion level. 

This suggests that the shapes of PG and PL are predictive of 

image quality. 

The marginal probability functions PG and PL, however, do 

not capture the dependencies between GM and LOG. If the GM 

and LOG features of an image are independent, then 

,
( ) ( )

m n G m L n
P G g P L l   K

 
for all m and n. We can define the 

 
 

Figure 4: A step edge signal (top row) and its two Gaussian noise corrupted 

versions (middle two rows) and two DCT compressed versions (bottom two 

rows). From left column to right column: step edge signals, their GM and 

LOG responses, and scatter plots of GM (x-axis) versus LOG (y-axis). 

Figure 5: Marginal probabilities PG (shown as the first half of the 

histograms) and PL (shown as the second half of the histograms) of the 

distorted images generated from the same reference image at different 

DMOS levels. The images are from the LIVE database [41], which has five 

types of distortions: JP2K compression, JPEG compression, white noise 

(WN), Gaussian blur (GB) and fast fading (FF). 

 



 

 

following index to measure the dependency between GM and 

LOG: 

,

,
( ) ( )

m n

m n

m n
P G g P L l


  

K
D .      (11) 

If the GM and LOG features of an image are independent, 

then Dm,n=1 for all m and n. In practice, the GM and LOG 

features will have certain dependencies and Dm,n will take values 

other than 1. Directly computing and using Dm,n as a feature set 

for BIQA is not a good choice since it has the same dimension as 

that of Km,n. Instead, we can compute the dependency of each 

specific value G=gm against all possible values of L. Using the 

marginal probability P(G=gm) as a weight, define the following 

measure of the overall dependency of G=gm on L: 

,=1

1
( )= ( )

N

G m m m nn
Q G g P G g

N
    D .      (12) 

Similarly, define the following measure of the overall 

dependency of L=ln on G:  

,=1

1
( )= ( )

M

L n n m nm
Q L l P L l

M
    D .      (13) 

It is easy to prove that QG ≥ 0 and QL ≥ 0, and 

( )
m G m
Q G g  = ( ) 1

m L n
Q L l   . Therefore, they can be 

viewed as probability distributions in some sense, and we call 

them independency distributions. 

Then QG and QL can be re-written as: 
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From (14) and (15), one can see that the proposed dependency 

measure can be viewed as the sum of conditional probabilities 

of a specific value of G (or L) over variable L (or G). It describes 

the statistical interaction between normalized GM and LOG 

features. Fig. 6 plots the distributions of QG and QL for images 

Houses, Hats and Chessboard. The QG and QL of the artificial 

image Chessboard is remarkably different from those of the 

natural images Houses and Hats, whereas the QG and QL of 

Houses and Hats are quite similar. Fig. 7 plots the QG and QL of 

the same distorted images used in Fig. 5. One can see that QG 

and QL gradually change with the degree of distortion, as can be 

observed in Fig. 5 for the marginal distributions PG and PL. 

D. BIQA prediction model learning 

Based on the analyses in Section II.C, we know that the 

marginal distributions PG and PL and the independency 

measures QG and QL are closely related to the severity of 

distortions of natural images. We shall use them as statistical 

features to learn prediction models (i.e., regression models) for 

BIQA. To more comprehensively evaluate the effectiveness of 

the proposed statistical features, we learn three models by using 

different feature sets. In the 1st model, denoted by M1, we use 

only the marginal distributions PG and PL to learn the quality 

prediction model; in the 2nd model, denoted by M2, we use only 

the dependency measures QG and QL to learn; in the 3rd model, 

denoted by M3, we use all statistical features PG, PL, QG and QL 

to learn the model.  

Given the features and the DMOS scores of training images, 

we learn a regression function to map the features of an image to 

its DMOS score. The support vector regression (SVR) 

technique [17] is widely used to learn such regression functions 

[8-10, 14-16]. In this paper the ε-SVR [17] is employed for 

regression model learning. Given training data {(x1, y1), …, (xk, 

yk)}, where xi, i=1,…,k, is the feature vector and yi is the DMOS 

score, we aim to find a function to predict the score from the 

input feature vector: f(x) = , x + b, where , denotes the 

 

Figure 6. Independency distribution between normalized GM and LOG features. From left to right: independency distributions of images Houses, Hats and 

Chessboard.  

 
Figure 7: The independency distributions QG (shown as the first half of the 

histograms) and QL (shown as the second half of the histograms) of the 

distorted images of a reference image at different DMOS levels. The 

images are from the LIVE database [41].  

 



 

 

inner product, ω is the weight vector, and b is a bias parameter. 

With the constraint of flatness (small ω) and by introducing the 

slack variables i
  and *

i
 , ω and b can be computed by solving 

the following optimization problem [17]: 
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where C is a the constant parameter to balance ω and the slack 

variables. The minimizer of Eq. (16) is given by 

[17]:
1

k

i i i
t x


  , where ti is the combination coefficient.  

Usually, we first map the input feature vector into a high 

dimensional feature space Φ(x), and then learn the regression 

function: 
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The inner product (xi), (x) can be written as a kernel 

function k(xi, x), and Eq. (17) becomes 

1
( ) ( , )

k

i ii
f x t k x x b


  .      (18) 

Introducing the kernel function k(xi, x) makes the feature 

mapping implicit. The radial base function (RBF) k(xi, 

x)=exp(-γ(|xi-x|)2) is often used as the kernel function, where γ is 

the precision parameter. More details of SVR can be found in 

[17]. 

III. EXPERIMENTAL RESULTS 

A. Databases and evaluation protocols 

The performance of BIQA models can be evaluated by using 

subjective image databases, where each image has been scored 

by human observers. (Difference) Mean Opinion Scores 

(DMOS/MOS) are usually recorded to describe how closely the 

predicted image quality scores by a BIQA model correlate with 

human judgments. Several subjective image quality evaluation 

databases have been established in the IQA community. Here 

we use the three largest and mostly widely used ones: the LIVE 

database [41], the CSIQ database [42] and the TID2008 

database [43].  

The LIVE database consists of 779 distorted images, 

generated from 29 original images by processing them with 5 

types of distortions at various levels. The distortions involved in 

the LIVE database are: JPEG2000 compression (JP2K), JPEG 

compression (JPEG), additive white noise (WN), Gaussian blur 

(GB) and simulated fast fading Rayleigh channel (FF). These 

distortions reflect a broad range of image impairments, such as 

edge smoothing, block artifacts, image-dependent distortions, 

and additive random noise. The CSIQ database consists of 30 

original images and their distorted counterparts with six types of 

distortions at five different distortion levels each. The TID2008 

database is composed of 25 reference images and their distorted 

counterparts with 17 types of distortions at four levels each. For 

the CSIQ and TID2008 databases, we mainly consider the 4 

common types of distortions that appear in the LIVE database, 

i.e., JP2K, JPEG, WN, and GB. We also use all the 17 distortion 

types in TID2008 to examine the generalization ability of BIQA 

models.  

To evaluate the performance of a BIQA method, three scores 

that measure the consistency between the results of a BIQA 

model and the subjective DMOS/MOS scores are generally 

used: the Spearman rank order correlation coefficient (SRC), 

which measures the prediction monotonicity; the Pearson 

correlation coefficient (PCC) and the root mean squared error 

(RMSE), which measure the prediction accuracy. Both SRC and 

PCC lie in the range [-1, 1]. A good BIQA model should 

demonstrate a correlation coefficient with the subjective 

DMOS/MOS scores as close to 1 (or -1) as possible. The 

relationship between the subjective scores and the predicted 

scores may not be linear due to the nonlinear quality rating of 

human observers. As recommended by the Video Quality 

Expert Group [44], a nonlinear logistic regression could be built 

between the predicted scores and the subjective scores when 

calculating the indices SRC, PCC and RMSE. Denote by Q and 

Qp the predicted score before and after regression, respectively. 

The logistic regression function is defined as follows:   

1 4 5

2 3

1 1
( )
2 exp( ( ))

p
Q Q

Q
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,               (19) 

where β1, β2, β3, β4 and β5 are regression model parameters. 

B. Implementation details 

When computing the GM and LOG maps, the scale parameter σ 

of the filters hx, hy, and hLOG needs to be set. We set σ to a small 

value 0.5 so that fine image details can be captured in the GM 

and LOG feature maps. In the JAN process, the weights ω(k,l) 

(refer to Eq. (6)) are generated by a Gaussian kernel with scale 

2σ.  

When computing the joint probability Km,n, it is necessary to 

set the number of bins. In general, using a larger number of bins 

can lead to more accurate calculation of statistics, but this 

requires more samples and makes the dimension of the output 

features higher. For the task of image quality prediction, the 

goal is to use as few features as possible to achieve as high as 

possible prediction accuracy. Note that if the feature dimension 

(i.e., the number of bins) is very high, the regression model 

learning may become less stable. To investigate the effect of the 

number of bins on the quality prediction performance, we let 

M=N={5, 10, 15, 20} and compute the SRC values of the 
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Figure 8: SRC values of the proposed model M3 under different numbers of 

bins M=N={5, 10, 15, 20}. 



 

 

proposed scheme M3 on the three IQA databases. The results are 

plotted in Fig. 8. We can see that M=N=10 leads to higher and 

more stable performance across all three databases. In all the 

following experiments, we set M=10 and N=10, and thus all the 

statistical feature vectors PG, PL, QG and QL are of dimension 

10.  

When using the SVR to learn the regression models, the 

SVR parameters (C, γ) need to be set. We conducted a cross 

validation experiment to choose the values of (C, γ). We 

partitioned each database into two non-overlapped sets: the 

training set and the test set. More specifically, we randomly 

selected 80% of the reference images (and their distorted 

versions) as the training set and the rest as the test set. In this 

way, we ensured that there was no content overlap between the 

training set and the test set. Then the model learned from the 

training set was examined on the test set. This overall train-test 

procedure was repeated 1000 times, and the median results were 

reported for performance evaluation. The (C, γ) values 

delivering the best median result were chosen as the parameter. 

Fig. 9 illustrates the parameter selection process of the proposed 

model M3 on the three IQA databases. The number on the level 

contour indicates the median SRC value of the cross-validation. 

Note that we scaled the subjective scores of CSIQ and TID2008 

into the range of the DMOS scores of LIVE. One can see that 

there exists a ribbon-like region along the diagonal direction 

where M3 exhibits the best SRC results on all three databases. 

This makes the model learning more robust to database. The 

optimal (C, γ) were found to be (16384, 2), (16384, 2) and (128, 

16) on the LIVE, CSIQ and TID2008 databases, respectively. 

We used them in the following experiments. The MATLAB 

source code for the proposed methods can be downloaded at 

http://ipl.xjtu.edu.cn/ftp/xqmou/GM-LOG-BIQA.zip. 

C. Performance on individual databases 

We compared the proposed BIQA models with representative 

and state-of-the-art BIQA models, including BIQI [8], 

BLIINDS2 [15], BRISQUE [14], DIIVINE [16] and CORNIA 

[11]. The source codes for these competing methods were 

obtained from the original authors. For fair comparison, we also 

optimized the SVR parameters for these models by grid search. 

In addition, the classic PSNR, the well-known full reference 

IQA models Structural SIMilarity (SSIM) [45] and FSIM [31] 

were also included in the comparison. 

We first evaluated the overall performance of the competing 

BIQA models on each of the three databases. The results are 

listed in Table I. The top three BIQA models for each index 

(SRC, PCC or RMSE) are highlighted in bold font. Clearly, the 

proposed model M3, which employs both the marginal 

probabilities and the dependencies of GM and LOG features, 

performs the best consistently on all the databases. The 

proposed models M2 and M1 also perform very well, while M2, 

which employs the dependency between GM and LOG, works 

slightly better than M1, which employs only the marginal 

 
Figure 9: The SVR parameter (C, γ) selection process for the proposed model M3 via grid search on databases LIVE (left), CSIQ (middle) and TID2008 (right). 

The number on the level contour indicates the SRC value of the cross-validation. 

Table I: Overall performance of the competing BIQA models on the three databases. The results of PSNR, SSIM and FSIM are also listed for reference. 

IQA model 
LIVE (779 images) TID2008 (384 images) CSIQ (600 images) Weight average 

SRC PCC RMSE SRC PCC RMSE SRC PCC RMSE SRC PCC 

PSNR 0.8829 0.8821 12.8983 0.8789 0.8611 0.8073 0.9292 0.8562 0.1444 0.8978 0.8687 

SSIM 0.9486 0.9464 8.8035 0.9032 0.9087 0.6620 0.9362 0.9347 0.0990 0.9345 0.9342 

FSIM 0.9639 0.9612 7.5461 0.9555 0.9539 0.4707 0.9629 0.9675 0.0710 0.9617 0.9617 

BIQI [8] 0.8084 0.8250 15.3883 0.8438 0.8704 0.7872 0.7598 0.8353 0.1542 0.7995 0.8384 

DIIVINE [16] 0.8816 0.8916 12.3294 0.8930 0.9038 0.6714 0.8697 0.9010 0.1249 0.8800 0.8974 

BLIINDS2 [15] 0.9302 0.9366 9.5185 0.8982 0.9219 0.6117 0.9003 0.9282 0.1028 0.9131 0.9305 

CORNIA [11] 0.9466 0.9487 8.6969 0.8990 0.9347 0.5669 0.8845 0.9241 0.1054 0.9151 0.9373 

BRISQUE [14] 0.9430 0.9468 8.7214 0.9357 0.9391 0.5442 0.9085 0.9356 0.0980 0.9298 0.9414 

M1 0.9278 0.9329 9.8355 0.9246 0.9332 0.5711 0.9035 0.9298 0.1025 0.9189 0.9319 

M2 0.9447 0.9489 8.6452 0.9278 0.9432 0.5263 0.9140 0.9408 0.0947 0.9307 0.9449 

M3 0.9511 0.9551 8.0444 0.9369 0.9406 0.5377 0.9243 0.9457 0.0909 0.9390 0.9488 

 

 Table II: Ranking of the BIQA models in terms of SRC. 

 
LIVE TID2008 CSIQ 

weighted 

average 
length 

BIQI [8] 8 8 8 8 18 

DIIVINE [16] 7 7 7 7 88 

BLIINDS2 [15] 5 6 5 6 24 

CORNIA [11] 2 5 6 5 20000 

M1 6 3 4 4 20 

BRISQUE [14] 4 4 3 3 36 

M2 3 2 2 2 20 

M3 1 1 1 1 40 

 

http://ipl.xjtu.edu.cn/ftp/xqmou/GM-LOG-BIQA.zip


 

 

distribution of GM and LOG. This implies that the dependency 

statistics contain more useful information than the marginal 

statistics for the task of BIQA. The advantages of the proposed 

models M3 and M2 over the other BIQA models (except for 

BRISQUE) are significant on the TID2008 and CSIQ databases. 

When compared with full reference IQA models, the proposed 

model M3 shows clear advantages over PSNR and SSIM, and 

only lags the performance of FSIM a little. This is reasonable 

because FSIM is a state-of-the-art full reference IQA method 

which employs the reference image as input. In the two right 

most columns of Table 1, we show the weighted average SRC 

and PCC scores of competing IQA methods over the three 

databases (the weights are based on the numbers of images in 

the three databases). (Note that the weighted average of RMSE 

scores cannot be computed since the subjective scores scale 

differently in the three databases.) We see that M3 still performs 

the best among the BIQA methods in terms of weighted average 

SRC and PCC scores, followed by M2 and BRISQUE.  

In Table II, we rank the competing BIQA models in terms of 

SRC on each database. The weighted ranking on the three 

databases is also given. The proposed models M3, M2, and M1 

rank the first, the second and the fourth, respectively, 

demonstrating that the joint statistics of GM and LOG features 

are powerful predictors of natural image perceptual quality. 

To determine whether the advantages of the proposed 

method over competing methods are statistically significant, 

two hypotheses tests were conducted: the one-sided t-test and 

the Wilcoxon rank-sum test [46]. The one-sided t-test tests the 

equivalence of the mean values of two samples drawn from 

independent populations of a normal distribution. The 

Wilcoxon rank-sum test tests the equivalence of the median 

values of two independent samples and is a nonparametric 

alternative to the two sample t-test. Both of the tests were 

performed at a significance level of 0.01 using the 1000 SRC 

values of all pairs of BIQA models. The null hypothesis is that 

the SRC values of the pair of models are drawn from 

populations with equal mean (t-test) or equal median (Wilcoxon 

rank-sum test). The alternative hypothesis is that the 

mean/median of one model is greater than the other. Notice that 

for the t-test, two assumptions must be guaranteed: 

independency and normality. The random split into training and 

testing sets ensured the independency of these values. The SRC 

values follow a right-skewed unimodal distribution. To ensure 

the normality assumption, the SRC values were firstly 

transformed by exponentiation [46], and then the t-test was 

applied to these transformed SRC values. 

The results of the two tests are illustrated in Fig. 10 and Fig. 

11, respectively. A value of ‘1’ indicates that the row model is 

statistically better than the column model, a value of ‘-1’ 

indicates that the column model is statistically better, while a 

value of ‘0’ indicates that the two models have no statistical 

difference in performance. The two tests lead to nearly the same 

conclusions except for the pair of CORNIA and BLIINDS2 on 

TID2008 database. On LIVE and CSIQ, M3 is statistically 

superior to all the other models. On TID2008, M3 and 

BRISQUE have no statistically significant difference, and both 

of them beat the other methods. Overall, the proposed M1, M2, 

M3, as well as the BRISQUE methods always perform better 

than the other methods. Interestingly, they all use isotropic IQA 

features. The proposed models use LOG and GM, while 

BRISQUE uses the MSCN feature which is a simplified version 

of the LOG response. However, the proposed models exploit the 

dependency between the LOG and GM responses, while 

LIVE BIQI DIINVIE
BLIINDS2

CORNIA
BRISQUE

M1 M2 M3 CSIQ M1 M2 M3

BIQI 0 -1 -1 -1 -1 -1 -1 -1

DIINVIE 1 0 -1 -1 -1 -1 -1 -1

BLIINDS2 1 1 0 -1 -1 -1 -1 -1

CORNIA 1 1 1 0 0 1 -1 -1

BRISQUE 1 1 1 0 0 1 -1 -1

M1 1 1 1 -1 -1 0 -1 -1

M2 1 1 1 1 1 1 0 -1

M3 1 1 1 1 1 1 1 0  

M1 M2 M3 CSIQ BIQI DIINVIE
BLIINDS2

CORNIA
BRISQUE

M1 M2 M3

BIQI 0 -1 -1 -1 -1 -1 -1 -1

DIINVIE 1 0 -1 -1 -1 -1 -1 -1

BLIINDS2 1 1 0 1 -1 -1 -1 -1

CORNIA 1 1 -1 0 -1 -1 -1 -1

BRISQUE 1 1 1 1 0 1 0 -1

M1 1 1 1 1 -1 0 -1 -1

M2 1 1 1 1 0 1 0 -1

M3 1 1 1 1 1 1 1 0  

M1 M2 M3 CSIQ M1 M2 M3 TID2008
BIQI DIINVIE

BLIINDS2
CORNIA

BRISQUE
M1 M2 M3

BIQI 0 -1 -1 -1 -1 -1 -1 -1

DIINVIE 1 0 0 0 -1 -1 -1 -1

BLIINDS2 1 0 0 0 -1 -1 -1 -1

CORNIA 1 0 0 0 -1 -1 -1 -1

BRISQUE 1 1 1 1 0 1 1 0

M1 1 1 1 1 -1 0 -1 -1

M2 1 1 1 1 -1 1 0 -1

M3 1 1 1 1 0 1 1 0  

Figure 10: Results of one sided t-test conducted by using the SRC values of competing BIQA models. A value of ‘1’ indicates that the row model is statistically 

better than the column model, a value of ‘-1’ indicates that the column model is statistically better, while a value of ‘0’ indicates that they are statistically similar 

in performance.  

 
LIVE BIQI DIINVIE

BLIINDS2
CORNIA

BRISQUE
M1 M2 M3 CSIQ M1 M2 M3

BIQI 0 -1 -1 -1 -1 -1 -1 -1

DIINVIE 1 0 -1 -1 -1 -1 -1 -1

BLIINDS2 1 1 0 -1 -1 -1 -1 -1

CORNIA 1 1 1 0 0 1 -1 -1

BRISQUE 1 1 1 0 0 1 -1 -1

M1 1 1 1 -1 -1 0 -1 -1

M2 1 1 1 1 1 1 0 -1

M3 1 1 1 1 1 1 1 0  

M1 M2 M3 CSIQ BIQI DIINVIE
BLIINDS2

CORNIA
BRISQUE

M1 M2 M3

BIQI 0 -1 -1 -1 -1 -1 -1 -1

DIINVIE 1 0 -1 -1 -1 -1 -1 -1

BLIINDS2 1 1 0 1 -1 -1 -1 -1

CORNIA 1 1 -1 0 -1 -1 -1 -1

BRISQUE 1 1 1 1 0 1 0 -1

M1 1 1 1 1 -1 0 -1 -1

M2 1 1 1 1 0 1 0 -1

M3 1 1 1 1 1 1 1 0  

M1 M2 M3 CSIQ M1 M2 M3 TID2008
BIQI DIINVIE

BLIINDS2
CORNIA

BRISQUE
M1 M2 M3

BIQI 0 -1 -1 -1 -1 -1 -1 -1

DIINVIE 1 0 0 0 -1 -1 -1 -1

BLIINDS2 1 0 0 1 -1 -1 -1 -1

CORNIA 1 0 -1 0 -1 -1 -1 -1

BRISQUE 1 1 1 1 0 1 1 0

M1 1 1 1 1 -1 0 -1 -1

M2 1 1 1 1 -1 1 0 -1

M3 1 1 1 1 0 1 1 0  
Figure 11: Results of the Wilcoxon rank-sum test by using the SRC values of competing BIQA models. A value of ‘1’ indicates that the row model is 

statistically better than the column model; a value of ‘-1’ indicates that the column model is statistically better; and a value of ‘0’ indicates that the two models 

are statistically similar in performance. 

 



 

 

BRISQUE utilizes the correlations between spatially 

neighboring coefficients of the MSCN signal. 

D. Performance on individual distortion type and 

generalization ability 

We then tested the performance of the proposed BIQA models 

on each type of distortion. The results are listed in Table III. For 

brevity, we only present the SRC results. Similar conclusions 

were arrived at for PCC and RMSE. The top 3 models are 

highlighted in boldface. At the bottom of the table, the hit-count 

(i.e., the number of times ranked in the top 3 on each distortion), 

the average performance (Mean), and the performance standard 

deviation (STD) of each model are listed. For the 13 groups of 

distortion types in the three databases, the proposed model M3 

had the highest hit-count (i.e., 11 times), followed by BRISQUE 

(9 times), M2 (6 times) and M1 (5 times). Meanwhile, the 

proposed models have very high mean scores, and M3 has the 

smallest STD across all the distortion groups.  

To test the generalization ability of the proposed model with 

respect to distortion types, we conducted further experiments on 

the entire TID2008 database including all 17 distortions. Since 

the proposed M3 makes use of GM and LOG features in the 

luminance channel, it is not responsive to non-structural 

distortions and distortions on chromatic components. Therefore, 

we also conducted experiments on a subset of TID2008 which 

includes only achromatic-structural distortions (11 distortions 

included). More specifically, two color aberration distortions 

(WNC, JGTE) and four non-structural distortions (NEPN, BLK, 

MS, and CT) were removed from the subset. (For more 

information about the distortions types, please refer to [43]). 

The same train-test procedure as in previously experiments was 

employed. Two representative methods, BRISQUE and 

BLIINDS2, were used for comparison. 

The experimental results are illustrated in Figs. 12 and 13, 

respectively. When all 17 distortion types were involved, M3 

delivered better SRC values than its competitors on 12 

distortions, and showed clear advantage over the competitors in 

Table III: Performance (SRC) of competing BIQA models on individual distortion types. 

 
BIQI 

[8] 

BLIINDS2 

[15] 

BRISQUE 

[14] 

DIIVINE 

[16] 

CORNIA 

[11] 
M1 M2 M3 

L
IV

E
 

JP2K 0.7849 0.9258 0.9175 0.8418 0.9271 0.9127 0.9256 0.9283 

JPEG 0.8801 0.9500 0.9655 0.8926 0.9437 0.9550 0.9589 0.9659 

WN 0.9157 0.9477 0.9789 0.9617 0.9608 0.9835 0.9778 0.9853 

GB 0.8367 0.9132 0.9479 0.8792 0.9553 0.9150 0.9014 0.9395 

FF 0.7023 0.8736 0.8854 0.8202 0.9103 0.8556 0.8919 0.9008 

C
S

IQ
 

WN 0.6000 0.8863 0.9310 0.8131 0.7980 0.9444 0.9261 0.9406 

JPEG 0.8384 0.9115 0.9253 0.8843 0.8845 0.9186 0.9127 0.9328 

JP2K 0.7573 0.8870 0.8934 0.8692 0.8950 0.8736 0.9192 0.9172 

GB 0.8160 0.9152 0.9143 0.8756 0.9006 0.8999 0.9052 0.9070 

T
ID

2
0

0
8
 

WN 0.5368 0.7314 0.8603 0.7130 0.5941 0.8541 0.9156 0.9068 

GB 0.8878 0.9176 0.9059 0.8824 0.8941 0.8692 0.8451 0.8812 

JPEG 0.8996 0.8853 0.9103 0.9033 0.9099 0.9379 0.9263 0.9338 

JP2K 0.8147 0.9118 0.9044 0.9103 0.9290 0.9402 0.9308 0.9263 

Hit-count 0 3 9 0 5 5 6 11 

Mean 0.7900 0.8967 0.9185 0.8651 0.8848 0.9123 0.9182 0.9281 

STD 0.116 0.055 0.032 0.060 0.096 0.0403 0.0317 0.0274 

 

 
Figure 12: Median SRC values of 1000 runs on TID2008 database for BLIINDS2, BRISQUE and the proposed model M3. “ALL” means the overall 

performance on the entire database. 

 
Figure 13: Median SRC values of 1000 runs on the subset of achromatic-structural distortions (11 types in total) of TID2008 database for BLIINDS2, 

BRISQUE and the proposed model M3. “ALL11” means the overall performance on this subset. 

 



 

 

terms of overall performance. However, M3 failed to deliver 

good SRC values on chromatic distortions (i.e., WNC and 

JGTE), while its competitors also faired poorly. Low 

performance of M3 and its competitors can also be observed on 

the non-structural distortions (NEPN, MS, CT, etc.). On the 

achromatic-structural subset with 11 distortions, M3 showed 

very good performance where it outperformed the two 

competitors on all distortion types. In terms of overall 

performance, M3 achieved an SRC value of 0.8501, while 

BLIINDS2 and BRISQUE achieved only 0.7337 and 0.7551, 

respectively. M3 demonstrated much higher generalization 

ability for achromatic-structural distortions than the 

state-of-the-art BLIINDS2 and BRISQUE models. 

E. Experiments on database dependency 

In the experiments in Sections III.C and III.D, the training 

samples and test samples were drawn from the same database. It 

is expected that the BIQA model learned from one database 

should be applicable to images in other databases. Therefore, to 

demonstrate the generality and robustness of a BIQA algorithm, 

it is necessary to see if satisfying results can still be obtained by 

applying the BIQA model learned from one database to another 

database. In this subsection, we conducted the following 

experiments. First, a BIQA model was trained on database A, 

then the learned model was tested on database B; next, the same 

BIQA model was trained on database B, then tested on database 

A. With the three databases, there were 6 combinations of 

training and test database pairs. The SRC index was used for 

evaluation, and the results are presented in Table IV. Again, the 

proposed model M3 performed very well. It achieved the best 

SRC scores in 4 out of the 6 tests, and its results were very close 

to the best results in the other 2 tests. 

F. Computational complexity 

In many practical applications it is desired to estimate the 

quality of an input image online. Therefore, the computational 

complexity is also an important factor when evaluating a BIQA 

model. Table V summarizes the computational complexities 

and the run time (the average processing time of an image from 

the LIVE database using the MATLAB7.10.0 programming 

environment) of all the competing BIQA models. One can see 

that BIQI is the fastest one with complexity O(N), where N is the 

total number of image pixels. However, its performance is the 

worst among all the competing models. The proposed M3 is the 

second fastest method. The main costs in M3 are spent on 

computing the GM and LOG maps and the JAN of them, whose 

complexity is O(Nh), and the computation of the joint 

probability matrix, whose complexity is O(Nk), where h is the 

size of filters hx, hy, and hLOG, and k is the size of the joint 

probability matrix. Hence, the overall complexity of M3 is 

O(N(h+k)). On average, M3 can process 10 images from the 

LIVE database per second using our MATLAB 

implementation. 

IV. CONCLUSION 

Existing BIQA models typically decompose an image into 

different frequency and orientation bands, and then extract 

statistical features from the decomposed coefficients to learn a 

quality prediction model. However, few BIQA models 

explicitly exploit simple image contrast features such as the 

gradient magnitude (GM) and Laplacian of Gaussian (LOG) 

responses, although LOG responses share similarities to human 

receptive field responses. Here we made the first attempt to use 

GM and LOG features to conduct high performance BIQA. To 

alleviate the effects of image content variations, we applied a 

joint adaptive normalization procedure to normalize the GM 

and LOG features and whiten the image data. Since GM and 

LOG features are not independent and the interaction between 

them can reflect local quality prediction on natural images, we 

proposed a simple index, called independency distribution, to 

measure the joint statistics of them. The proposed BIQA models 

employ the marginal distributions and the independency 

distributions of GM and LOG, and they lead to highly 

competitive performance with many state-of-the-art BIQA 

methods in terms of quality prediction accuracy, generalization 

ability, robustness (i.e., across-database prediction capability) 

and computational complexity. Encouraged by the 

Table IV: Performance (SRC) of the BIQA models across the three databases.  

Database for 

Training 

Database for 

Testing 
BIQI BLIINDS2 BRISQUE DIIVINE CORNIA M3 

LIVE CSIQ 0.7805 0.8878 0.8993 0.8571 0.8973 0.9108 

LIVE TID2008 0.8194 0.9056 0.9050 0.8599 0.8932 0.9204 

CSIQ LIVE 0.4538 0.9365 0.9311 0.8475 0.9279 0.9459 

CSIQ TID2008 0.6977 0.8005 0.8986 0.8223 0.8704 0.9051 

TID2008 LIVE 0.7631 0.9389 0.9288 0.8658 0.9091 0.9336 

TID2008 CSIQ 0.8009 0.8747 0.8665 0.8481 0.8381 0.8393 

Table V: Computational complexity and average run-time (second). N is the total number of pixels in a test image. 

 Run-time (s) Computational complexity Notes 

BLIINDS2 123.9 O((N/(d2))log(N/(d2))) d: block size 

DIIVINE 28.2 O(N(log(N)+m2+N+392b)) 
m: neighborhood size in DNT; 

b: # of bins in the 2-D histogram 

CORNIA 3.246 O(Nd2k) d: block size; K: codebook size 

BRISQUE 0.176 O(d2N)  d: block size 

M3 0.101 O(N(h+k)) 
h: size of the derivative filter;  

k: size of the joint probability matrix 

BIQI 0.076 O(N)  

 



 

 

state-of-the-art BIQA results obtained in this paper, in future 

work we will investigate how to use the GM and LOG features 

for blind local quality map estimation, which is a very useful yet 

very challenging research problem. 
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