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Abstract -- This paper discusses the estimation of a class of discrete-time linear stochastic systems with 

statistically constrained unknown inputs (UI), which can represent an arbitrary combination of a class of 

un-modeled dynamics, random UI with unknown covariance matrix and deterministic UI. In filter design, an 

upper bound filter is explored to compute, recursively and adaptively, the upper-bounds of covariance 

matrices of the state prediction error, innovation and state estimate error. Furthermore, the minimum upper 

bound filter (MUBF) is obtained via online scalar parameter convex optimization in pursuit of the minimum 

upper-bounds. Two examples, a system with multiple piecewise UIs and a continuous stirred tank reactor 

(CSTR), are used to illustrate the proposed MUBF scheme and verify its performance. 
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I. INTRODUCTION 

As optimal linear minimum mean squared-error estimators, Kalman filters are widely used in signal 

processing and optimal control. The Kalman Filter (KF) considers a linear nominal model with known 

system parameters and noise statistics. However, the performance of KF will be significantly deteriorated if 

there exist unknown inputs (UI) to the nominal system, which has motivated the filter design in the presence 

of disturbance inputs to the system model of the KF. In general, the filter design can be grouped into four 

categories according to the assumptions on UI. 

In the first category, the UI is modeled as stochastic noise with unknown covariance, which is estimated 

adaptively by computing the correlation of measurements within a time interval [9][10][11]. As pointed out 

in [9], however, such noise estimation methods are only suitable for a class of stationary time-invariant 

systems. An adaptive filter [12] was proposed for a class of linear systems that are subject to process 

disturbances and structured measurement noises with unknown time-variant covariance matrices. The 

method was further extended to a class of jump Markov nonlinear stochastic systems [13]. The second 

category considers the UI to be deterministic and piecewise constant [6] for maneuvering target tracking. In a 

decoupled tracker, one-dimensional target acceleration, as the UI, is estimated using a set of measurements 

within a moving detection window. In [7], this input estimation method was extended to deal with 

generalized unknown deterministic inputs, which are represented as a linear weighted combination of several 

basis functions. The weights are unknown but are assumed to be constant in each moving detection window. 

This category is specially designed for maneuvering target tracking. In the third category, the UIs are 

arbitrary but their distribution matrix is known and the matrix rank is less than the rank of measurement 

matrix [8]. With substitution elimination of the redundant measurements, a disturbance decoupling observer 

can be designed to obtain the minimum-variance residual for reliable fault diagnosis in the presence of UIs. 

In the last category, the UI are energy-bounded and the parameter variation is norm-bounded or 

convex-bounded. The filters, based on offline convex parameter optimization, are designed to purse the best 

result in the worst-case [1]-[5].  

The filters introduced above, based on quite different ideas, address different types of UIs and some 

filters are application-specific. The actual applications, however, encounter much more complicated UIs. It is 

highly demanded and significant to design adaptive filters for more generalized UI. To the best of the 
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authors’ knowledge, however, little research has been reported on this topic.  

In this paper, a statistically constrained UI is considered and defined. The defined UI can represent a 

linear weighted sum of a class of UIs with dynamic properties, random UIs with unknown covariance, and 

unknown deterministic UIs. An adaptive filter is proposed via constructing the upper bound filter and 

pursuing its minimum upper bounds of covariance matrices of the state prediction error, residual and 

estimation error.  

The rest of the paper is organized as follows. Section II formulates the problem, where a class of linear 

stochastic systems with the statistically-constrained UI is introduced. Section III defines the upper bound 

filters (UBF) based on the structure of fading Kalman filters, and derives the sufficient conditions of the 

existence of UBF. Section IV determines the optimal filter parameters in pursuit of the minimum upper 

bound filter (MUBF). Section V focuses on the online optimization implementation of filter parameters. 

Section VI performs experiments to illustrate the proposed MUBF and Section VII concludes the paper. 

Throughout the paper, for any two real valued matrices with proper dimension, A and B, “A�B” and 

“A>B” represent that A–B is positive semidefinite and positive definite, respectively. “ 0n p× ” and “ nI ” 

represent the n-by-p zero matrix and the n-by-n unity matrix, respectively. The operator E{•} represents the 

mathematical expectation over the joint distribution of the related random vector. The superscripts “T” and 

“-1” represent the transpose and inverse of a matrix, respectively. 

 

II. STOCHATIC SYSTEMS WITH GENERALIZED UNKNOWN DISTURBANCE INPUTS 

In the standard KF, the discrete-time linear stochastic system model is 

1

1 1 1 1

k k k k k k k

k k k k

x F x B u q

y H x v

Γ+

+ + + +

= + +�
� = +�

                    (1) 

where nRx ∈ , lRu ∈  and mRy ∈  represent the system state, known input and measurement 

respectively. The system matrix F , input matrix B , noise matrix Γ  and measurement matrix H  are 

known. The process noise p
kq R∈  and measurement noise 1

m
kv R+ ∈  are zero-mean white noises with 

known covariance 0k p pQ ×≥  and 1 0k m mR + ×> , respectively. q , v  and the initial state 0x  are assumed 

to be independent.  
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In actual applications, however, the modeling errors caused by parameter variations, inaccurate 

parameter identification and unknown external disturbances may not be well represented by zero-mean 

process noises with apriori known covariance. In such cases the actual system will have significant deviation 

from the nominal model in (1). Consequently, the KF performance will be deteriorated, or even worse, the 

estimation errors may be divergent.  

Meanwhile, in many engineering applications, there exist various UI to the nominal model. For example, 

in maneuvering target tracking, the unknown acceleration can be represented as the UI to the 

constant-velocity movement model; in chemical processes, there widely exist unknown and time-varying 

time delays, which can be represented by the UI to the model with a nominal time delay. Such situations 

motivate many researchers to study UI modeling and the corresponding filter design. 

We extend (1) to the following time-varying stochastic system 

1

1 1 1 1

k k k k k k k k

k k k k

x F x B u q

y H x v

Γ δ+

+ + + +

= + + +�
� = +�

             (2) 

where kδ  is independent of ( )q j  and ( 1)jν +  ( 0j k∀ > ≥ ). The introduced term kδ  represents a 

class of statistically-constrained UIs. Obviously, the traditional system model considered by the KF is a 

special case of the proposed model (2) with 10nδ ×≡ . It will be shown in the following theorem that kδ  

can represent a general class of UIs. 

Denote by { }0col , ,k
kx x� �X , { }1

0 1col , ,k
kq q−

−� �Q , { }1
0 1col , ,k

kδ δ δ−
−� � , { }1col , ,k

kv v� �V  

and { }1
0 1col , ,k

ku u−
−� �U . We have the following theorem. 

 
Theorem 2.1 Consider the stochastic system (2), the term kδ  can represent the linear combination of 

multiple UIs as follows 

kδ =
(1) (1) 1 1 1 (2) (2) (3)

(1) (3) (2) (2) (3)

( , , , , ) 1
( ) 0

k k k k k
k k k k k k

k
k k k k k k

A f U A f A k
A f A f A k

δ ω
ω

− − −� + + ≥
� + + =�

X Q V
X

          (3) 

where (1)
kA , (2)

kA  and (3)
kA  are arbitrary deterministic weight matrices with proper dimension; (1)

kf , 

(2)
kf  and (3)

kf  are arbitrary functions. The noise sequence { }kω  are assumed to be independent of { }kq  
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and { }kv . � 

Proof: See Appendix A. � 

 
Remark 2.1 As linear or nonlinear functions of kX , 1k −Q , kV , 1kδ −  or 1kU − , the functions (1)

kf  and 

(3)
kf  represent the UIs with dynamic properties reflecting the effect of model linearization, inaccurate 

parameter identification and parameter variations on the nominal linear model. The deterministic UI (2)
kf  

represents the unknown additional deterministic input. The noise ω  represents the additional random UI 

with unknown covariance. As the linear weighted sum of those UIs with arbitrary and even unknown weights, 

kδ  is a generalized UI and thus system model (2) is able to represent more complicated systems. 

 

III. UPPER BOUND FILTER DESIGN 

Definition 3.1 (Upper Bound Filter): Consider the following linear filter structure 

1| |ˆ ˆk k k k k k kx F x B u+ = +                               (4) 

1kγ + = 1 1 1|ˆk k k ky H x+ + +−                                  (5) 

1| 1 1| 1 1ˆ ˆk k k k k kx x K γ+ + + + += +                                    (6) 

* *
1| |

T T
k k k k k k k k k kP F P F Qα Γ Γ+ = +                                           (7) 

* *
1 1 1| 1 1

T
k k k k k kV H P H R+ + + + += +                                              (8) 

* *
1| 1 1 1 1| 1 1 1 1 1( ) ( )T T

k k k k k k k k k k kP I K H P I K H K R K+ + + + + + + + + += − − +                  (9) 

where 1|ˆk kx + , 1kγ +  and 1| 1ˆk kx + +  are the state prediction, residual and estimate at time k+1, respectively. The 

filter (4)-(9) for system (2) is said to be the Upper Bound Filter (UBF) if there exist a fading factor 1kα ≥  

and filter gain 1kK +  satisfying 

(i)      *
1|k kP + 1|k kP +≥ { }1| 1|

T
k k k kE x x+ +� ��                     (10) 

(ii)  *
1kV + 1kV +≥ { }1 1

T
k kE γ γ+ +�                      (11) 
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(iii)  *
1| 1k kP + + 1| 1k kP + +≥ { }1| 1 1| 1

T
k k k kE x x+ + + +� ��                    (12) 

where | |ˆk k k k kx x x−� � , 1| 1 1|ˆk k k k kx x x+ + +−� �  and the filter gain 1kK +  is a function of *
1|k kP +  and *

1kV + .  � 

 
Remark 3.1 In Definition 3.1, the UI is unknown and thus state prediction has to be based on the nominal 

system (1). Similar to the fading Kalman filter (FKF) [14] , the effect of the UI on state prediction is 

expected to be compensated via the fading factor in (7). In fact, the UBF and FKF are different. The fading 

factor in the FKF is introduced to rescale covariance matrix of state prediction error derived from the 

nominal system. However, it is not theoretically strict to reconstruct an n n×  square matrix only from a 

scalar. Different from FKF, the proposed UBF is to construct the upper bounds of covariance matrices of the 

state prediction error, innovation and state estimate error via the fading factor.  

Before designing the UBF, we need to know whether a UBF exists. The following Theorem 3.1 presents 

the sufficient conditions of the existence of the UBF. 

 
Theorem 3.1 There exist a UBF (4)-(12) for system (2) and both *

1|k kP +  and *
1| 1k kP + +  are positive definite, if 

the following conditions hold: 

(i) *
0|0P  is positive definite and *

0|0 0|0P P−  is positive semi-definite 

(ii) kF k∀  is of full rank. � 

Proof: See Appendix B. � 

 
In the traditional KF, 0|0P  is known apriori. In the UBF proposed here, only its upper bound *

0|0 0P >  

is needed. The first condition of Theorem 3.1 is easy to be satisfied in filter design. The second condition of 

Theorem 3.1 presents the constraint on the system (2) and is satisfied in many applications. For example, if 

model (2) is derived from the discretization of a continuous-time system, then this condition will be always 

satisfied. 

 

IV. MINIMUM UPPER BOUNDS 

In the previous section, Theorem 3.1 explores the existence of a UBF. An interesting question is whether 
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there exist the minimum upper bounds and how to design the filter parameters in order to obtain the best 

filtering accuracy in the worst case. In this section, we show that the minimum upper bounds exist, and 

further present the corresponding filter parameters. 

Define the following set {k kαΛ = | 1kα ≥ , *
1| 1|k k k kP P+ +≥ , *

1 1k kV V+ +≥ , }*
1| 1 1| 1k k k kP P+ + + +≥ . According to 

Definition 3.1, the set kΛ  will not be empty if a UBF exists. We have the following theorems. 

 
Theorem 4.1 Given any positive definite symmetric matrix *

|k kP  in a UBF (4)-(12) for system (2), there 

exists a unique minimum fading factor Opt
kα  in kΛ  to achieve the minimum upper bound of covariance 

matrix of the state prediction error, i.e.  

Opt
kα { }min k kα= ∈Λ                                (13) 

satisfying 

* *
1| 1| 1|Opt

kk
k k k k k kP P P

α α+ + +≤ ≤                        (14) 

The fading factor Opt
kα  also results in the minimum upper bounds of covariance matrices of filter residual 

and state estimate error, given any filter gain, i.e. 

* *
1 1 1Opt

kk
k k kV V V

α α+ + +≤ ≤                          (15) 

* *
1| 1 1| 1( 1| 1) Opt

kk
k k k kP k k P P

α α+ + + ++ + ≤ ≤                       (16) � 

Proof: See Appendix C. � 

 
Theorem 4.2 Given any positive definite symmetric matrix *

1|k kP+  in a UBF (4)-(12) for system (2), there 

exists an optimal filter gain to obtain the minimum upper bound of the covariance matrix of state estimate 

error, i.e. 

( ) 1* *
1 1| 1 1

Opt T
k k k k kK P H V

−

+ + + +=                             (17) 

satisfying 

11

* *
1| 1 1| 1 1| 1Opt

kk
k k k k k kK K

P P P
++

+ + + + + +≤ ≤                          (18) 
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where 

1

*
1| 1 opt

k
k k K

P
+

+ + ( )( ) 11* 1
1| 1 1 1

T
k k k k kP H R H

−− −
+ + + += +                (19)� 

Proof: See Appendix D. � 

 
With Theorems 4.1 and 4.2, we know that there exists a unique Minimum Upper Bound Filter (MUBF), 

reaching the minimum upper bounds among all UBFs. The MUBF has optimal parameters, i.e. Opt
kα  and 

1
Opt
kK + . Next, we focus on how to determine Opt

kα  and thus propose the implementation of the MUBF. 

 

V. MINIMUM UPPER BOUND FILTER DESIGN 

Theorem 5.1 The following scalar convex optimization has one and only one solution, which is equal to the 

minimum fading factor 

minOpt
k kα α                                 (20) 

subject to 

(i) ( )*
1 | 1

T T T
k k k k k k k k k kH F P F Q Hα Γ Γ+ ++ 1 1k kV R+ +≥ −                              (21) 

(ii) 1kα ≥  

if the following four conditions are satisfied 

(i) *
0|0P  is positive definite and *

0|0 0|0P P−  is positive semi-definite; 

(ii) kF  is of full rank; 

(iii) kH  is of full row rank, i.e. { }krank H m= , 1k∀ ≥ ;  

(iv) the filter gain is chosen to its optimal value 1
Opt
kK +  in (17). �                                                                         

Proof: See Appendix E. � 

 
The MUBF algorithm can be summarized as follows. 

Step 1:  Let k=0. Initialize 0|0x̂  and *
0|0P .  

Step 2:  Compute the state prediction 1|k̂ kx +  by (4). 
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Step 3:  After obtain the measurement at time k+1, compute 1kγ +  by (5). 

Step 4: Run the optimization of (20) to determine Opt
kα , where 1kV +  is substituted by its estimate 

1 1 1
ˆ T
k k kV γ γ+ + += . The convex constrained optimization can be solved via linear matrix inequalities 

(LMI) [15]. 

Step 5:  Compute *
1|k kP +  by (7), *

1kV +  by (8) and 1
Opt
kK +  by (18).  

Step 6:  Determine  1| 1k̂ kx + +  and *
1| 1k kP + +  by (6) and (9), respectively. 

Step 7:  Let k=k+1 and go to Step 2. 

 

VI EXPERIMENTAL RESULTS 

In this section, two examples are used to illustrate the proposed MUBF. In the first example, a system with 

multiple types of UIs is simulated to test the performance of MUBF; while in the second example, a real 

system of the continuous stirred tank reactor (CSTR) is used to validate the efficiency of MUBF. 

 
A) A simulated system with different UIs 

Consider the system (2) with 
0.8 0.3
0.3 0.9

F
� �

= � �−� 	
, 

400 0

0 400
R

� �
= � �
� 	

, 2 10Bu ×≡ , 
2
1

Γ � �
= � �
� 	

, 2 2H I ×=  

and 5Q = . The UI kδ  is considered to be 0, time-invariant UI, periodic UI, random UI, and time-delayed 

UI in piece-wise style as follows 

[ ]

(1) (2)

1

[0  0] 1 50

[0  30sin(0.5 25)] 51 100
[0  20] 101 150
[   ]   151 200

[0  1]   0 201 250

T

T

T
k

T
k k

T

k k

k

k k

k

k

x k

δ
ε ε

β−

� ≤ ≤

 − ≤ ≤


 − ≤ ≤= �

 ≤ ≤



 − ≤ ≤�

 

where ( )i
kε  ( , =1,2)k i∀  is Gaussian white noise with variance of 80, kβ  is a square wave with peak 

magnitude of ±0.3 and the half time period of 5. The first and second state components to be estimated are 

shown in Fig.1. 

For the above time-invariant system configuration without kδ , the first category of filters introduced 



  

 10 

in the Introduction Section can be designed. Here we employ the adaptive suboptimal filter (ASF) [10] for 

comparison with the proposed filter. The other three categories of filters introduced in the Introduction 

Section can not be applied because their design conditions are not satisfied. As shown in Fig. 2, the ASF, 

which treats the UI as stationary random noise, works much worse than the proposed MUBF, especially in 

the presence of deterministic UIs. It means that not all UIs can be properly treated as stationary random noise 

and the ASF is not suitable to deal with the general UI.  

The fading factor is determined a priori in FKF [14], while it is adaptively optimized in MUBF. We 

implemented the FKFs with the fading factor ranging from 1 to for comparison. The FKF with �=1 is 

equivalent to the traditional KF while the FKF with �=  is equivalent to the Least Square Estimation. As 

shown in Figs.3-5, the FKFs with different fading factors cannot result in consistent filtering accuracy in 

different UIs. Table 1 lists the Root Mean Square Error (RMSE) of the filtering outputs of different schemes 

in each piece-wise UI. It is shown that the proposed MUBF, as one adaptive filter based on online parameter 

optimization, is robust to different UIs. 

 
B) A time delayed stochastic system 

This experiment is on the joint estimation of feed flow rate and time delay in the continuous stirred tank 

reactor (CSTR), where the evolution of feed flow rate and time delay is hard to model and hence we model 

their changes as the UI. Time delay is a special structure parameter that exists in many systems. As pointed 

out in [16], the closed-loop system may be unstable if the modeled time delay does not coincide with the 

unknown and/or time-varying time delay. Here we consider the CSTR described by Henson et al [17]: 

0

0

( )
( ) ( ( )) exp( ) ( )

( )
( )

( ) ( ( )) exp( ) ( ) ( ( ( )) ( ))
( )

Af

f c

p p

t E
Ca t C Ca t k Ca t

U DT t
t H E Z

T t t T t k Ca t t t t T t
U C DT t U C

τ

τ φ
ρ ρ

� = − − −



� −∆
 = − + − + − −

�

�

�
   (22) 

where Ca  is the reactor concentration, T  is the reactor temperature, ct  is the coolant temperature, τ  is 

the feed flow rate, AfC  is the feed concentration and φ  is the time delay.  

In chemical engineering, the reactor temperature, T , can be obtained accurately. Consider the case that 

the reactor concentration is constant. Via the Eular discretization with sampling interval dt , we have 
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1

1 0

1 1

( ) exp( )

               
k k

fk
k k k k

p k

c
k T k

p

H E
T T dt t T dt k Ca

U C DT

Z
dt t e

U C φ

τ
ρ

ρ +

+

+ − − +

−∆= + − + −

+ +
               (23) 

where e , the discretization error, is a zero-mean white noise with covariance 1kR + . The feed flow rate, τ , 

and the time delay, φ , are time varying and change randomly. It is required to estimate them jointly. Let the 

state be [ ]Tx τ φ= , we model the system as (2) with the following parameters:  

2F I= , 2 10Bu ×= , 2 10qΓ ×= , 1k k kx xδ += − , v e=  

1ky + 1 0
k

k k k
p

H
T T dt T dt k

U C
τ

ρ+
∆= − + + exp( )k

k

E
Ca

DT
− k

p

dtZ
T

U Cρ
+  

1kH + =[ ( ) /f
kt T U−   

1
(

k

c
k

p

Z
dt t

U C φρ +− ,
1 1

ˆ1 ) |
k k k

c
kt φ φ φ+ +

+ − =
− ] 

In the above modeling, the unknown changes of feed flow rate and time-delay are modeled as ( )kδ  

because we do not have any a priori information about such changes. 

The nominal parameters of the CSTR are Ca =0.1 mol/L, AfC =1 mol/L, ft =350 K, U =100 L, 

Z =5×104 J/(min�K), 0k =7.2×1010/min, H∆ =–5×104 J/mol, E/D=8750 K, ρ =1000 g/L, and pC =0.239 

J/(g�K). ct  is designed to be a square wave with peak magnitude 309.9×(1±0.005)K. The half time period 

of ct  is 1 min so that the time delay less than 2 min is expected to be estimated. The sampling interval dt  

is 0.2 min and the variance of the discretization error is 2
1 0.05kR + = . The initial state of the CSTR is 

0 [100  1]Tx = . The actual time-varying parameter τ  (in L/min) and time delay φ  (in 0.2 min) are 

100 0 50
95 0.1 50 150

( )
120 150 250
110 250 300

k
k k

k
k
k

τ

< ≤�

 + < ≤
= � < ≤


 < ≤�

, 

1 0 100
3 100 200
5 200 300

k

k

k

k

φ
< ≤�


= < ≤�

 < ≤�

 

All the four categories of filters introduced in the Introduction Section can not be applied to the above 

CSTR system. The first category of filters can not be used because the necessary condition of filter existence 

in [9] can not be satisfied due to the time-variant measurement matrix. The systems considered in [10] and 
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[13] are much different from the CSTR system and their methods can not be used either. The second 

category of filters, which reconstructs inputs via measurements, requires that the dimension of inputs should 

not be less than that of measurements. However, this condition can not be satisfied because the CSTR system 

has one-dimensional measurement while two-dimensional input needs to be estimated. The third category is 

also unsuitable because it assumes that the disturbance should be structured and the disturbance dimension 

should be less than the measurement dimension. The last category is not applicable because it needs to know 

the bounds of disturbance and its existence depends on the system parameters. Here, we compare the 

proposed MUBF with FKF. 

The filtering results by using the FKF with �=1 (i.e. the standard EKF, which has been widely utilized 

for many nonlinear systems, including gene regulatory networks [18]) are shown in Fig. 6. We see that it 

fails to estimate the time-variant state because of the absence of adaptation to the un-modeled dynamics. In 

contrast, the proposed MUBF, as shown in Fig.7, presents satisfying filtering results. The results of FKF with 

different fading factors are illustrated in Figs. 8-10, from which we can see that unsuitable fading factors will 

lead to unacceptable results. Comparing Fig.7 with Fig.9, we can see that FKF with the best fading factor 

gets slightly better estimation in feed flow rate τ  but much worse estimation in time delay φ  than the 

proposed MUBF. It validates the fact that the FKF with a priori fading factor is not expected to be suitable 

for time-variant system with time-variant and complicated UIs. In practice, the CSTR system may switch 

between multiple operation modes, which are significantly different from each other in nominal parameters 

and state change rules. In such cases, determining the FKF fading factor via trial and error becomes too 

complicated to implement.  

 
VII CONCLUSION 

We proposed an adaptive filtering scheme for a class of stochastic systems that are subject to statistically 

constrained disturbance input, which can describe an arbitrary combination of a class of un-modeled 

dynamics, random noise with unknown covariance and unknown deterministic inputs. The upper bound filter 

to the systems was presented. By minimizing the upper bounds, we transformed the design of minimum 

upper bound filter (MUBF) into an online constrained scalar optimization. Two examples were used to 

illustrate and validate the proposed MUBF and the results showed that the MUBF can effectively handle 
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different types of UI, which cannot be well processed by conventional filters such as fading Kalman filters. 
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APPENDIX A. Proof of Theorem 2.1 

For simplicity without confusing in Appendix A, we represent (1)
kf , (2)

kf  and (3)
kf  by (1)f , (2)f  and 

(3)f , respectively. Similarly, weights (1)
kA , (2)

kA , (3)
kA  are represented by (1)A , (2)A , (3)A , respectively. 

The noises kω  is represented by ω . 

First let’s consider the case of 0k = . From the statement in (1) that q , v  and the initial state 0x  are 

independent, we have that (3)f  is independent of q  and v . Further considering that (1)A  (2)A , (3)A  

and (2)f  are deterministic, ω  is uncorrelated with both q  and v , and q , v  are zero-mean, we have 

{ }0
T
jE qδ { } { }( ) { }(1) (3) (2) (2) (3)+ 0T

j n pA E f A f A E E qω ×= + =  

{ }0 1
T
jE vδ + { } { }( ) { }(1) (3) (2) (2) (3)

1+ 0T
j n mA E f A f A E E vω + ×= + =  

Suppose iδ  ( 1i k≤ − ) can be represented by (3). We focus on testifying the statistical constraint on 

kδ . From the dynamic model in (2), we can see that kX  is a linear function of 0x , 1k −Q , 1kδ −  and 

1kU − . Thus (1)f  is the function of 0x , 1k −Q , kV , 1kδ −  and 1kU − . Because q , v  and the initial state 

0x  are independent, q , v  are white, and 1kU −  is deterministic, we have that (1)f  is independent of jq  

and 1jv + . Thus we obtain 

{ }T
k jE qδ { } { }( ) { }(1) (1) (2) (2) (3)+ + 0T

j n pA E f A f A E E qω ×= =  

{ }1
T

k jE vδ + { } { }( ) { }(1) (1) (2) (2) (3)
1+ + 0T

j n mA E f A f A E E vω + ×= =         � 
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APPENDIX B. Proof of Theorem 3.1 

First, we show that *
1|k kP +  and *

1| 1k kP + +  are positive definite matrices. As in the first condition of Theorem 

3.1, *
0|0P  is positive definite. Here we assume *

|k kP  is positive definite and try to prove that *
1|k kP +  and 

*
1| 1k kP + +  are positive definite matrices using mathematical induction. 

Since kQ  is nonnegative definite and 1kα ≥ , we have the following inequality form (7) 

* *
1| |

T T
k k k k k k k k k kP F P F Qα Γ Γ+ = + *

|
T

k k k k kF P Fα≥ *
|

T
k k k kF P F≥    (B.1) 

In the fact that *
|k kP  is positive definite, and kF  is of full rank (the second condition of Theorem 3.1), we 

further have *
1|k kP+  is positive definite from (B.1).  

To any filtering gain 1kK + , we define * * 1
1 1 1| 1 1( )T

k k k k k kK K P H V∆ −
+ + + + += −  and derive (9) as follows 

* * * * 1 * *
1| 1 1| 1| 1 1 1 1| 1 1 1( )T T

k k k k k k k k k k k k k kP P P H V H P K V K∆ ∆−
+ + + + + + + + + + += − + * * * 1 *

1| 1| 1 1 1 1|( )T
k k k k k k k k kP P H V H P−
+ + + + + +≥ −  

( )
11* 1

1| 1 1 1
T

k k k k kP H R H
−− −

+ + + +
� �≥ +� �� 	

                                               (B.2) 

Using above conclusion that *
1|k kP+  is positive definite, we find that *

1| 1k kP + +  is positive definite  

Then we prove that there must exist the fading factor to guarantee (10)-(12). Put (4)-(6) into the definition of 

mean square error matrices in (10)-(12), we have 

{ }1| | |[ ][ ]T T
k k k k k k k k k k k k kP E F x F x Qδ δ Γ Γ+ = + + +� �                  (B.3) 

1 1 1| 1 1
T

k k k k k kV H P H R+ + + + += +                            (B.4) 

1| 1 1 1 1| 1 1 1 1 1( ) ( )T T
k k k k k k k k k k kP I K H P I K H K R K+ + + + + + + + + += − − +       (B.5) 

where above derivation utilizes the constraint that kδ  is independent of ( )q j  and ( 1)jν +  

( 0j k∀ > ≥ ). Substitute (7) by (B.3), we have 

*
1|k kP+ 1|k kP+− *

|
T

k k k k kF P Fα= { }| |[ ][ ]T
k k k k k k k kE F x F xδ δ− + +� �  

From (B.2) and the second condition of Theorem 3.1, we have that *
|

T
k k k kF P F  is positive definite and thus its 
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minimum eigenvalue is positive, i.e. { }*
min | 0T

k k k kF P Fσ > .  

The real symmetric matrices can be diagonalized as 

( )* (1) (1) (1)
|

TT
k k k k k k kF P F U UΛ= , { } ( )(2) (2) (2)

| |[ ][ ]
TT

k k k k k k k k k k kE F x F x U Uδ δ Λ+ + =� �  

where (1)
kΛ  and (2)

kΛ  are positive semi-definite and diagonal, ( ) ( ) 1(1) (1)T

k kU U
−

= , and 

( ) ( ) 1(2) (2)T

k kU U
−

= . Furthermore we have 

*
|

T
k k k k kF P Fα = ( ) ( )(1) (1) (1) (1) (1) (1) (1)

min min( ( ) ) ( )
T T

k k k k k k k n k k k nU U U I U Iα Λ α σ Λ α σ Λ≥ =  

( ) ( )(2) (2) (2) (2) (2) (2) (2)
max max( ( ) ) ( )

T T

k k k k k n k k nU U U I U IΛ σ Λ σ Λ≤ =  

where min ( )σ ⋅  and max ( )σ ⋅  are the minimum and maximum eigenvalues of the corresponding real 

symmetric matrix, respectively.  

Choosing 
(2)

max
(1)

min

( )
( )

k
k

k

σ Λα
σ Λ

≥ , we obtain 

 *
1|k kP + 1|k kP+≥                                (10) 

Subtract (8) by (B.4) and use (10), we have 

* *
1 1 1 1| 1| 1( ) T

k k k k k k k kV V H P P H+ + + + + += + − 1kV +≥               (11) 

Subtract (9) by (B.5) and use (10), we have 

* *
1| 1 1| 1 1 1 1| 1| 1 1( )( )( )T

k k k k k k k k k k k kP P I K H P P I K H+ + + + + + + + + += + − − − 1| 1k kP+ +≥          (12) � 

 
APPENDIX C. Proof of Theorem 4.1 

To any k kα ∈Λ , (13) leads to 

kα ≥ Opt
kα                                  (C.1) 

From (7) and (C.1), we have 

*
1| Opt

k
k kP

α+
*
|

Opt T T
k k k k k k k kF P F Qα Γ Γ= + *

|
T T

k k k k k k k kF P F Qα Γ Γ≤ + *
1|

k
k kP

α+=            (C.2) 

Due to Opt
k kα ∈Λ , we have *

1| ( ) Opt
k

k k k
P

α α+ = 1|k kP+≥ . Further with (C.2), we have (14). 
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From (8) and (C.2), we have 

*
1 Opt

k
kV

α+
*

1 1| 1 1Opt
k

T
k k k k kH P H R

α+ + + += + *
1 1| 1 1

k

T
k k k k kH P H R

α+ + + +≤ + *
1

k
kV

α+=            (C.3) 

From (9), we have 

*
1| 1 Opt

k
k kP

α+ +
*

1 1 1| 1 1( ) ( )Opt
k

T
k k k k k kI K H P I K H

α+ + + + += − − 1 1 1
T

k k kK R K+ + ++         (C.4) 

and 

*
1| 1

k
k kP

α+ +
*

1 1 1| 1 1( ) ( )
k

T
k k k k k kI K H P I K H

α+ + + + += − − 1 1 1
T

k k kK R K+ + ++            (C.5) 

Subtract (C.4) from (C.5) and use (C.2), we have 

*
1| 1 Opt

k
k kP

α+ +
*

1| 1
k

k kP
α+ +≤                              (C.6) 

Due to Opt
k kα ∈Λ , we have *

1 Opt
k

kV
α+ 1kV +≥  and *

1| 1 1| 1Opt
k

k k k kP P
α+ + + +> . Combining them with (C.3)-(C.4), we 

obtain (15)-(16). 

At last, let us testify the uniqueness of the optimal fading factor. As shown in (C.2), we have 

*
1| Opt

k
k kP

α+
*

1|
k

k kP
α+− = ( ) *

|
Opt T
k k k k k kF P Fα α−  

Because *
|k kP  is positive definition as stated in Theorem 4.1, we have 

(i) If *
1| Opt

k
k kP

α+
*

1|
k

k kP
α+− >0, then Opt

kα kα> . 

In this case, kα  is not the optimal parameter because Opt
kα  obtains the lower upper bound. 

(ii) If *
1| Opt

k
k kP

α+
*

1|
k

k kP
α+− <0, then Opt

kα kα< . 

This case is impossible because Opt
kα { }min k kα= ∈Λ  as defined in (13). 

(iii) If *
1| Opt

k
k kP

α+
*

1|
k

k kP
α+− =0, then Opt

kα kα=  or 0k n nF ×≡ . 

The case of 0k n nF ×≡  means it fails to model the system dynamics in (2) and thus only measurement 

information is available for estimation. It is out of the scope of estimation problem of dynamic systems. 

Therefore it is concluded that Opt
kα  is unique. � 
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APPENDIX D. Proof of Theorem 4.2 

Because *
1|k kP +  and 1kR +  are positive definite, *

1 1| 1 1
T

k k k k kH P H R+ + + ++  is also positive definite and can be 

expressed by 

* *
1 1 1| 1 1 1 1

T T
k k k k k k k kV H P H R S S+ + + + + + += + =             (D.1) 

where 1kS +  is an m-by-m matrix of full rank. Denote 

1

* 1
1 1 1 1| 1 1 Opt

k

T
k k k k k k k K

M K S P H S
+

−
+ + + + + += −  

and (9) can be rewritten as 

* *
1| 1 1 1 1| 1 1 1 1 1( ) ( )T T

k k k k k k k k k k kP I K H P I K H K R K+ + + + + + + + + += − − + *
1 1 1

T
k k kK V K+ + += *

1 1 1|k k k kK H P+ + +− ( )*
1 1 1|

T

k k k kK H P+ + +− *
1|k kP ++  

1 1
T

k kM M+ += *
1|k kP ++ ( ) 1* * *

1| 1 1 1 1|
T

k k k k k k kP H V H P
−

+ + + + +− *
1|k kP +≥ ( ) 1* * *

1| 1 1 1 1|
T

k k k k k k kP H V H P
−

+ + + + +−  

From the above, we can see that *
1| 1k kP+ +  reaches its lower bound if and only if 1 0k n mM + ×= . Thus we 

obtain the optimal filter gain  

( ) 1*
1 1| 1 1 1

Opt T T
k k k k k kK P H S S

−

+ + + + += ( ) 1* *
1| 1 1

T
k k k kP H V

−

+ + +=           (D.2) 

satisfying 

11

* *
1| 1 1| 1Opt

kk
k k k kK K

P P
++

+ + + +≤                      (D.3) 

Using the well-known matrix inversion theorem, 
1

*
1| 1 Opt

k
k k K

P
+

+ +  can be further expressed as 

1

*
1| 1 Opt

k
k k K

P
+

+ + = *
1|k kP + ( ) 1* * *

1| 1 1 1 1|
T

k k k k k k kP H V H P
−

+ + + + +− ( )( ) 11* 1
1| 1 1 1

T
k k k k kP H R H

−− −
+ + + += +        (D.4) 

With *
1| 0k k n nP + ×> , (D.4) further leads to 

1

*
1| 1 0Opt

k
k k n nK

P
+

+ + ×> . Thus 1
Opt
kK +  satisfies the third condition of 

Theorem 3.1 and the upper bound can be guaranteed: 

1

*
1| 1 1| 1 Opt

k
k k k k K

P P
+

+ + + +≤                                (D.5) 

Combining (D.3) and (D.5), we obtain (18).� 

 

APPENDIX E. Proof of Theorem 5.1 

The first two conditions of Theorem 5.1 are the same as the conditions of Theorem 3.1. Thus a UBF exists 
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and *
| 0k k n nP ×>  for all 0 k N< ≤ , according to Theorem 3.1. 

From the third condition of Theorem 5.1, we have that 1 1
T
k kH H+ +  is positive definite and thus 

( ) 1

1 1
T
k kH H

−

+ +  exists. Substitute (7), (8) and (B.3) into (21), we have 

*
1kV + = ( )*

1 | 1
T T T

k k k k k k k k k kH F P F Q Hα Γ Γ+ ++ 1 1k kR V+ ++ ≥            (11) 

Left-multiply and right-multiply (21) by 1
T
kH +  and 1kH +  respectively, we have 

( )*
1 1 | 1 1

T T T T
k k k k k k k k k k k kH H F P F Q H Hα Γ Γ+ + + ++ ( )1 1 1 1

T
k k k kH V R H+ + + +≥ − 1 1 1| 1 1

T T
k k k k k kH H P H H+ + + + +=  

Since 1 1
T
k kH H+ +  is positive definite, we further have 

*
1|k kP + = *

|
T T

k k k k k k k kF P F Qα Γ Γ+ 1|k kP +≥          (10) 

Subtract (9) by (B.4) and use (10), we have 

*
1| 1k kP+ + 1| 1k kP+ +− ( )*

1 1 1| 1| 1 1( ) ( )T
k k k k k k k kI K H P P I K H+ + + + + += − − − 0n n×≥             (12) 

From (10)-(12), it is concluded that the fading factor satisfying (21) can guarantee the existence of a 

UBF. According to Theorem 4.1, this minimum fading factor can simultaneously result in the minimum 

upper bounds of covariance matrices of state prediction, filter residual and state estimate. Thus if (20) has 

only one solution to fading factor, then this solution will be the minimum fading factor. In the following part, 

the uniqueness of the solution to (20) will be explored. 

First we explore the existence of the solution. Because *
| 0k k n nP ×>  and kF  is of full rank, we have 

*
| 0T

k k k k n nF P F ×> . Consider that 1kH +  is of full row rank, we further obtain that 

 *
1 | 1

T T
k k k k k kH F P F H+ + >0          (E.1) 

The two constraints of (20) can be easily satisfied. For example, in the case that kα  is 

max 1 1 1 1
*

min 1 | 1

{ }
max{1, }

{ }

T T
k k k k k k k

T T
k k k k k k

V H Q H R
H F P F H

λ Γ Γ
λ

+ + + +

+ +

− −
, where max{ }λ �  and min{ }λ �  are the maximum and minimum 

eigenvalues of the corresponding matrix, the solution to (20) exists. 

Then we need to verify that the solution to (20) is unique. Because the solution to (20) exists, the set 

kΛ  is not empty. If the set kΛ  only has one element, then that element will be the solution to (20). 
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Otherwise we can assume that (1) 1kα >  and (2) 1kα >  are two different solutions satisfying (20). Without 

loss of generality, we let (1) (2)
k kα α> . There is  

1

*
1 ( )k

k k
V

α α+ = 2

*
1 ( )k

k k
V

α α+ =
− (1) (2) *

1 | 1( ) 0T T
k k k k k k k k m mH F P F Hα α + + ×= − >          (E.2) 

(E.2) shows that (2)
kα  has the smaller upper bound than (1)

kα . It conflicts the assumption that both (1)
kα  

and (1)
kα , as the solutions to (20), can result in the minimum upper bound. Therefore the optimization of (20) 

has one and only one solution. �  
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Table 1. Root-mean-square-error of the filtering results. 

k [1,50] k [51,100] k [101,150] k [151,200] k [201,250]  
x1 x2 x1 x2 x1 x2 x1 x2 x1 x2 

MUBF 6.96 5.05 12.04 15.14 13.69 17.81 17.30 20.73 18.96 22.07 
ASF 6.57 5.60 13.41 34.52 20.07 38.01 64.63 80.01 28.55 24.90 
FKF(alfa=1) 6.37 3.53           30.60 58.58 43.07 48.84 93.98 126.86 44.21 46.26 
FKF(alfa=1.5) 6.57 5.60 13.41 34.52 20.07 38.01 64.63 80.01 28.55 24.90 
FKF(alfa=3) 11.69 12.41 11.25 14.15 12.31 18.98 34.45 32.34 17.01 17.55 
FKF(alfa=infinite) 20.32 19.04 18.34 19.41 20.43 18.59 17.44 22.27 22.45 24.24 
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Figure 1. The true state to be estimated. 
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Figure 2. The state estimation errors by MUBF and ASF. 
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Figure 3. The state estimation errors by MUBF and FKF with alfa=1. 
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Figure 4. The state estimation errors by MUBF and FKF with alfa=1.5. 
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Figure 5. The state estimation errors by MUBF and FKF with alfa=∝. 
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Figure 6. The filtering result of FKF (�=1). 
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Figure 7. The filtering result of MUBF. 
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Figure 8. The filtering result of FKF (�=1.1). 
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Figure 9. The filtering result of FKF (�=2). 
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Figure 10. The filtering result of FKF (�=5). 


