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The robustness of SR-EMD and conventional EMD 

to noise 

(a) Similar “GMMs” (b) Dissimilar “GMMs”  Running time comparison between SR-EMD and 

conventional EMD (unit: s) 

# of bins 10 20 30 40 50 

EMD 6.3e-4 1.0e-2 5.5e-2 2.0e-1 5.6e-1 

SR-EMD 5.9e-4 4.7e-3 1.8e-2 4.7e-2 1.2e-1 

# of bins 60 70 80 100 120 

EMD 1.28 2.80 5.24 14.7 23.7 

SR-EMD 0.23 0.40 0.78 1.79 4.02 

Comparison of texture 

classification rates (%) 

with state-of-the-arts 

(a) KTH-TIPS (b) UMD 

Corel Wang Coil100

Running time of different methods (ms) 

Comparison of MAP values (%) in image retrieval 

Method Match-KL GQFD EMD-KL SR-EMD-θ SR-EMD-M 

Times 6.99 8.70 10.22 5.55 7.63 

How to measure 

dissimilarity/affinity  

between two  

Gaussian Mixture 

Models (GMMs )? 

Given  

two 

GMMs: 
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The solution to TP is sparse (#Non-zero entry  

                          ),  enabling sparse representation-

based EMD. 

Tolerable to noise—constraint  equations not 

exactly  satisfied 

Low complexity—its cost 

Ground distances involve distance measures between 

component Gaussians: 

•               — Embedding Gaussians into the space of 

    Symmetric Positive Definite (SPD)  matrices 

•              — Product of Lie group 

Benefits: Respecting Riemannian structure of the space 

of Gaussians & facilitating metric learning. 

A simple yet effective pair-wise method 

for SR-EMD learning given a collection of 

GMMs. The objective is optimized by 

alternating two steps: 

•Solving        by sparse coding method; 

•Gradient descent  method  for  

Class 1
Class 2

Class n

…
…
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Method SIFT Cov Hist SIFT Cov Hist 

Match-KL 40.0 36.7 36.9 28.3 36.1 41.1 

GQFD 45.7 46.7 36.8 45.0 47.8 60.0 

BoW 46.3 - - 44.2 - - 

EMD-KL 45.1 38.2 37.1 28.2 39.3 59.7 

SR-EMD-M 48.7 48.3 46.9 48.4 61.7 81.8 

SR-EMD-θ 49.7 51.6 45.5 52.2 64.2 82.0 

SR-EMD-M 
(with learning) 

50.1 51.0 48.7 51.4 64.5 84.9 

SR-EMD-θ 
(with learning) 

52.6 53.0 48.9 55.4 69.8 85.5 

KTH-TIPS UMD CUReT 

Method 1 5 10 40 1 5 10 20 2 10 26 46 

Zhang et al. 55.1 80.1 90.0 96.1 - - - - 53.6 80.0 91.1 95.3 

Hayman et 
al. 

50.2 78.3 85.3 94.8 - - - - 60.2 91.0 97.6 98.5 

Z-joint 50.5 72.9 80.5 92.1 - - - - 54.4 83.4 93.1 97.4 

WMFS - - - 96.5 - - - 98.7 - - - - 

Liu et al. 56.5 80.5 87.8 99.3 73.9 95.0 97 99.3 68.2 91.5 98.3 99.4 

CLBP 49.0 76.1 85.5 96.8 73.6 92.4 96.0 98.0 60.2 83.6 92.9 95.9 

SR-EMD-M 67.3 86.5 96.8 99.8 78.9 97.3 98.4 99.5 71.8 95.2 98.3 99.5 

SR-EMD-θ 63.9 84.0 95.1 99.6 80.1 97.6 99.1 99.9 72.1 95.4 98.7 99.5 

 K-L divergence based ones (Match-KL) [Goldberger et al. 

ICCV 03] 

 Gaussian Quadratic Form Distance (GQFD) [Beecks et al. 

ICCV 11]. 

 Earth Mover’s Distance (EMD) [Rubner et al. IJCV 00, 

Logan et al. ICML 01]. 

Problem 

Proposed EMD Methodology 
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Image Retrieval 

SR-EMD vs. EMD 

Comparison of MAP values (%) 

Texture Classification 

(c) CUReT 

Comparison  with various  

dissimilarity measures  

Introduction 

Dissimilarity 

between 

images is 

measured by 

SR-EMD, which 

is applied to 

image matching, 

e.g. image 

retrieval or 

texture 

classification 

via K Nearest 

Neighbor (KNN) 

or Support 

Vector Machine 

(SVM) 
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SR-EMD 

Dissimilarity 

Classical EMD is 

a Transportation 

problem (TP) ;its 

cost is  
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Ground Distances 

Motivating Applications 
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Distance Metric Learning  
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