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Abstract. Segmenting an image is an important step in many computer
vision applications. However, image segmentation evaluation is far from
being well-studied in contrast to the extensive studies on image segmen-
tation algorithms. In this paper, we propose a framework to quantita-
tively evaluate the quality of a given segmentation with multiple ground
truth segmentations. Instead of comparing directly the given segmenta-
tion to the ground truths, we assume that if a segmentation is “good”,
it can be constructed by pieces of the ground truth segmentations. Then
for a given segmentation, we construct adaptively a new ground truth
which can be locally matched to the segmentation as much as possible
and preserve the structural consistency in the ground truths. The quality
of the segmentation can then be evaluated by measuring its distance to
the adaptively composite ground truth. To the best of our knowledge,
this is the first work that provides a framework to adaptively combine
multiple ground truths for quantitative segmentation evaluation. Experi-
ments are conducted on the benchmark Berkeley segmentation database,
and the results show that the proposed method can faithfully reflect the
perceptual qualities of segmentations.

Keywords: Image segmentation evaluation, ground truths, image seg-
mentation

1 Introduction

Image segmentation is a fundamental problem in computer vision. Over the past
decades, a large number of segmentation algorithms have been proposed with the
hope that a reasonable segmentation could approach the human-level interpreta-
tion of an image. With the emergence and development of various segmentation
algorithms, the evaluation of perceptual correctness on the segmentation output
becomes a demanding task. Despite the fact that image segmentation algorithms
have been, and are still being, widely studied, quantitative evaluation of image
segmentation quality is a much harder problem and the research outputs are
much less mature.
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Human beings play an essential role in evaluating the quality of image seg-
mentation. The subjective evaluation has been long regarded as the most reliable
assessment of the segmentation quality. However, it is expensive, time consuming
and often impractical in real-world applications. In addition, even for segmenta-
tions which are visually close, different human observers may give inconsistent
evaluations. As an alternative, the objective evaluation methods, which aim to
predict the segmentation quality accurately and automatically, are much more
expected.

The existing objective evaluation methods can be classified as ground-truth
based ones and non-ground-truth based ones. In non-ground-truth based meth-
ods, the empirical goodness measures are proposed to meet the heuristic criteria
in the desirable segmentations. Then the score is calculated based on these cri-
teria to predict the quality of a segmentation. There have been examples of
empirical measures on the uniformity of colors [1, 2] or luminance [3] and even
the shape of object regions [4]. Since the criteria are mainly summarized from
the common characteristics or semantic information of the objects (e.g., ho-
mogeneous regions, smooth boundaries, etc.), they are not accurate enough to
describe the complex objects in the images.

The ground-truth based methods measure the difference between the seg-
mentation result and the human-labeled ground truths. They are more intuitive
than the empirical based measures, since the ground truths can well represent
the human-level interpretation of an image. Some measures in this category aim
to count the degree of overlapping between regions with strategies of being intol-
erant [5] or tolerant [6] to region refinement. In contrast to working on regions,
there are also measures [7, 8] matching the boundaries between segmentations.
Considering only the region boundaries, these measures are more sensitive to
the dissimilarity between the segmentation and the ground truths than the re-
gion based measures. Some other measures use non-parametric tests to count
the pairs of pixels that belong to the same region in different segmentations.
The well-known Rand index [9] and its variants [10, 11] are of this kind. So far,
there is no standard procedure for segmentation quality evaluation due to the
ill-defined nature of image segmentation, i.e., there might be multiple acceptable
segmentations which are consistent to the human interpretation of an image. In
addition, there exists a large diversity in the perceptually meaningful segmen-
tations for different images. The above factors make the evaluation task very
complex.

In this work, we focus on evaluating segmentation results with multiple
ground truths. The existing methods [5–11] of this kind prefer matching the
given whole segmentation with ground truths for evaluation. However, the avail-
able human-labeled ground truths are only a small fraction of all the possible
interpretations of an image. The available dataset of ground truths might not
contain the desired ground truth which is suitable to match the input segmen-
tation. Hence such kind of comparison often leads to a certain bias on the result
or is far from the goal of objective evaluation.
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Fig. 1. A composite interpretation between the segmentation and the ground truths -
the basic idea. (a) is a sample image and (b) is a segmentation of it. Different parts
(shown in different colors in (c)) of the segmentation can be found to be very similar
to parts of the different human-labeled ground truths, as illustrated in (d).

We propose a new framework to solve the problem. The basic idea is illus-
trated in Fig.1. Fig. 1(b) shows a possible segmentation of the image in Fig. 1(a),
and it is not directly identical to any of the ground truths listed in Fig. 1(d).
However, one would agree that Fig. 1(b) is a good segmentation, and it is similar
to these ground truths in the sense that it is composed of similar local struc-
tures to them. Inspired by this observation, we propose to design a segmentation
quality measure which could generalize the configurations of the segmentation
and preserve the structural consistency across the ground truths. We assume
that if a segmentation is “good”, it can be constructed by pieces of the ground
truths. To measure the quality of the segmentation, a composite ground truth
can be adaptively produced to locally match the segmentation as much as possi-
ble. Note that in Fig. 1(c), the shared regions between the segmentation and the
ground truths are typically irregularly shaped; therefore the composition is data
driven and cannot be predefined. Also, the confidence of selected pieces from the
ground truths will be examined during the process of comparison. Less reliance
should be given on the ambiguous structures, even if they are very similar to the
segmentation. In the proposed measure, we will integrate all these factors for
a robust evaluation. Fig. 2 illustrates the flowchart of the proposed framework.
Firstly a new composite ground truth is adaptively constructed from the ground
truths in the database, and then the quantitative evaluation score is produced
by comparing the input segmentation and the new ground truth.

Researchers have found that human visual system (HVS) is highly adapted
to extract structural information from natural scenes [14]. As a consequence,
a perceptually meaningful measure should be error-sensitive to the structures
in the segmentations. It is also known that human observers may pay different
attentions to different parts of the images [6, 8]. The different ground truths
segmentations of an image therefore present different levels of details of the
objects in the image. This fact makes them rarely identical in the global view,
while more consistent in the local structures. For this reason, the evaluation of
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Fig. 2. Flowchart of the proposed segmentation evaluation framework.

image segmentation should be based on the local structures, rather than only the
global views. The standard similarity measures, such as Mutual Information [13],
Mean Square Error (MES) [14], probabilistic Rand index [9] and Precision-Recall
curves [8], compare the segmentation with the whole ground truths, producing a
matching result based on the best or the average score. Since the HVS tends to
capture the local structures of images, these measures cannot provide an HVS-
like evaluation on the segmentation. The idea of matching images with composite
pieces has been explored in [15–17], where there is no globally similar image in
the given resource to exactly match the image in query. These methods pursue
a composition of given images which is meaningful in the perception of vision.
In contrast, in this paper we propose to create a new composition that is not
only visually similar to the given segmentation, but also keeps the consistency
among the ground truths. The construction is automatically performed on the
boundary maps instead of the original images. To the best of our knowledge, the
proposed work is the first one that generalizes and infers the ground truths for
segmentation evaluation.

The rest of paper is organized as follows. Section 2 provides the theoreti-
cal framework of constructing the ground truth that is adaptive to the given
segmentation. A segmentation evaluation measure is consequently presented in
Section 3. Section 4 presents experimental results on 500 benchmark images.
Finally the conclusion is made in Section 5.

2 The adaptive composition of ground truth

2.1 Theoretical framework

Many problems in computer vision, such as image segmentation, can be taken
as a labeling problem. Consider a set of ground truths G = {G1, G2, . . . , GK}
of an image X = {x1, x2, . . . , xN}, where Gi = {gi

1, g
i
2, . . . , g

i
N} denotes a la-

beling set of X, i = 1, . . . ,K, and N is the number of elements in the image
(e.g., pixels, regions). Let S = {s1, s2, . . . , sN} be a given segmentation of X,
where sj is the label of xj (e.g., boundary or non-boundary), j = 1, . . . , N . To
examine the similarity between S and G, we compute the similarity between
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S and a new ground truth G∗, which is to be generated from G based on S.
Denote by G∗ = {g∗1 , g∗2 , . . . , g∗N} the composite ground truth. We construct G∗

by putting together pieces from G, i.e., each piece g∗j ∈ {g1
j , g

2
j , . . . , g

K
j }. Clearly,

one primary challenge is how to reduce the artifact in the process of selecting
and fusing image pieces. The pieces of the composite ground truth should be
integrated seamlessly to keep the consistency of image content. Thus, our prin-
ciple to choose these pieces can be summarized as: each one of g∗j should be
most similar to its counterpart in S with the constraint of structural consistency
across the ground truths. Once G∗ is constructed, the quality of segmentation
S can be evaluated by calculating the similarity between S and G∗.

G∗ is a geometric ensemble of local pieces from G. We adopt an optimistic
strategy to choose the elements of G∗, by which S will match G as much as
possible. G∗ can then be taken as a new segmentation of X by assigning a
label to each pixel. Meanwhile, g∗j contains the information of the corresponding
location in the K ground truths. To construct such a G∗, we introduce a label
lgj

(l = 1, . . . ,K) to each g∗j in G∗. Fig. 3 uses an example to illustrate how to
construct the new ground truth G∗. We can see that, given two ground truth
images G1 and G2, G∗ is found by firstly computing the optimal labeling set
for the ground truths. Then elements of G∗ which are labeled as 1 (or 2) will
take their values from G1 (or G2). This leads to a maximum-similarity-matching
between S and G∗.

Fig. 3. An example of adaptive ground truth composition for the given segmentation S.
G1 and G2 are two ground truths by human observers. The optimal labeling {lG1 , lG2}
of G1 and G2 produces a composite ground truth G∗, which matches the S as much
as possible.

Given a set of labels L and a set of elements in G, to construct the segmen-
tation G∗ a label lg ∈ L needs to be assigned to each of the elements g ∈ G.
The label set could be an arbitrary finite set such as L = {1, 2, . . . ,K}. Let
l = {lg|lg ∈ L} stand for a labeling, i.e., label assignments to all elements in G.
We could formulate the labeling problem in terms of energy minimization, and
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then seek for the labeling l that minimizes the energy. In this work, we propose
an energy function that follows the Potts model [18]:

E(l) =
∑

j

D(lgj ) + λ ·
∑

{gj ,gj′}∈M

u{gj ,gj′} · T (lgj 6= lgj′ ) (1)

There are two terms in the energy function. The first term D(lgj
) is called

the data term. It penalizes the decision of assigning lgj
to the element gj , and

thus can be taken as the measure of difference. Suppose that the normalized
distances between the ground truths and the segmentation S is ∆d(sj , gj), we
can define:

D(lgj ) = ∆d(sj , gj) (2)

The second term u{gj ,gj′}·T (lgj 6= lgj′ ) indicates the cost of assigning different
labels to the pair of elements {gj , gj′} in G∗. M is a neighborhood system, and
T is an indicator function:

T (lgj
6= lgj′ ) =

{
1 if lgj 6= lgj′

0 otherwise
(3)

We call u{gj ,gj′} ·T (lgj 6= lgj′ ) the smoothness term in that it encourages the
labeling in the same region have the same labels. In this way, the consistency
of neighboring structures can be preserved. It is expected that the separation of
regions should pay higher cost on the elements whose label is agreeable by few
ground truths, while lower cost on the reverse. Thus we can define u{gj ,gj′} in
the expression:

u{gj ,gj′} = min{∆dj ,∆dj′} (4)

where ∆dj is the average distance between g∗j and {g1
j , g

2
j , . . . , g

K
j }.

In Eq. (1), the parameter λ is used to control the relative importance of
the data term versus the smoothness term. If λ is very small, only the data
term matters. In this case, the label of each element is independent of the other
elements. If λ is very large, all the elements will have the same label. In the
implementation, λ is set manually and its range for different images does not
vary a lot (from 20 to 100), which is similar to many graph cut based works.

Minimization of Eq.(1) is NP-hard. We use the effective expansion-moves/swap-
moves algorithm described in [19] to solve it. The algorithm aims to compute the
minimum cost multi-way cuts on a defined graph. Nodes in the graph are con-
necting to their neighbors by n-links. Each n-link is assigned a weight u{gj ,gj′}
defined in the energy function Eq.(1). Suppose we have K ground truths, then
there will be K virtual nodes in the graph, representing the K labels of these
ground truths. Each graph node connects to the K virtual nodes by t-links.
We weight the t-links as D(lgj

) to measure the similarity between the graph
nodes and the virtual nodes. The K-way cuts will divide the graph into K parts,
and bring a one-to-one correspondence to the labeling of the graph. Fig.4 shows
an example, where red lines are the graph cuts computed by the expansion-
moves/swap-moves algorithm. Labeling of the graph is accordingly obtained
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(shown in different colors). Finally, we copy the segmented pieces of regions
from each ground truth to form the new ground truth G∗ that is driven by the
given segmentation S.

Fig. 4. An example of the construction of G∗. It is produced by the copies of selected
pieces (shadow areas) in the ground truths.

2.2 The definition of distance

The distance ∆d , which is used in Eq. (2) and Eq. (4), needs to be defined to op-
timize the labeling energy function Eq. (1). Although many distance measures
have been proposed in the existing literature, it is not a trivial work to per-
form the matching between the machine’s segmentation and the human-labeled
ground truths. For ground truth data, due to the location errors produced in
drawing process, boundaries of the same object might not be fully overlapped.
This is an inherent problem for human-labeled ground truths. In Fig.5, we show
an example of boundary distortions in different ground truths. If simply match-
ing pixels between the segmentation S and ground truths G, S will probably
be over-penalized by the unstable and slightly mis-localized boundaries in G.
Moreover, different segmentation algorithms may produce the object boundaries
in different widths. For example, if we take the border pixels in both sides of the
adjacent regions, the boundaries will appear in a two-pixel width. To match the
segmentation appropriately, the measure should tolerate some acceptable defor-
mations between different segmentations. The work in [20] solves this problem by
matching the boundaries under a defined threshold. However, since their method
involves a minimum-cost perfect matching of the bipartite graph, it might be
limited to performing on the boundaries only.

As an alternative, we consider the structural similarity index CW-SSIM pro-
posed by Sampat et al. [21]. It is a general purpose image similarity index which
benefits from the fact that the relative phase patterns of complex wavelet coef-
ficients can well preserve the structural information of local image features, and
rigid translation of image structures will lead to constant phase shift. CW-SSIM
overcomes the drawback of its previous version SSIM [15] in that it does not
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Fig. 5. An example of distorted boundaries among different human-labeled ground
truths. Ground truths are drawn into the same image, where the whiter boundaries
indicate that more subjects marked as a boundary. (Taken from the Berkeley Dataset
[6].)

require the precise correspondences between pixels, and thus becomes robust to
the small geometric deformations during the matching process. Therefore, we
adopt the principle of CW-SSIM and slightly modify it into a new one called
G-SSIM, which uses the complex Gabor filtering coefficients of an image instead
of the steerable complex wavelet transform coefficients used in [21]. Specifically,
the Gabor filtering coefficients are obtained by convolving the segmentation with
24 Gabor kernels, which are on 3 different scales and along 8 different directions,
respectively. As a result, the G-SSIM on each Gabor kernel is defined as:

H(cs, c′s) =
2
∑N

i=1 |cs,i||c∗s′,i|+ α∑N
i=1 |cs,i|2 +

∑N
i=1 |cs′,i|2 + α

·
2|
∑N

i=1 cs,ic
∗
s′,i|+ β

2
∑N

i=1 |cs,ic∗s′,i|+ β
(5)

where cs and c′s are the complex Gabor coefficients of two segmentations s and
s′, respectively. |cs,i| is the magnitude of a complex Gabor coefficient, and c∗ is
the conjugate of c. α and β are small positive constants to make the calculation
stable.

It is easy to see that the maximum value of G-SSIM is 1 if cs and c′s are
identical. Since the human labeling variations cause some technical problems in
handling the multiple ground truths. The wavelet measure we used can better
solve this problem. It can well preserve the image local structural information
without requiring the precise correspondences between pixels and is robust to
the small geometric deformations during the matching process. Now we define
the distance ∆d as:

∆d(cs, c′s) = 1−H(cs, c′s) (6)

where H(cs, c′s) is the average value of G-SSIM by 24 Gabor kernels. Notice
that although the value of ∆d is defined on each pixel, it is inherently decided
by the textural and structural properties of localized regions of image pairs.
With the distance ∆d defined in Eq. (6), we can optimize Eq. (1) so that the
composite ground truth G∗ for the given segmentation S can be obtained. Fig.
6 shows three examples of the adaptive ground truth composition. It should be
noted that the composite ground truth does not have to contain the closed form
of boundary, since it is designed to work in conjunction with the benchmark
criterion (in Sec. 3).
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Fig. 6. Examples of the composite ground truth G∗. (a) Original images. (b)-(e) Human
labeled ground truths. (f) Input segmentations of images by the mean-shift algorithm
[22]. (g) The composite ground truth G∗.

3 The measure of segmentation quality

Once the composite ground truth G∗ that is adaptive to S is computed, the prob-
lem of image segmentation quality evaluation becomes a general image similarity
measure problem: given a segmentation S, how to calculate its similarity (or dis-
tance) to the ground truth G∗. Various similarity measures can be employed,
and in this section we present a simple but effective one.

In the process of constructing the ground truth, we have allowed for some rea-
sonable deformations of the local structures of S. When the distance ∆d(sj , g

∗
j )

between sj and g∗j is obtained, the distance for the whole segmentation can
be calculated as the average of all ∆d(sj , g

∗
j ). However, the confidence of such

evaluation between sj and g∗j also needs to be considered, due to the fact that
less reliance should be given on the ambiguous structures, even if they are very
similar to the segmentation. For this purpose, we introduce Rsj

as the empir-
ical global confidence of g∗j w.r.t. G. For example, we can estimate Rsj

as the
similarity between g∗j and {g1

j , g
2
j , . . . , g

K
j }, and there is:

Rsj
= 1−∆dj (7)

where ∆dj is the average distance between between g∗j and {g1
j , g

2
j , . . . , g

K
j }.

In Eq.(7), Rsj achieves the highest value 1 when the distance between g∗j and
{g1

j , g
2
j , . . . , g

K
j } is zero and achieves the lowest value zero when the situation is

reversed. Since Rsj
is a positive factor for describing the confidence, the simi-

larity between sj and g∗j should be normalized to [-1,1] such that the high con-
fidence works reasonably for both of the good and bad segmentations. If there
are K instances in G and all of them contribute to the construction of G∗, we
can decompose S into K disjointed sets {S0, S1, . . . , SK}. Based on the above
considerations, the measure of segmentation quality is defined as:

M(S,G) =
1
N

K∑
i=1

∑
sj∈Si

(1− 2∆d(sj , g
∗
j )) ·Rsj (8)
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We can see that the proposed quality measure ranges from -1 to 1, which
is an accumulated sum of similarity provided by the individual elements of S.
The minimum value of ∆d(sj , g

∗
j ) is zero when sj is completely identical to the

ground truths g∗j ; in the meanwhile, if all the ground truths in G are identical,
Rsj

will be 1 and then M(S,G) will achieve its maximum value 1. Note that
the measure is decided by both the distances ∆d(sj , g

∗
j ) and Rsj . If S is only

similar/dissimilar to G∗ without a high consistency among the ground truths
data {g1

j , g
2
j , . . . , g

K
j }, M(S,G) will be close to zero. This might be a common

case for images with complex contents, where perceptual interpretation of the
image contents is diverse. In other words, Rsj

enhances the confident decisions
on the similarity/dissimilarity and therefore preserves the structural consistency
in the ground truths.

4 Experiments

In this section, we conduct experiments to validate the proposed measure in com-
parison with the commonly used F-measure [20] and the Probabilistic Rand (PR)
index [11] on a large amount of segmentation results. The code of our method
is available at http://www4.comp.polyu.edu.hk/~cslzhang/SQE/SQE.htm. It
should be stressed that the proposed method is to evaluate the quality of an in-
put segmentation, yet it is possible to adopt the proposed method into a system
for segmentation algorithm evaluation.

The F-measure is mainly used in the boundary-based evaluation [20]. Specif-
ically, a precision-recall framework is introduced for computing this measure.
Precision is the fraction of detections that are true positives rather than false
positives, while recall is the fraction of true positives that are detected rather
than missed. In the context of probability, precision corresponds to the probabil-
ity that the detection is valid, and recall is the probability that the ground truth
is detected. In the presence of multiple ground truths, a reasonable combination
of the values should be considered. In [20] only the boundaries which match no
ground truth boundary are counted as false ones. The precision value is averaged
among all the related ground truths. A combination of the precision and recall
leads to the F-measure as below:

F =
PR

τR+ (1− τ)P
(9)

where τ is a relative cost between precision (P ) and recall (R). We set it to be
0.5 in the experiments.

The PR index [11] examines the pair-wise relationships in the segmentation.
If the label of pixels xj and xj′ are the same in the segmentation image, it
is expected that their labels to be the same in the ground truth image for a
“good” segmentation and vice versa. Denote by lsj the label of pixel xj in the
segmentation S and by lGj the corresponding label in the ground truth G. The
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PR index for comparing S with multiple ground truths G is defined as:

PR(S,G) =
1(
N
2

) ∑
j,j′

j≺j′

[I(lSj = lSj′)pj,j′ + I(lSj 6= lSj′)(1− pj,j′)] (10)

where pj,j′ is the ground truth probability that I(lSj = lSj′). In practice, pj,j′ is
defined as the mean pixel-pair relationship among the ground truths:

pj,j′ =
1
K

∑
I(lGi

j = lGi

j′ ) (11)

According to the above definitions, the PR index ranges from 0 to 1, where a
score of zero indicates that the segmentation and the ground truths have opposite
pair-wise relationships, while a score of 1 indicates that the two have the same
pair-wise relationships.

Fig. 7. Example of measure scores for different segmentations. For each original image,
5 segmentations are obtained by the mean-shift algorithm [22].The rightmost column
shows the plots of scores achieved by F-measure (in blue), PR index (in green) and our
method (in red).

For segmentation algorithm, different parameter settings will lead to segmen-
tations of different granularities. In Fig.7, different segmentations of the given
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images are produced by the mean-shift method [22]. From the plots of scores
(in the rightmost column) we can see that the proposed measure produces the
closest results to the human perception. In contrast, both of F-measure and
PR index wrongly find the best segmentation results (in 2nd, 3rd, 5th and 6th

rows) or reduce the range of scores (in 1st and 4th rows). The success of the
proposed measure comes from the adaptive evaluation of the meaningful struc-
tures in different levels. However, from the definition of F-measure [20] we can
see that the highest value of recall is achieved when a segmentation contains
all the boundaries in the ground truths. This strategy is not very intuitive in
practical applications. The PR index [11] suffers from issues such as reducing the
dynamic range and favoring of large regions. These drawbacks can be observed
in the examples in Fig. 7.

Next, we examine the overall performance of the proposed measure on 500
natural images from the Berkeley segmentation database [6]. We apply three
segmentation techniques, mean-shift (MS) [22], normalized cut (NC) [23] and
efficient-graph based algorithm (EG) [12], to produce segmentations on these
images. For each image, we tune the parameters of the used segmentation method
such that two different segmentations are produced. It was ensured that both the
two produced segmentations are visually meaningful to the observers so that they
can make meaningful judgement. Thus 500 pairs of segmentations are obtained.
Scores of these segmentations are computed by the proposed measure, the F-
measure and the PR index. Then we arranged 10 observers to evaluate these
500 pairs of segmentations by pointing out which segmentation is better than
the other one, or if there is a tie between them. We avoid giving the specific
instructions so the task becomes generalized. We took the answers from the
majority, and if the two segmentations are in a tie, any judgment from the
measure will be taken as correct. In the subjective evaluation results, we have
85 pairs of them being classified as ties.

Table 1 shows the comparison results of the three measures. Each of them
gives 500 results on the pair of segmentations, where our measure has 379 results
which are consistent to the human judgment, while the F-measure and the PR
index have only 333 and 266, respectively. Also we count the number of results
which are only correctly produced by one measure (we call them “winning”
cases). Our measure obtains 114 winning cases, while F-measure and PR index
only obtain 4 and 19, respectively. And there are 16 results which are wrongly
classified by all of the three measures. The proposed measure outperforms the
other two in both of the “consistent” and the “winning” cases. In the meantime,
we can have an interesting observation. Since the F-measure and the PR index
are based on the boundary and the region relationship, respectively, they have
different preferences in the segmentation quality evaluation. The PR index works
better than F-measure in terms of “winning” case but it works the worst in terms
of “consistent” case. This is mainly because the PR index is a region-based
measure, which might compensate for the failure of boundary-based measures.
In the PR index, the parameter pij is based on the ground truths of the image;
however, having a sufficiently large number of valid segmentations of an image is
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often infeasible in practice. As a result, it is hard to obtain a good estimation of
this parameter. Moreover, one can conclude that this limitation of ground truth
segmentations in existing databases makes the proposed adaptive ground truth
composition based segmentation evaluation method a more sensible choice.

Table 1. The number of results which are consistent to the human judgment, as well
as the numbers of “winning” cases and failure cases by competing methods.

Consistent Winning Failure

F-measure 333 4
16PR index 266 19

Ours 379 114

5 Conclusions

In this paper, we presented a novel framework for quantitatively evaluating the
quality of image segmentations. Instead of directly comparing the input segmen-
tation with the ground truth segmentations, the proposed method adaptively
constructs a new ground truth from the available ground truths according to
the given segmentation. In this way, it becomes more effective and reasonable to
measure the local structures of the segmentation. The quality of the given seg-
mentation can then be measured by comparing it with the adaptively composite
ground truth. From the comparison between the proposed measure and two other
popular measures on the benchmark Berkeley database of natural images, we can
see that the proposed method better reflect the perceptual interpretation on the
segmentations. Finally, we compared the measures on 1000 segmentations of 500
natural images. By counting the number of segmentations that are consistent to
the human judgment, it was shown that the proposed measure performs better
than the F-measure and PR index. The proposed method can be extended to
get closed contours for composition, and this will be our future work.
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