Log-Euclidean Kernels for Sparse Representation and Dictionary Learning
Peihua Lit, Qilong Wang?, Wangmeng Zuo3+4, Lel Zhang*

IDalian University of Technology, ?Heilongjiang University, 3Harbin Institute of Technology, 4The Hong Kong Polytechnic University

e [NTTOAUCTHION = o s e s s s

r———

Background

Key ldea

fmm=—=

Recently there are growing interests in studying sparse
representation (SR) and dictionary learning (DL) of
symmetric positive definite (SPD) matrices.

The space of n-by-n SPD matrices S S,
IS not a linear space but a Lie group

that forms a Riemannian manifold.
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Comparison of State-of-the-arts on SRand DL in S;

Method Representation given atoms Riemannian Metric? Riemannian atom update? Mercer’s condition?
TSC [ECCV10,ICCV1l] Linear in Euclidean space No-LogDet divergence No-Euclidean N/A

GDL [ECML12] Linear in Euclidean space No-Frobenius norm No-Euclidean N/A
LogE-SR [ACCV 10] Linear in Log-domain Yes No-Euclidean N/A

RSR [ECCV 12] Linear in RKHS Approximation-Stein divergence No-Euclidean Satisfy-conditionally
Proposed method Linear in RKHS Yes Yes-Riemannian Satisfy
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= Corollary  With two operations @and & , the function from the product f(S oS XX ):Z
- space of S_ to the space R of real number \1_'_;'\' U ' M =

Previous work fails to exploit the geometry of S, using the Euclidean norm or Bregman divergence to evaluate the reconstruction error.
The dictionary atoms are updated without taking account of the geometric structure of S+ .

Linear decomposition makes sense in high- or infinite-dimensional RKHS In [Harandi et al. ECCV 12]; however, the Stein divergence is
only an approximation of Riemannian metric and satisfy Mercer’s condition under some restricted conditions.
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| for SPD Matrices
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Our work is inspired by
[Harandi et al. ECCV 12]
and is also kernel-based.
We develop a family of
kernel functions based
on the Log-Euclidean
framework .

The main differences:

» Characterizing the
geodesic distance
and so accurately
measuring the
reconstruction error,;
Satisfying Mercer’s
condition under
broad conditions;
DL that consider
geometric structure
of S, .
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Dictionary Sparse code

SPD matrices

(S, T),, = tr(log(S)log(T))
IS an inner product.
> <-,->Iogsatisfies the properties of symmetry, linearity, & non-negativity.
>The induced norm HSHIOg = (S, S>|1;ann be used to define the distance
that equals to the geodesic distance.
> S is complete.
> (S,T),, . =1tr(log(S)Alog(T)) isaninner product as well,
where A is a SPD matrix.

*, A®S=exp(ilog(s))=s* S@T =exp(log(S) + log(T)).
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Let p, be a polynomial of degree
n21 with positive coefficients, we
have p.d. kernels

Atoms update

S, = exp[log(sr )+d, 'Og(_ g(a%SJD

2 ﬁsrl(i X, x(S,, Y, Nlog(s,)—log (YE)I
335, x, (log(s, ) 1og(s,)

of
Log-E poly. kernel A (S, T) = P, (<S, T>,Og) oS

Log-E exp. kernel 7, (S, T) = exp (pn (<S, T>|og ))
Log-E Gaussias, (S, T) = exp(— tr((log(S) — log(T))
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(1) In the Log-Euclidean framework, we disclosed S, is a complete _ S
*  inner product space, and developed a broad family of p.d. kernels. = - (1) The residual error approach for C'ass'f'cat'O”:N )
- > Characterize the geodesic distance between SPD matrices. label () = min & (¥) &(Y)=[#(Y)-> xS ;)@(1)1 I
= » Satisfy the Mercer’s condition in general conditions. i o N Ny
- . . ) - 5,(j)=1if jeclass i;otherwise 5,(j)=0.
. (2) chtlonary atoms are updated in Rlemqnnlan Space. = (2) We learn the sparse codes obtained from the predefined atom matrices are used for
: (3) Experiments have shown the superiority of our method to  state- classification with the nearest neighbor classifier or support machine vector (SVM). I
" of-the-arts. .
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Reference V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Geometric means in a novel vector
symmetric positive-definite matrices. SIAM J. on Matrix Analysis and Applications, 2006.

space structure on M. T. Harandi, C. Sanderson, R. Hartley, and B. C. Lovell. Sparse coding and dictionary

learning for symmetric positive definite matrices: a kernel approach. In ECCV(2), 2012.
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Classification rates on nine mosaics from the Brodatz dataset.

Parameters Evaluation
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Parameters Evaluation on the FERET face dataset.
The classification rates of RSR that uses the Stein kernel [Harandi et al. ECCV 12] are shown as baseline (red dash-dotted line).
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bd be bf bg . ba bj bk
Average rates on all st B 5d BA BS : A A e Taining
- - samples L -y =Y . 15l & =, samples
nine mosaics are ; |
0.66, 0.81, 0.87, SRC  GSRC LogE-SR TSC  RSR Log-E Kernel
and 0.92 for LogE- [PAMI  [ECCV  [ACCV  [ECCV [ECCV
Kon  Ken  Kq
SR, TSC, RSR, and 09] Y % 1o 12]
Log-E Kernel, bg 26.0 79.0 46.5 44.5 86.0 92.0 915 945
respectively b 61.0 97.0 91.0 735 975 100 995 100
2 B LosE-SR [0.35] be 55.5 93.5 81.0 73.0 965 99.0 99.0 99.0
I TSC [25]
1 EIRSR [10] bd 275 77.0 34.5 36.0 795 885 880 915
I 1 o2—E Kernel
e o ¢ ThP i3] il B R [EQ ave. 425 86.6 63.3 56.8 809 949 945 96.3

Comparison with state-of-the-arts on the FERET database

Dictionary Learning

;—;gfﬂl Num. of atoms 32 64 128
Random dictionary  44.80+0.90 57.64+0.59 62.25+0.65
P i 5 7 i = LogE K-means 67.69+0.56 76.25+0.48 78.80+0.53
Number of atoms L
Dictionary 75.84+0.64 79.27%+0.65 80.92+0.44
learning

Texture Classification on the Brodatz dataset
Scene Classification on the Scenel5 dataset
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