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The rapid rise of AI applications has driven datacenters to unprecedented

energy demands, which has prompted major tech companies to adopt on-

site nuclear power plants (NPPs) alongside grid electricity. While existing

research focuses on off-site NPPs in multi-energy systems optimized for

investment returns, recent advances in small modular reactors (SMRs), partic-

ularly load-following SMRs (LF-SMRs), offer flexible, reliable power tailored

for datacenter co-location. However, LF-SMRs are governed by a set of

physical constraints, such as ramp rate and stability limits, making them

unsuitable as fully dispatchable sources. This paper proposes a novel day-

ahead workload scheduling approach that jointly coordinates datacenter

operations and LF-SMR output, explicitly modeling these constraints. We

develop a two-stage formulation that forecasts carbon-free grid energy from

the grid using conformal prediction in the first stage and then optimizes

LF-SMR output and workload scheduling via mixed-integer programming in

the second stage. Evaluation on real workload traces shows that our method

reduces carbon-based energy consumption by up to 43.44% compared to

baselines that omit nuclear integration or ignore SMR limitations.

CCS Concepts: • Social and professional topics → Sustainability; •
Hardware→ Enterprise level and data centers power issues.

Additional Key Words and Phrases: Sustainable computing, Datacenter,

Decarbonization, Nuclear energy, Carbon-aware scheduling

1 INTRODUCTION
We have seen a rapid growth of AI applications in the past decade

[22]. To run these applications, significant computing resources are

needed [28]. GPUs have become more powerful, and increasingly

energy consuming [53]. As an example, the NVIDIA H100 SXM5

has a thermal designed power of 1100 watts, while the forthcoming

next-generation B200 is expected to consume 2000 watts [33].

Datacenters are experiencing unprecedented energy demands

driven by the rapid expansion of AI applications. In particular, the

UnitedNations has advocated for a 24/7 carbon-free energy roadmap,

calling for datacenters to be powered exclusively by carbon-free

energy around the clock [15, 26, 48]. Among the available options,

nuclear energy has emerged as a promising solution due to its

carbon-free nature and improving safety record. For example, nu-

clear power is associated with just 0.07 deaths per terawatt-hour of

electricity produced—significantly lower than lignite, which causes

32.72 deaths per terawatt-hour due to accidents and air pollution
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[16, 17]. In response, major technology companies have begun ac-

quiring nuclear power resources to support their datacenter oper-

ations. Google has signed a clean nuclear energy agreement and

plans to launch its first nuclear reactor by 2030 [20]; Meta issued a

request for proposals in 2024 for up to 4 GW of new nuclear capacity

to come online in the early 2030s [1]; and Microsoft has acquired

and reopened the nuclear power plant at Three Mile Island [32].

Traditionally, nuclear power plants (NPPs) have been studied in

the context of electricity markets and multi-energy system opera-

tion/dispatch, where they serve as stable, large-scale energy sources

[31]. In multi-energy systems, NPPs can co-generate heat and elec-

tricity for district use [39, 41], while other studies explore NPPs in

energy markets for providing electricity, reserve services, and ther-

mal products [40, 47]. These works typically focus on investment-

level planning and evaluate reactor capacities, technologies, and

long-term returns on investment. For example, one recent study

optimized multi-year NPP investment strategies for powering data-

centers [44].

Advancements in nuclear technologies have led to the devel-

opment of small modular reactors (SMRs), which offer enhanced

safety, flexibility, and load-following capabilities. In particular, load-

following SMRs (LF-SMRs) can adjust power output dynamically in

response to real-time demand, making them ideal for co-location

with datacenters [4, 11]. However, operating LF-SMRs alongside

datacenters requires careful coordination at the operational level,

as their dynamic response is constrained by physical limitations.

Specifically, LF-SMRs cannot be treated as on-demand, immediately

dispatchable energy sources due to the following two constraints:

(1) the ramp-rate restriction, which limits the rate at which the

reactor can change its power output, and (2) the stable power period

restriction, which mandates that once the reactor reduces output, it

must maintain a stable level for a minimum duration (typically 2

to 9 hours) before ramping back up [19]. Moreover, excess energy

generation from the LF-SMR can result in inefficient curtailment

penalties, as unused nuclear energy imposes grid stability and eco-

nomic challenges [8]. These operational constraints unfold on an

hourly timescale, aligning with the temporal dynamics of renewable

energy availability and datacenter workload shifting in day-ahead

planning.

To address the critical challenge of coordinating datacenter oper-

ations with on-site nuclear generation, this paper presents a novel

approach for the day-ahead co-optimization of datacenter workloads

and LF-SMR output. We focus on a representative scenario where

a datacenter is connected to the bulk power grid, which provides
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Fig. 1. The framework of DCSMR
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Fig. 2. An LF-SMR

a mix of carbon-free (e.g., solar, wind) and carbon-based (e.g., coal,

oil) energy sources (see Fig. 1). To ensure a cleaner energy supply,

datacenters often establish power purchase agreements (PPAs) that

define the share and type of carbon-free electricity they receive

from the grid [5, 12]. Within the datacenter, workloads are classified

into inflexible tasks (e.g., real-time inference) and flexible tasks (e.g.,

model training), enabling intelligent scheduling decisions. By fore-

casting the availability of carbon-free renewable energy under the

PPA, the datacenter constructs day-ahead workload plans that shift

flexible workloads to periods with greater clean energy availability

[3, 50]. This carbon-aware scheduling paradigm is already being

practiced at scale by companies such as Google [14, 38].

Our proposed approach extends the state-of-the-art carbon-aware

workload planning by explicitly incorporating the physical and op-

erational constraints of LF-SMRs, enabling datacenters to better

align their sustainability goals with the realities of nuclear energy

generation. To achieve this, we formulate a Day-ahead Datacen-
ter Workload Planning with LF-SMR (DCSMR-Plan) problem,

which models both the ramp-rate and stable power period restric-

tions inherent to LF-SMR operation, as well as the stochastic nature

of carbon-free energy availability from the grid. We develop a two-

stage solution framework that integrates a conformal prediction-

based optimization module for managing uncertainty and a mixed-

integer programming module for operational decision-making. Our

method guarantees compliance with a user-defined cap on the com-

bined share of renewable and nuclear carbon-free energy with sta-

tistical confidence. This capability empowers datacenter operators

to meet decarbonization targets with measurable assurance, offer

carbon-free computation as a quantifiable service metric, and man-

age carbon credit purchases more strategically and cost-effectively.

We evaluate our model and algorithm using the Google data-

center trace [43]. The trace has the power utilization information

for 57 server clusters (the so-called power domains) within Google

datacenters in May 2019. The proposed model and algorithm are

compared to DC-Plan, which does not account for on-site SMRs,

and DCSMR-PA, which does not consider SMR restrictions. The re-

sults show that our DCSMR-Plan outperforms DC-Plan in reducing

carbon-based energy by up to 43.33% and DCSMR-PA by 30.32%.

Additionally, when compared to the deterministic methods that do

not account for prediction errors in renewable energy, our algorithm

shows an improvement of 8.83%.

2 BACKGROUND AND RELATED WORK
Background on Nuclear Energy Generation: Fig. 2 shows an
LF-SMR. The pressurizer has a reactor core, where nuclear fission

takes place. In the nuclear fission, neutrons collides with nuclear

fuel, such as uranium-235. This operation produces heat and the

heat generates steam, which then drives a steam turbine to produce

electricity. LF-SMR operations have restrictions.

First, the change of energy generation, i.e., the ramp rate of the
reactor, has a limit. In the reactor core, control rods regulate the

rate of nuclear fission with nuclear fuel. Inserting or withdrawing

a control rod results in a power decrease or increase. This can

lead to an immediate decrease or increase in the fuel temperature.

Consequently, the fuel pellets contract or expand. Rapid changes

in the core power can impose substantial thermal and mechanical

stresses on the fuel pellets and cladding, potentially causing fuel

cracking and cladding failure [21, 30]. Therefore, the ramp rate of

the core power change is limited to ensure that these stresses remain

within the design tolerances of the fuel assemblies.

Second, when the LF-SMR starts decreasing its power generation,

there is a stable power period before the power generation can in-

crease. This is because the Xe-135 concentration is influenced by the

decay chain of I-135 and Xe-135. After a reactor reduces its power

generation, the rate of xenon buildup exceeds its decay, causing the

Xe-135 concentration to increase for several hours and then gradu-

ally decline to a new equilibrium (the half-life of I-135 is 6.6 hours

and Xe-135 is 9.2 hours) [45]. To address this, SMRs allow sufficient

time for operators to implement reactivity changes to compensate

for the xenon transient [34, 35].

Related Work: Taking SMRs as energy sources, recent studies

have developed new models and optimizations on the electricity

market [40], electricity-hydrogen integrated energy system [39]

[18], electricity-heating multi-energy systems [41], etc. The primary

objective is to minimize the energy generation costs of the power

systems. Results show that SMRs can benefit power systems with

greater revenue in providing electricity, thermal energy, and reserve

services. One recent work on datacenters [44] studies appropriate

SMRs for the optimal return of investment. It shows that, among

various nuclear technologies, small modular reactors (SMRs) exhibit

superior economic performance compared to large-scale nuclear

power plants. Existing studies are less concerned on the operation

level of SMRs. With on-site SMRs co-located with datacenters, new

models and algorithms need to be developed.

Carbon-aware and energy-aware datacenters have attracted a lot

of studies [2, 14]. There are studies on runtime optimization or day-

ahead optimization. Runtime optimization minimizes the carbon by

workload assignment [9, 10], frequency scaling [13], power capping

[36], geographical server relocation [29], load shifting [2, 24], etc.

These studies are orthogonal to this paper. Day-ahead optimization

conducts workload planning. For example, Google classified inflexi-

ble workloads (e.g., LLM inference) and flexible workloads (e.g., AI

training) and shifted the flexible workloads to the time period with

abundant renewable energy [14, 38]. This paper supplements the

studies in this thread with a new energy source from LF-SMR, and

we develop new models and algorithms to coordinate the day-ahead

operations of LF-SMRs and datacenters.
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3 MODELS AND PROBLEM FORMULATION
This section presents the models that form the basis of our prob-

lem formulation. We develop the operational model and physical

constraints of the LF-SMR in Section 3.1. The datacenter power

supply model is described in Section 3.2. The datacenter power

supplies come from the power grid. A datacenter usually signs a

power purchase agreement (PPA) with the power grid. PPAs have

many contract formats, see details [6, 49]. In this paper, we study a

common format, where the power grid allocates the carbon-free re-

newable power (e.g., solar or wind) generated from a certain project

to the datacenter and supplements the datacenter with carbon-based

energy when there is a shortage.
1
Section 3.3 outlines the datacen-

ter’s workload-driven power demand. The various power-related

costs are presented in Section 3.4. Building upon these models, we

formulate the Day-ahead Datacenter Workload Planning with LF-

SMR Problem in Section 3.5.

3.1 The LF-SMR Model
We nowmodel the power output of an LF-SMR. The power output of

an LF-SMR 𝑝𝑡 in a period 𝑡 depends on the nuclear reaction between

the fuel (U-235) and the control rods [35]. There are the following

states in an LF-SMR: (1) the ramp-up state and the ramp-down

state: the control rods are withdrawn from or inserted into the core,

causing the power output to increase or decrease; (2) the stable state:

the control rods remain stable in the core, and the power output

remains constant. There are maximum rates at which reactors can

adjust their power output, i.e., a ramp-down limit 𝑃𝑅𝐷 and a ramp-

up limit 𝑃𝑅𝑈 . The binary state variables 𝑆𝑡𝑡 ,𝑈𝑝𝑡 , and 𝑅𝑑𝑡 represent

the stable output, ramp-up, and ramp-down states, respectively, and

are governed by the following constraints:

𝑅𝑑𝑡 +𝑈𝑝𝑡 + 𝑆𝑡𝑡 = 1, ∀𝑡, (1)

𝑅𝑑𝑡 ,𝑈 𝑝𝑡 , 𝑆𝑡𝑡 ∈ {0, 1}, ∀𝑡 . (2)

The physical constraints of an LF-SMR can be modeled as follows:

(1) Ramping limits. The ramp-down and ramp-up limits of

power output for an LF-SMR should satisfy Eqs. (3)-(4):

𝑝𝑡−1 − 𝑝𝑡 ⩽ 𝑃𝑅𝐷 × 𝑅𝑑𝑡 − 𝛿 ×𝑈𝑝𝑡 , ∀𝑡, (3)

𝑝𝑡 − 𝑝𝑡−1 ⩽ 𝑃𝑅𝑈 ×𝑈𝑝𝑡 − 𝛿 × 𝑅𝑑𝑡 , ∀𝑡, (4)

where 𝛿 is an auxiliary parameter (very small number, e.g., 1𝑒10−4)
used to force 𝑆𝑡𝑡 = 1 when there is no ramping activity.

(2) Stable power periods. The constraints for stable power peri-
ods should satisfy Eq. (5):

(𝑈𝑝𝑡 −𝑈𝑝𝑡−1) ×𝑇ℎ ⩽
∑︁𝑡−1

𝑡𝑡=𝑡−𝑇ℎ
(𝑆𝑡𝑡 +𝑈𝑝𝑡 ) , ∀𝑡, (5)

where𝑇ℎ denotes the minimum number of hours that the SMR must

remain constrained at a stable output level.

In addition, the output of SMRs should satisfy the minimum and

maximum output limits:

𝑃𝑀𝐼𝑁 ⩽ 𝑝𝑡 ⩽ 𝑃𝑀𝐴𝑋 , ∀𝑡, (6)

1
Carbon-free renewable energy generation exhibits significant hourly and seasonal

supply fluctuations. In most cases, the contracted project with renewable energy cannot

fully cover the demands, while over-subscription may result in inefficient curtailments,

wherein renewable energy generation is deactivated to align supply with demand.

where 𝑃𝑀𝐼𝑁 and 𝑃𝑀𝐴𝑋 represent the minimum and maximum out-

put level of the SMR, respectively.

3.2 The Datacenter Power Supply Model
Datacenters source their electricity from the power grid, which

provides a combination of energy types. At any time 𝑡 , this supply

can be categorized into: (1) carbon-based energy 𝑞𝑡 : This portion is

typically dispatchable, meaning its procurement can be determined

by the datacenter; (2) carbon-free energy 𝑤𝑡 : primarily sourced

from intermittent renewables like solar and wind, this energy is

generated externally and delivered to the datacenter.

There is uncertainty in carbon-free energy delivery [12].
2
This

stochastic nature is captured by modeling the actual carbon-free

energy received,𝑤𝑡 , as:

𝑤𝑡 = (1 + 𝜖𝑡 )𝑊𝑡 , (7)

where𝑊𝑡 denotes the predicted value and 𝜖 represents the uncer-

tainty associated with the prediction error.

The total power supply available to the datacenter from the grid,

𝑔𝑔𝑟𝑖𝑑 , is therefore the sum of these components:

𝑔𝑔𝑟𝑖𝑑,𝑡 = 𝑞𝑡 +𝑤𝑡 . (8)

3.3 The Datacenter Power Demand Model
Datacenter power demand is highly correlated to the workload. We

first model the workloads, and then we derive the power demand

from the workloads. Let the datacenter workloads be 𝑧𝑡 . The work-

load can be divided into different classes according to their temporal

flexibility. We follow the mode in [14]. Let jobs class be 𝑐 ∈ C. 𝑠𝑐,𝑘
is the aggregate load of class 𝑐 jobs submitted at time 𝑘 . Then the

total workload is:

𝑧𝑡 =
∑︁

𝑐∈C

∑︁
𝑘∈H 𝑌𝑘,𝑐,𝑡 · 𝑠𝑘,𝑐 , (9)

where 𝑌𝑘,𝑐,𝑡 ≥ 0 denotes the fraction of the load 𝑠𝑐,𝑘 allocated for

processing at time 𝑡 .

Each class 𝑐 ∈ C has a temporal flexibility parameter ℎ𝑐 ∈ Z≥0.
It represents the maximum delay tolerable for jobs in that class.

Inflexible workloads have ℎ𝑐 = 0. Then the workload planning

problem is formulated as:∑︁
𝑡 ∈T 𝑌𝑘,𝑐,𝑡 ≥ 1, ∀𝑘 ∈ H , 𝑐 ∈ C, (10)

𝑌𝑘,𝑐,𝑡 = 0, ∀𝑘 ∈ H , 𝑐 ∈ C, 𝑡 ∉ Z[𝑘 :𝑘+ℎ𝑐 ] . (11)

Eq. (10) ensures the full allocation of compute loads, while Eq. (11)

enforces temporal flexibility by restricting scheduling to within the

allowable delay window [𝑘, 𝑘 + ℎ𝑐 ].
The power consumption 𝑣𝑡 at time 𝑡 is modeled as follows:

𝑣𝑡 = 𝑒 (𝑧𝑡 ), (12)

where 𝑒 (·) represents the workload-to-energy consumption model,

as described in [38] and [25].

2
There are contracts where the seller guarantees all electricity is renewable. Yet the

electricity price is high and, from the perspective of “greenness", it is at the sacrifice of

other buyers since non-renewable energy is used to cover the insufficiency between

the demands and the renewable energy generation.
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3.4 The Datacenter Power Cost Model
There are three types of costs: (1) the cost associated with the energy

generation from the power grid, (2) the cost associated with the

nuclear energy generation, and (3) the cost associated with the

curtailment of nuclear energy of the LF-SMR.

Energy Purchased Cost. The energy purchased cost accounts

for the expenses associatedwith procuring electricity and the carbon

cost of utilizing carbon-based energy. It is expressed as:

𝐸𝑃𝐶 =
∑︁𝑇

𝑡=1
𝛼𝑞𝑡 + 𝑝𝑐𝑜2𝑞𝑡 𝐼𝑡 + 𝜅𝑤𝑡 , (13)

where 𝛼 and 𝜅 represent the price of carbon-based and carbon-free

energy, respectively. 𝑝𝑐𝑜2 denotes the carbon tax. 𝐼𝑡 is the carbon

intensity of the energy from the grid.

Nuclear Generation Cost. The generation cost associated with

the SMR is formulated as:

𝐸𝐺𝐶 =
∑︁𝑇

𝑡=1
𝛾𝑝𝑡 , (14)

where 𝑝𝑡 represents the nuclear energy generated, and 𝛾 denotes

the generation cost of the SMR.

Energy Excess Cost. If the energy generated by the LF-SMR is

greater than the demands, the excessive energy has to be handled

[37], e.g., by storage, etc., and this brings about a penalty cost.

𝐸𝐶𝐶 =
∑︁𝑇

𝑡=1
𝛽 (𝑝𝑡 − 𝑑𝑡 ), (15)

where 𝑑𝑡 is the energy consumed by the datacenter. 𝛽 denotes the

excess cost per unit.

3.5 Problem Formulation
We now present the Day-ahead Datacenter Workload Planning with

Load-following Small Modular Reactor Problem (DCSMR-Plan).

min𝐸𝑃𝐶 + 𝑁𝐺𝐶 + 𝐸𝐸𝐶 (16)

s.t. (1) − (11), (17)

𝑝𝑡 ⩾ 𝑑𝑡 , ∀𝑡, (18)

𝑔𝑔𝑟𝑖𝑑,𝑡 + 𝑑𝑡 = 𝑣𝑡 , ∀𝑡, (19)

𝑤𝑡 + 𝑑𝑡 ⩾ 𝜂𝑣𝑡 , ∀𝑡, (20)

where 𝜂 indicates the green factor, which lies within the range

[0, 1]. Eq. (18) indicates that the consumption of nuclear power

must exceed its generation. Eq. (19) specifies that the power supply

should be equal to the demand. Eq. (20) defines the green energy

coverage, namely, the consumption of carbon-free green energy

should be greater than a certain proportion. In our formulation, we

directly add the three costs: EPC, NGC, and ECC. Different scenarios

can emphasize different components through a weighted sum. We

leave these for future work.

4 METHODOLOGY
We need to develop an algorithm to output (1) a day-ahead plan

for the datacenter on the shifting schedule of its flexible workloads

𝑣𝑡 and (2) a plan for LF-SMR on the power generation 𝑝𝑡 . A key

challenge addressed by DCSMR-Plan is the inherent uncertainty in

carbon-free renewable energy supplied by the power grid, which ne-

cessitates robust forecasting and planning. To this end, DCSMR-Plan

adopts a two-stage, uncertainty-driven forecasting and optimization

algorithm.

DCSMR-Plan Algorithm. The overall procedure comprises two

stages: the upstream prediction of carbon-free energy availability

and the downstream optimization of datacenter and SMR operations.

In the first stage, conformal prediction (CP) [23] is utilized to con-

struct prediction intervals for carbon-free energy generation. In the

second stage, based on the prediction intervals obtained from CP,

the problem is reformulated as a robust optimization problem with

a traditional box uncertainty set [7]. This reformulated problem

is subsequently transformed into a standard Mixed Integer Linear

Programming (MILP) problem, which can be solved using commer-

cial solvers such as CPLEX or Gurobi. The detailed procedure is

presented in Algorithm 1.

Algorithm 1 Conformal Prediction-Based DCSMR-Plan

Input: Datacenter workload profile 𝑠𝑐,𝑘 , SMR operation parameters 𝑇ℎ ,

𝑃𝑅𝑈 , 𝑃𝑅𝐷 , and historical renewable energy data D = {𝑋𝑤𝑖
, 𝑌𝑤𝑖

}𝑛
𝑖=1

.

Output: The SMR generation plan 𝑝𝑡 and the datacenter workload sched-

uling plan 𝑣𝑡 .

/* Stage 1: Renewable Energy Prediction */
1: Train a prediction model for renewable energy generation using the

historical dataset D and predict renewable energy generation for the

planning horizon.

2: Prediction intervals𝐶 (𝑋𝑤𝑡+1 ) = [ �̂� (𝑥 ) − 𝑑, �̂� (𝑥 ) + 𝑑 ] are constructed
using Conformal CP to serve as the uncertainty set, ensuring coverage

as specified in Eq. (21).

/* Stage 2: Optimization of DCSMR Problem */
3: Solve problem (16) - (20) , get the optimal SMR generation plan 𝑝𝑡 and

datacenter workload scheduling plan 𝑣𝑡 .

Algorithm Analysis. CP provides a rigorous, distribution-free

methodology for generating prediction sets 𝐶 (𝑋𝑤𝑡+1 ) for future
carbon-free energy delivery 𝑌𝑤𝑡+1 , conditioned on features 𝑋𝑤𝑡+1 .

It ensures individual coverage at a specified confidence level, as

defined by:

P
(
𝑌𝑤𝑡+1 ∈ 𝐶 (𝑋𝑤𝑡+1 )

)
≥ 𝜖,∀𝑡, (21)

where 𝜖 represents the confidence level. This guarantees that the

true future renewable delivery 𝑌𝑤𝑡+1 will fall within the predicted

interval 𝐶 (𝑋𝑤𝑡+1 ) with a probability of at least 𝜖 .

Based on the definitions of CP and robust optimization, we can

obtain the corollary as follows:

Corollary 4.1 (Green Energy Coverage Guarantee). If𝑤𝑡 is
obtained using conformal prediction to determine the interval 𝑌𝑤𝑡

∈
𝐶 (𝑋𝑤𝑡

), the green energy coverage constraint Eq. (20) can be guaran-
teed with the probability of 𝜖 , namely,

P
(
𝑌𝑤𝑡

+ 𝑑𝑡 ⩾ 𝜂𝑣𝑡
)
≥ 𝜖

Brief summary: The interval 𝐶 (𝑋𝑤𝑡
) for renewable delivery at

time 𝑡 defines the uncertainty set for the corresponding variable in

the robust optimization formulation. For example, if the datacenter

requires a green energy coverage of 80% (𝜂 = 0.8), by employing

an interval [𝑙𝑏𝑡 , 𝑢𝑏𝑡 ] with a 95% confidence level (𝜖=0.95) as the

uncertainty set, the resulting operational strategy is guaranteed to
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be feasible even in the worst-case renewable generation scenario

within that interval. Therefore, the 80% coverage target is achieved

with the probability of 95%. This ensures that the generation from

the nuclear power plant can adjust its output and still meet the green

energy requirements of the data center within the probabilistically

guaranteed range, despite fluctuations in renewable delivery.

5 EVALUATION

5.1 Evaluation Setup and Methodology
The datacenter workloads.We evaluate our model and algorithm

using Google datacenter trace [43]. The trace has the power utiliza-

tion information for 57 server clusters within Google datacenters

in May 2019. The workload is directly quantified based on power

demand. Specifically, power data from a single cluster is utilized for

comparative analysis. The workload is assumed to be executed on a

cluster with a peak power capacity of 20 MW, derived from actual

normalized power data obtained from the trace. For simplicity, we

only consider two class of jobs, the inflexible job and the flexible

job, whose maximum delay time ℎ𝑐 is set to 5 hours. The cost of

carbon-based electricity obtained from the grid, including carbon

cost, is assumed to be $100/MWh since we suppose that all of the

energy from the grid, except PPA, is coal-based. The generation cost

for the SMR is assumed to be $50/MWh, and the cost associated

with excess energy is assumed to be $30/MWh.

The SMR energy generation. For the nuclear power plant, it is
assumed to be a small modular reactor (SMR) with a capacity of 20

MW. We follow the widely adopted setting in nuclear power plant

control [19] [42], the ramp rate is set as 10%, and the hold time 𝑇ℎ
is specified as 3 hours.

The power supply from the power grid.We follow the setting

in [51], all energy procured from the main grid, excluding renewable

PPAs, is coal-fired. Four years of hourly wind and solar power data

were generated using historical weather data, as described in [46].

The dataset was divided into two groups, with 50% allocated for

training and 50% for testing.

Baselines: We compare DCSMR-Plan with three baselines: (1)
DC-Plan: The day-ahead planning without coordination with the

co-located SMR. The maximum wind power output is 30 MW, while

the maximum solar power output is 42 MW. (2) DCSMR-PA: The
day-ahead planning in coordination with the co-located SMR, where

the SMR operation is simply modeled as an optimal fixed output.

The physics restrictions are not modeled (Physics-restriction Ag-

nostics), and power from gird is utilized to meet any remaining

demand. (3) DCSMRU-Plan: This day-ahead planning coordinates

with the co-located SMR, incorporating its physical constraints and

utilizing forecasted renewable energy for optimization, but it does

not account for uncertainty in renewable energy forecasts.

Evaluation metrics: (1) Green Energy Coverage (GEC) [2]: pro-
portion of green energy in total datacenter consumption. It is used

to evaluate the greenness of the datacenter. (2) Nuclear Energy Uti-
lization (NEU): proportion of nuclear energy consumed to total

nuclear energy produced. It is used to evaluate the extent of nuclear

power utilization in the datacenter.

Cases. Three workload flexibility scenarios were considered:

NoFlex (0% flexible), LowFlex (10% flexible), and HighFlex (30% flex-

ible). Similarly, three renewable penetration scenarios were defined:

LowRP (14 MW solar capacity), MedRP (28 MW solar capacity), and

HighRP (42 MW solar capacity). All scenarios were evaluated over

a two-year period with an hourly time resolution. All of our data

and codes are available at GitHub [52].

5.2 Evaluation results
5.2.1 Performance under different DC workload flexibility. Fig. 3
presents the GEC and NEU for different methods under varying

levels of data center workload flexibility. In the NoFlex scenario,

the GEC of DC-Plan is observed to be 0.6736, while DCSMR-PA

achieves a GEC of 0.7408. In contrast, the proposed DCSMR-Plan

achieves a significantly higher GEC of 0.9662, representing a 43.44%

improvement in non-renewable energy savings compared to DC-

Plan. Additionally, DCSMR-Plan reduces non-renewable energy

consumption by 30.42% compared to DCSMR-PA. In the HighFlex

scenario, DCSMR-Plan achieves a GEC of 0.9895, representing a

41.15% increase in GEC compared to DC-Plan and a 25.39% reduction

in non-renewable energy consumption compared to DCSMR-PA.

It is noted that increasing datacenter flexibility enhances the GEC

and NEU of all methods to some extent. However, the proposed

DCSMR-Plan consistently outperforms the other methods across

different scenarios.

5.2.2 Performance under different renewable penetration. Figure 4
presents the GEC and NEU under varying levels of renewable en-

ergy penetration. In scenarios with low renewable penetration, the

GEC of DCSMR-Plan is 0.9960, while that of DCSMR-PA is 0.7707,

representing an increase of 29.23%. Under conditions of high re-

newable penetration, the GEC of DCSMR-Plan decreases to 0.9320,

whereas the GEC of DCSMR-PA drops to 0.6263, resulting in a larger

difference of 48.81%. With respect to NEU, under scenarios of low

renewable penetration, the NEU of DCSMR-Plan is 0.9276, com-

pared to 0.9412 for DCSMR-PA. Under high renewable penetration

conditions, the NEU of DCSMR-Plan decreases to 0.8875, resulting

in a difference of 4.32%. In contrast, the NEU of DCSMR-PA declines

to 0.6263, leading to a larger difference of 24.18%. This outcome is

attributed to the increased power variability associated with higher

levels of renewable energy penetration, which amplifies the limita-

tions of DCSMR-PA in adjusting its output to meet demand. These

results highlight the feasibility and robustness of the DCSMR-Plan

in sustaining high levels of GEC and NEU across varying levels of

renewable energy penetration.

5.2.3 Impacts of uncertainty. Fig. 5 illustrates the GEC and NEU

under varying confidence levels (𝜖) of chance constraints, as well

as the scheduling scenario that does not account for prediction un-

certainty (DCSMRU-Plan). The results indicate that, under HighRP

conditions, the GEC of DCSMRU-Plan is 0.8486, whereas the GEC

of DCSMR-Plan with 𝜖 = 0.8 increases to 0.9320, representing an

improvement of 8.83%. Under LowRP conditions, the improvement

is 2.12%. This difference arises because higher renewable penetra-

tion amplifies the impact of renewable energy prediction errors.

Although increasing 𝜖 reduces NEU due to the need for robustness,
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Fig. 5. Performance of DCSMR-Plan under different
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a trade-off must be made between ensuring green energy coverage

and optimizing nuclear energy utilization.

6 CONCLUSION AND FUTURE WORK
This paper presents DCSMR-Plan, a novel day-ahead scheduling

framework that co-optimizes datacenter workloads and LF-SMR op-

erations while accounting for both nuclear operational constraints

and renewable energy uncertainty. Through extensive evaluation us-

ing real-world datacenter traces and simulated energy scenarios, we

demonstrate that DCSMR-Plan consistently outperforms baseline

methods across varying levels of workload flexibility and renewable

penetration. Key findings show that flexible workload scheduling,

paired with coordinated LF-SMR control, can significantly enhance

green energy coverage and nuclear energy utilization. Furthermore,

the proposed DCSMR-Plan remains robust under high variability

in renewable supply, offering a practical and scalable pathway for

datacenters to meet 24/7 carbon-free energy goals while leveraging

on-site nuclear power.

Future work can extend this foundation in several directions.

One key area involves enhancing the modeling of physical system

constraints and interactions with the main grid. This includes incor-

porating datacenter power ramp rate constraints to better reflect

operational limitations andmitigate the impact of rapid load changes

on both performance and grid stability [27]. Furthermore, extending

beyond the simplified grid interaction employed here, integration of

comprehensive power grid network models is warranted to capture

realistic complexities such as transmission constraints and nodal

dynamics. A second aspect for future work is the integration of ad-

vanced energy technologies. For example, LF-SMRs can co-generate

thermal energy and, in next-generation designs, even hydrogen, in-

troducing tightly coupled multi-output dynamics that require new

modeling approaches. On the datacenter side, incorporating en-

ergy storage systems (ESS) could mitigate curtailment and enhance

resilience. Finally, from a methodological standpoint, developing

a multi-timescale optimization framework may improve planning

accuracy and adaptability under forecast uncertainty.
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