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Abstract—Today’s lightening fast data generation from massive
sources is calling for efficient big data processing, which imposes
unprecedented demands on the computing and networking in-
frastructures. State-of-the-art tools, most notably MapReduce,
are generally performed on dedicated server clusters to explore
data parallelism. For grass root users or non-computing pro-
fessionals, the cost for deploying and maintaining a large-scale
dedicated server clusters can be prohibitively high, not to mention
the technical skills involved. On the other hand, public clouds
allow general users to rent virtual machines (VMs) and run their
applications in a pay-as-you-go manner with ultra-high scalability
and yet minimized upfront costs. This new computing paradigm
has gained tremendous success in recent years, becoming a highly
attractive alternative to dedicated server clusters.

This article discusses the critical challenges and opportunities
when big data meet the public cloud. We identify the key
differences between running big data processing in a public
cloud and in dedicated server clusters. We then present two
important problems for efficient big data processing in the public
cloud, resource provisioning, i.e., how to rent VMs and, VM-
MapReduce job/task scheduling, i.e., how to run MapReduce
after the VMs are constructed. Each of these two questions
have a set of problems to solve. We present solution approaches
for certain problems, and offer optimized design guidelines for
others. Finally, we discuss our implementation experiences.

I. INTRODUCTION

Today’s lightening fast data generation from massive
sources and advanced data analytics have made information
mining from big data possible. We have witness the success
of many big data applications. For example, Amazon uses
the massive historical shipment tracking data to recommend
goods to the very targeted customers, and Google uses billions
of query data to predict the flu trends, which can be one
week earlier than National Centers for Disease Control and
Prevention (CDC).

Bid data processing, however, imposes unprecedented de-
mands on the underlying computing and networking infras-
tructures. For input data at the petabyte or even exabyte scale,
simply improving the power of individual machines, a.k.a,
scale-up, is hardly practical. State-of-the-art tools, most no-
tably MapReduce, are generally performed on dedicated server
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clusters to explore data parallelism. They rely on a large scale
of machines that work together, a.k.a, scale-out, to process
the big data in a divide-and-conquer manner. Nevertheless, as
compared to the conventional data processing, MapReduce-
like tools are still new in the market and there remain much
to improve. In particular, from the performance point of view,
MapReduce has been criticized for its inefficiency [1].

Moreover, a growing number of big data applications come
from not only the IT industry, but also such other areas as
civil, environmental, finance, and health industries, to name
but a few. For grass root users or non-computing professionals,
the cost of deploying and maintaining a large-scale dedicated
server clusters can be prohibitively high, not to mention the
technical skills involved. On the other hand, public clouds,
emerged also in recent years, allow general users to rent
computing and storage resources and run their applications in
a pay-as-you-go manner. The massive resources available at a
public cloud provider’s datacenters offer ultra-high scalability
and yet minimized upfront costs for its users. This new com-
puting paradigm has gained tremendous success, becoming a
highly attractive alternative to dedicated server cluster.

While there have been a flourish of studies on improving
MapReduce performance in dedicated server clusters, the
research in the context of public cloud is still in its infancy.
A public cloud has very different characteristics as compared
to dedicated server clusters. It emphasizes the support for
effective resource sharing and elastic pay-as-you-go services
for general users, and machine virtualization plays a key role.
For example, Amazon EC2,1 the most successful and widely
used Infrastructure-as-a-Service (IaaS) cloud platform heavily
relies on the Xen virtualization in its deployment. Each virtual
machine (VM), known as an instance, functions as a virtual
private server; a user can rent VMs of different configurations
under different prices.

This article discusses the unique challenges and oppor-
tunities when big data meet the public cloud. We identify
the key differences between running big data processing in
a public cloud and in dedicated server clusters. We then
present two main questions for efficient big data processing
under MapReduce in the public cloud, resource provision-
ing, i.e., how to rent VMs and VM-MapReduce job/task

1http://aws.amazon.com/cn/ec2/.
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Fig. 1. The MapReduce architecture

scheduling, i.e., how to run MapReduce after the VMs are
constructed. We systematically examine the performance of
the key problems facing these two questions, including virtual
machine job scheduling, shuffling, data locality, as well as
resource provisioning under CPU-I/O contentions. We review
the potential solutions in addressing some problems and offer
optimized design guidelines for others. Finally, we discuss our
implementation experiences. We release our codes, scripts and
documentation as open sources.

II. WHEN BIG DATA MEET PUBLIC CLOUD

Among the many tools that scale out big data processing
to parallel machines, MapReduce (proposed by Google), is
arguably the most popular, and has become the de facto
standard nowadays. Fig. 1 illustrates the basic MapReduce
structure. A MapReduce job consists of two phases (or tasks),
namely, map and reduce. Accordingly, there are two program
functions: mapper and reducer. In the map phase, the input
data is split into blocks. The mappers then scan the data
blocks and produce intermediate data. The reduce phase starts
from a shuffle sub-phase, which, run by the reducers, shuffles
intermediate data and moves them to the corresponding nodes
for reducing. The reducers then process the shuffled data and
generate the final results. For complex problems, multiple
rounds of map and reduce can be executed.

There have been many practical MapReduce implementa-
tions, and the open source Hadoop2 is the most widely used
to date. There have also been MapReduce-like tools that target
specific application scenarios; for example, YARN for multi-
stage cluster management with global resource management,
Pregel for big graph processing, GraphLab for parallel ma-
chine learning, PowerGraph for machine learning on nature
graphs, and Spark for distributed in-memory computation.

Today Hadoop or other MapReduce-like tools are generally
running on dedicated server clusters. Existing studies thus have
mainly focused on optimization with such physical infrastruc-
tures. A public cloud however has very different characteristics
as compared to dedicated server clusters. Through machine
virtualization, it effectively hides the many levels of imple-
mentation and platform details, making shared resources as if

2http://hadoop.apache.org/.

being exclusive to the end users [2]. In such a virtualized
environment, user applications are sharing the underlying
hardware by running in virtual machines (VMs). Each VM,
during its initial creation (by the users), is provisioned with a
certain amount of resources (such as CPU, memory and I/O).
The number and capacity of the VMs can be requested in a
pay-as-you-go fashion, or even adjusted in runtime. In other
words, the cloud resource allocation is highly elastic, and an
application may adjust the resources for processing its big
data at different stages. The performance of such resources as
CPUs and memories are relatively the same with both physical
or virtual machines. This however becomes no longer true for
shared resources such as network bandwidth and I/Os. Even
worse, it is known that there are conflicts between networking,
I/O and CPU. More specifically, given that virtualization often
requires a hypervisor to intercept system calls, when there
are intensive networking and I/O operations, it will influence
the CPU’s operation, thereby affecting its performance [3].
As such, big data processing in the public cloud can differ
dramatically from that in dedicated server clusters, and the
above factors must be taken into account.

In this virtualized, shared, and highly elastic environment,
two cascaded issues are to be addressed:

1) Resource Provisioning: Given a MapReduce application,
find the best way to construct VMs;

2) VM-Job Scheduling: Given the set of VMs that have
been provisioned/constructed, find the best way to run
MapReduce jobs/tasks.

Obviously, optimized resource provisioning and job
scheduling depends on accurate cloud performance measure-
ment and modeling. Modeling cloud performance is a difficult
problem. The behavior of many cloud applications, such as
game servers and web servers, changes frequently as it closely
depends on user behaviors. There is a major difference in big
data processing applications, however. A big data application
runs with the same type of data again and again. For example,
Google flu prediction runs every day. It uses user query
data. Though the queries are different from day to day, the
amount of data, the amount of data for each data block
used in MapReduce and the way that Google flu prediction
processes these data are the same. This makes it possible to
predict the performance of VMs, mapper tasks, reduce tasks,
etc. As such, one can use one round of data to obtain the
performance modeling. Such information serves as the input
for our resource provisioning and scheduling.

III. RESOURCE PROVISIONING IN THE PUBLIC CLOUD

We first look into the resource provisioning problem. There
have been initial studies on running MapReduce in the cloud,
addressing the resource provisioning issues [4][5]. The strate-
gies that optimizes the cluster size according to different job
types and workloads have also been presented [6]. These
pioneer studies consider different VM types as containers with
given computing capacities. As discussed, in the public cloud,
the labeled capacity may not be accurate, particularly for data
intensive applications.
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Fig. 2. The CDF of the processing time for the same MapReduce job under
different cluster configurations in EC2.

To understand this, we construct two clusters in Amazon
EC2: 1) Small-16 with 16 EC2 small instances; 2) XLarge-2
with 2 EC2 extra large instances. Both clusters have identical
CPU capacity and memory capacity. We also assume that the
unit-time costs for using both clusters are identical. As such,
one should expect that their performance to be the same. We
show that this is not the case when running MapReduce.

We execute the same MapReduce job on both clusters, and
the results are shown in Fig. 2. When two extra large instances
are employed in our cluster (referred to as XLarge-2), the job
can be done between 2732 to 2831 seconds. When 16 Small
instances are used (referred to as Small-16), the job completion
time increases to 3042 seconds. In other words, the job runs
10% slower on Small-16 than on XLarge-2, indicating that a
user will suffer a 10% capital loss if he does not construct the
VMs wisely. This is because, with I/O-intensive operations,
there are strong interference between CPU and I/Os.

In [3], the resource provisioning problem in the cloud-
based big data systems is re-modeled and an interference-
aware solution that smartly allocates the MapReduce jobs
to different VMs is presented. The key is the remodeling
phase, where the interference is captured into a parameter
and is formulated into the performance of mapper, reducer
etc. The trace-driven evaluation using the Facebook data and
four types of Amazon EC2 instances (small, media, large and
extra large) show that, as compared with a state-of-the-art cost-
aware resource provisioning algorithm [7], the interference-
aware solution outperforms by 11%.

IV. MAPREDUCE VM-JOB SCHEDULING

We next look into VM-job scheduling, assuming that the
set of VMs have already been constructed. We first discuss
how to schedule the MapReduce jobs, tasks and how to assign
them on the VMs. We then look into the shuffling sub-phase
and examine how online data-machine assignment can be
optimized. Finally, we discuss an notion of data locality and
offer design guidelines through cloud elasticity.

A. VM-Job Scheduling

In the default MapReduce implementation, each machine is
assigned two mappers and one reducer, and multiple jobs are
randomly assigned to the machines. Consider an example in
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Fig. 3. VM-Job/task scheduling, (a) without taking VM assignment into
consideration, (b) taking VM assignment into consideration.

Fig. 3. There are three VMs and two jobs. Job 1 has 4 map
tasks and 2 reduce task. Job 2 has 1 map task and 1 reduce
task. Assume the processing time to be 75 seconds for all
map tasks and 100 seconds for all reduce tasks. If the VM
assignment is not considered, we will have Fig. 3(a), which
follows the default FIFO strategy of Hadoop. If we jointly
consider VM assignment, we can achieve a schedule in Fig.
3(b). It is easy to see that the completion time of job 2 in
Fig. 3(a) is 250 seconds, whereas in Fig. 3(b), it becomes 175
seconds, a 30% improvement.

The above example shows that the simple default setting is
hardly optimal. This is a scheduling problem, yet MapReduce
has a unique parallel-sequential structure that worth special
consideration. More formally, we have

MapReduce VM Job Scheduling (MVJS): Given a set of
MapReduce jobs with map tasks and reduce tasks (map tasks
need to be in precedence of reduce tasks), a set of VMs with
certain performance, find a feasible schedule (when and where
to run the tasks) to minimize total job completion time.

There are a series of works to progressively investigate
this problem. In [8], a scheduling algorithm OffA of multiple
MapReduce jobs on multiple machines is developed. In [9],
the study is extended where the parallel-sequential structure
is taken into consideration and an 8-approximation algorithm,
H-MARES, is developed. Both studies do not consider the
machine assignment. The latest episode is [10] where the
MapReduce job/task scheduling is jointly considered with
machine assignment. A 3-approximation algorithm, MarS, is
developed. MarS first relaxes MSJO into a linear-programming
problem with a readily available optimal solution. This gives a
lower bound to MSJO and sorts out the optimized scheduling
order. A greedy search is then conducted for a feasible solution
and approximately solves MVJS.

Performance improvement can be observed in each of these
different progresses. For example, a gain of 20% of MarS to
H-MARES is observed in most typical cases [10].

B. Online Optimal Shuffling

Looking further into the MapReduce structure, there is
a shuffling subphase in the reduce task. The map function
transfers the input raw data into (key, value) pairs and the
reduce function merges all intermediate values associated
with the same intermediate key. The shuffling subphase starts
after some map tasks finish and runs in parallel with other
map tasks. Intrinsically, the shuffling sub-phase will re-assign
intermediate data into appropriate VMs to run. In the state-
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of-the-art implementations, a hash function is used for the
re-assignment, which directly affects the load of different
machines. If the data input has a uniform distribution, the load
can be expected to be automatically balanced. If the data is
skewed, the performance can be poor however.

To illustrate this, consider the example in Fig. 4. Assume
that there are three VMs for a typical Wordcount application
(to calculate the number of words in a document). If the default
hash function is used, the result will be Fig. 4(a). Here the
words are distributed into three VMs in a round-robin fashion.
As such, VM1 has a, d, g, VM2 has b, d, and VM3 has c, f
for further processing. Clearly, the load is unbalanced as the
distribution of the words is highly skewed. Fig. 4(b) shows a
better distribution, which yields shorter finishing time.

This again shows that there is large room towards an optimal
strategy for big data processing. More formally, we have

MapReduce Shuffle Scheduling (MSS): Given a data
stream produced by a MapReduce job, a set of VMs, find
a partition strategy for the data stream, so as to minimize the
maximum load of the VMs.

To minimize the overall finishing time, the shuffle subphase
should start as soon as possible. In other words, we need an
online algorithm for problem MSS.

From the theoretical point of view, this is related to the
online minimum makespan problem where jobs come one by
one with processing time and they need to be assigned to
parallel machines. Yet a unique constraint in the MapReduce
context is that the same key must go to the same machine.

A List-based Online Scheduling (LOS) algorithm is devel-
oped in [11]. LOS decides, upon receiving a (key, location)
pair, to which machine to assign that item without any knowl-
edge of what other items may be received in the future. LOS
assigns the unassigned keys to the machine with the smallest
load once they come in and for the assigned keys, LOS just
follows the constraints that the same key should go to the same
machine. It is shown that LOS has a competitive ratio of 2,
i.e., it yields an overall finishing time at most twice of the
optimal solution.

C. Data Locality and Cloud Elasticity

An important notion in big data processing is data locality.
Data parallelism scales out the data processing to multiple

machines, which incur data movement from one VM to
another. Massive data movements, involving slow networking
and disk operations, can aggravate resource contention and
introduce excessive delay. It is therefore desirable to data close
to the target machines.

Wang et al. [12] investigate data locality of map tasks
in scheduling under heavy traffic. To balance between data-
locality and load-balancing while maximizing throughput and
minimizing delay, the system is modeled into a queueing
architecture. Then, a scheduling algorithm based on Join the
Shortest Queue (JSQ) policy and MaxWeight policy is pro-
posed. It is proven that the proposed algorithm is throughput
optimal. Tan et al. [13] propose a stochastic optimization
framework to optimize data locality of reduce tasks. Based
on the optimal solution under restricted conditions, a receding
horizon control policy is proposed.

Note that the public cloud has much greater capacity
beyond the capacity requirement of one big data processing
application. Together with the elasticity nature of the public
cloud, this offers opportunities to change VM capacity during
runtime [14] to accommodate different data intensities in
different stages of MapReduce. In other words, rather than
moving data, it is possible to change the VM capacities
at different times, according to the amount of data to be
processed in local VMs. In the initial investigation [14], for
a certain MapReduce job, and a set of VMs each of which
has a set of CPUs, when a task is planned to be executed, the
number of CPUs in different VMs is adjusted according to the
location of data to be processed by this task. Experiments in
real cluster and EC2 cluster show that throughput of Hadoop
is improved by 41% and 15%, respectively.

Currently, runtime elastic VMs are not available in existing
cloud providers. In Section V, we show our initial imple-
mentation experience in constructing runtime elastic VMs
where we adjust the number of CPU in each VM. Using Xen
hypervisor, such adjustment introduces ignorable delay. With
runtime elastic VMs, we observe a 43% earlier in finishing
time, where the total number of CPU × hours remain similar.
We believe that there are immense opportunities for both
performance optimization and pricing here.

V. IMPLEMENTATION EXPERIENCES

So far we have systematically reviewed the approaches
toward optimizing MapReduce for big data processing in the
public cloud. We now present our implementation experiences
of an integrated optimization framework, and our codes, scripts
and documentation/manual are available as open sources.3

We implement with Hadoop-1.2.0 running in the Amazon
EC2 public cloud. In this implementation, we need to coor-
dinate two components within Hadoop, namely, JobTracker
and TaskTracker. JobTracker manages all jobs in a Hadoop
cluster and, as jobs are split into tasks, TaskTracker is used
to manage tasks on every machine. The implementation
framework is shown in Fig. 5. We add a new big data

3http://www4.comp.polyu.edu.hk/̃csyiyuan/projects/MarS/MarS.html
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processing arrangement component. In this component, there
is a predictor module to evaluate the performance of jobs,
tasks and VMs. We register a MapReduce VM-Job Scheduler
module to JobTracker so that JobTracker can call this mod-
ule to make scheduling decisions. The MapReduce VM-Job
Scheduler module makes decisions according to the algorithms
that we develop in this project. We show in Fig. 5 the event
driven steps of a Hadoop run time. More specifically, there are
four associated steps: 1) when a job is submitted to Hadoop,
JobTracker notifies MSJO that a job is added. MSJO puts the
job into a queue; 2) MSJO scheduler is event driven from Job-
Tracker. When Hadoop is running, JobTracker keeps notifying
MSJO on TaskTracker status and if a machine is idle, MSJO
assigns a task to the TaskTracker of this machine; 3) after a
task finishes, the TaskTracker informs JobTracker, which will
further notify MSJO and MSJO updates job information; and
4) if all tasks in a job finish, MSJO removes the job and
JobTracker sends a job-completion event to user application.

As an working example, we evaluate algorithms MarS and
H-MARES, discussed in Section IV.A, with experiments on
a cluster. This cluster is built with 16 Amazon EC2 small
instances. We employ Wordcount, a benchmark application,
as the MapReduce program in our experiments. We use a
document package from Wikipedia as input data of jobs. This
package contains all English documents in Wikipedia since
30th January 2010 with uncompressed size of 43.7 GB. We
build a job containing 10 jobs where input data size of every
job is less than 1GB. We use this job set to evaluate the
performance of our algorithms when jobs are small. In the
experiments the total weighted job completion time of H-
MARES is 5224 seconds while MarS is 4826 seconds. Such
results well match our earlier simulation results.

Currently, we are also developing runtime elastic VMs. We
show the benefit in a demo experiment. We employ Wordcount
as the MapReduce job and the input data is 12G Wikipedia
data. We compare two runtime strategies: static VM strategy
and elastic VM strategy. In the static VM strategy, every slave
node has 1 CPU. In the elastic VM strategy, every slave node
has 2 CPUs at the job starting time and the number of CPUs
decreases to 1 after all map tasks finish. In the experiment,
the total CPU number × CPU running time of both strategies
are comparable. Yet, the elastic VM strategy finishes the job
in 3934 seconds while static VM strategy is 6890 seconds, an
impressive improvement of 42.9%.

VI. CONCLUSION AND FUTURE WORK

In this article, we discussed the suitable user groups in
running big data applications in the public cloud. We showed
that, as compared to Google, who run their big data processing
applications on dedicated server clusters, the grass-root users
and non-computing professionals may only resort to the public
cloud. We illustrated the key differences between the public
cloud and dedicated server clusters. We discussed two impor-
tant problems for efficient big data processing in the public
cloud. We presented solution approaches for certain problems,
and offered optimized design guidelines for others.

Nevertheless, the research and practices of big data process-
ing in the public cloud remains in its infancy. Many differences
between the public cloud and dedicated server clusters are left
unexplored; and many existing questions are still yet to have
clear winning solutions. With the grass-root users and non-
computing professionals becoming aware of running big data
applications, there will be abundant opportunities. Especially,
we consider better understanding on the impact of networking
on the VM performance and cloud elasticity may improve
or even drastically change the problem spaces in resource
provisioning as well as MapReduce job scheduling.
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