
Scalable Forwarding Tables for Supporting Flexible
Policies in Enterprise Networks

Shu Yang∗†, Mingwei Xu∗†, Dan Wang‡§, Gautier Bayzelon∗†, Jianping Wu∗†
∗Department of Computer Science and Technology, Tsinghua University
†Tsinghua National Laboratory for Information Science and Technology

‡Department of Computing, The Hong Kong Polytechnic University
§The Hong Kong Polytechnic University Shenzhen Research Institute

Abstract—With increasing demands for more flexible services,
the routing policies in enterprise network becomes much richer.
This has placed a heavy burden to the current router forwarding
plane to support the increasing number of policies, primarily due
to the limited capacity in TCAM. This hinders the development
of new network services.

In this paper, we present the design and implementation of
a new forwarding table structure. It separates the functions of
TCAM and SRAM and maximally utilizes the large & flexible
SRAM. We progressively design a set of schemes, to maintain
correctness, compress storage, and achieve line-card speeds. We
also design incremental update algorithms that bring less accesses
to memory. We present implementation designs and evaluate our
scheme with a real implementation on a commercial router using
real data sets. Our design does not require new devices. The
evaluation results show that the performance of our forwarding
tables is promising.

I. INTRODUCTION

Enterprise networks have attracted great attentions along the
increasing demands from more flexible policies in enterprises
[22]. A typical enterprise network hosts thousands of routers
[20]. Network management is responsible for 80% of the
IT budget and 62% of the outages [27]. Different from
the backbone networks, which mainly provide reachability
services, enterprise networks need to support much more fine-
grained routing policies. For example, 1) Access Control: An
hospital should implement strict access control to gurantee
the security of patients’ electronic records; 2) Performance:
A bank should choose secure paths for its bank applications,
and low-latency paths for its financial applications [27]. Other
example include load balancing, network virtualization, etc.

There are many solutions to support these policies. For
example, policy-based routing (PBR) [5] installs policies into
access control list (ACL), and multi-topology routing (MTR)
[8] supports multiple independent control and forwarding

The research is supported by the National Basic Research Program of
China (973 Program) under Grant 2012CB315803, the National Natural
Science Foundation of China (61073166 and 61133015),the National High-
Tech Research and Development Program of China (863 Program) under
Grants 2011AA01A101. Dan Wang’s work is supported in part by National
Natural Science Foundation of China (No. 61272464), RGC/GRF PolyU
5264/13E, HK PolyU 1-ZVC2, G-UB72.

planes. Currently, engineers in IETF are proposing traffic-
class routing (TCR) [14][10] that adds more information, e.g.,
source address, into routing, such that routing decisions can
be made based on both destination and source addresses.

Although these solutions differ greatly in control plane; they
all need an enhanced forwarding plane to support large number
of forwarding rules based on an increasing number of routing
policies. Nevertheless, current solutions are not scalable. For
example, MTR uses a separate forwarding table for each
topology, but it can only support a limited number (32 in
most cases [8]) of topologies while current enterprise networks
require more [3]; TCR recommends using one forwarding
table per source prefix. This scales even worse than MTR and
is only suitable for small networks.

Many other solutions, like PBR uses the traditional cisco
Access Control List (ACL) structure (we call it ACL-like struc-
ture thereafter) in TCAM. We show a typical forwarding table
with ACL-like structure in Table. I. For illustration purposes,
we use 4-bit IP addresses. Here the destination and source
prefixes are concatenated as an entry in TCAM. When a packet
with destination address of 1011 and source address of 1111
arrives, it will match destination prefix 101* and source prefix
11** according to the longest match first (LMF) rule; and then
forward the packet to the interface of 1.0.0.2. This ‘fat’ TCAM
structure provides a fast lookup speed. However, using ACL-
like structure means the Forwarding Information Base (FIB)
table changes from {destination} → {action} to {(destination,
source)} → {action}. This structure tremendously increases
the TCAM resources. In the worst case, the number of TCAM
entries can be O(N × M), where N and M are the size of
destination and source addresses.

China Education and Research Network-2 (CERNET2) is
currently using this ACL-like structure. CERNET2 wants to
carry out policy routing between about 6,000 destination
prefixes and 100 source prefixes. This results in a requirement
of at least 600,000 entries in TCAM. Many modern enterprise
networks face similar problems after widely deploying lots
of security, QoS and privacy functions in networks [3]. It is
widely known that TCAM is scarce in resource due to its
small storage size, high cost and high power consumption. It
is also difficult to compress it due to its unique structure [15].978-1-4799-3360-0/14/$31.00 c© 2014 IEEE

2

Thousands of rules in ACL will bring large overheads to an
enterprise [13]. However, existing forwarding plane solutions
do not scale well in TCAM, and this has become a bottleneck
for developing new services in enterprises [7][16].

#
Destination
prefix

Source
prefix

Nexthop
action

1 **** **** 1.0.0.1
2 **** 101* 1.0.0.0
3 **** 11** 1.0.0.2
4 **** 01** 1.0.0.0
5 011* **** 1.0.0.2
6 110* **** 1.0.0.1
7 110* 111* 1.0.0.2
8 110* 101* 1.0.0.0
9 110* 100* 1.0.0.2
10 110* 11** 1.0.0.3

#
Destination
prefix

Source
prefix

Nexthop
action

11 110* 01** 1.0.0.2
12 101* **** 1.0.0.1
13 101* 101* 1.0.0.0
14 101* 11** 1.0.0.2
15 101* 01** 1.0.0.0
16 11** **** 1.0.0.2
17 11** 11** 1.0.0.3
18 10** **** 1.0.0.2
19 10** 100* 1.0.0.2
20 10** 11** 1.0.0.3

TABLE I: A Two Dimensional Forwarding Example

In this paper, we present the design and implementation of a
scalable forwarding table, which can handle expanded policies
in enterprise networks. Our new forwarding table structure is
called FISE (FIB Structure for Enterprise). The key idea of
FISE is to move the redundancies from TCAM to flexible,
cheap and power-saving SRAM. We show an example of
FISE in Fig. 1. FISE stores destination and source prefixes
in two separate TCAM tables, and store other information in
SRAM. In Table. I, we only need to store destination prefixes
****, 011*, 110*, 101*, 11** and 10** in one TCAM table,
and source prefixes ****, 101*, 11**, 01**, 111* and 100*
in another TCAM table. Thus, we substantially reduce the
TCAM storage space; there are at most N+M TCAM entries.
Besides, SRAM is much more flexible and we can develop a
dozen more techniques to eliminate the redundancies.

However, with FISE, there are many challenges: 1) we need
to guarantee the line-card speeds and correctness of packet
forwarding, and we will show that this is not straightforward
(Section II); 2) in principle, an update in FISE may incur
multiple accesses in memory, we need to develop incremental
update algorithms to minimize such accesses (Section III);
and 3) in practice, we want to make FISE more scalable
and accommodate a number of rules in the order of millions,
which is 100 times of that of today (Section IV). In this paper,
we present a comprehensive study on FISE and progressively
solved all these problems. We implement the FISE on a
commercial router, Bit-Engine 12004 and we present a set
of practical implementation designs (Section V). Note that
through careful redesign of the hardware logic, FISE does not
require new devices. We carry out comprehensive evaluations
with the real implementation, using the real topology, FIB,
prefix and traffic data from CERNET2 (Section VII). The re-
sults show that FISE can achieve line-card speed, save TCAM
and SRAM storage, and bring acceptable update burden.

II. FISE STRUCTURE AND LOOKUP

A. The Matching Rule
We first present the definition of the matching rule. Let d

and s denote the destination and source addresses, pd and
ps denote the destination and source prefixes. Let a denote
an action, more specifically, the next hop. The entries of the
storage should be 3-tuples (pd, ps, a).

�������

���	
�
�	

�

	
��		

 � � �

����
����
����
����
����

�
�
�
�
�

Source Table

TD-table

3

1

2

3

�
�
�
�

�������
�������
�������
�������

������ !"��#$%&�
2

1

2

3

2

Mapping Table

'()*+,,

������ !"-��

./01*+ 234+5

D
e
s
t
i
n
a
t
i
o
n

T
a
b
l
e

(+6783978/3
234+5

�		

:

2

02 2 2

0 0

�;<=>?@A 1 0 2

BCDE

FGDE

0

Fig. 1: FISE: A forwarding table structure for enterprise networks

Definition 1: Matching rule: Assume a packet with s and d

arrives at a router. The destination address d should first match
pd according to LMF rule. The source address s should then
match ps according to LMF rule among all the 3-tuples where
pd is matched. The packet is then forwarded to next hop a.

We match destination prefixes first, rather than match des-
tination and source prefixes with the same priority [12], to
guarantee reachability and avoid routing loops in layer-3 [4].

B. FISE Design Details
1) FISE Basics: The new structure FISE has two tables

in TCAM and another two tables in SRAM (see Fig. 1).
In TCAM, one table stores the destination prefixes mapping
to a destination index (we call the table destination table
thereafter), and one table stores the source prefixes mapping
to a source index (we call the table source table thereafter).
One table in SRAM is a Two Dimensional table that stores the
indexed nexthop of each rule (we call it TD-table thereafter)
and we call each cell in the array TD-cell. The destination and
source indexes in TCAM point to a TD-cell in SRAM. The
other table in SRAM stores the mapping relations of index
values and next hops (we call it mapping-table thereafter).

For each rule (pd, ps, a), pd is stored in the destination table,
and ps is stored in the source table. The (pd, ps) cell in the
TD-table stores an index value. From this index value, a is
stored in the corresponding position of the mapping table. We
store the index value rather than the next hop a in the TD-
table, because the next hop information is much longer.

We show an example in Fig. 1. For (110*,11**, 1.0.0.3),
110* is stored in the destination table and points to destination
index 2, that is associated with the 2nd row; and 11** is
stored in the source table and points to source index 4, that
is associated with the 4th column. In the TD-table, the cell
(110*, 11**) in 2nd row and 4th column has index value 3. In
the mapping table, the next hop with index value 3 is 1.0.0.3.

Theorem 1: The TCAM storage space of FISE is O(N +
M) bits. The SRAM storage space of FISE is O(N×M) bits.

Proof: The destination table has N entries, the source
table has M entries, thus TCAM space is O(N + M) bits.
TD-table dominates the SRAM, and has O(N ×M) cells.

Clearly, FISE migrates the “multiplication” factor into
SRAM, rather than eliminate it. Such migration is based on the
following facts: 1) TCAM storage capacity is much smaller
than SRAM; 2) TCAM is 10-100 times more expensive

3

than SRAM; 3) TCAM consumes 100+ times more power
than SRAM [11][1]. Moreover, SRAM is more flexible than
TCAM, thus we can develop kinds of techniques to eliminate
the redundancies in SRAM.

�������

���	

�
�	

�

	

��		

 � � �

����

����

����
����
����

�
�

�

�
�

3

1

2

3

2

1

2

3

2

�		

�

2

0

2

2 2 2

0 0

�������� 1 0 22

2

1 0

2 2 2 2

2 1

3 2 2

3 2 2

Fig. 2: Apply TD-Saturation()

2) TD-cell Saturation: We
establish a TD-table by insert-
ing the entries into an empty
TD-table. Fig. 1 shows the TD-
table after inserting the entries
in Table. I.

Note that after insertion,
there will be empty cells. Con-
sider a packet with destination
address 1011 and source ad-
dress 1111 arrives at the router.
According to Definition 1, the

destination prefix 101* will first be matched. There are four
rules (including the default rule) associated with the destina-
tion prefix 101*. Source prefix 11** will then be matched. This
leads to rule (101*, 11**, 1.0.0.2). With the new structure,
however, destination prefix 101* will be matched and source
prefix 111* will be matched. Unfortunately, cell (101*, 111*)
(3rd row and 1st column) in TD-Table does not have any index
value. Intrinsically, for prefix pairs (pd, ps), if there exists a
source prefix p′s that is longer than ps, cell (pd, p′s) rather than
(pd, ps) will be matched.

Definition 2: Conflicted cell: For a TD-cell (pd, p
′
s), if

there is a rule (pd, ps, a) where ps is a prefix p′s, and we
cannot find an action b such that (pd, p′s, b) itself is a rule, we
call (pd, p′s) a conflicted cell.

To address the problem, we develop algorithm TD-
Saturation() to saturate the conflicted cells with appropriate
index values. As an example, using this algorithm, the TD-
table of Fig. 1 becomes Fig. 2.

Theorem 2: FISE (with TD-Saturation()) correctly handles
the matching rule defined in Definition 1.

Proof: Suppose not. The packet will match another rule
other than (p̂s, p̂d, â). If the rule does not belong to S, then
pd is not matched. If the rule does not belong to S ′, then ps
should not have been matched. If the rule is not (p̂s, p̂d, â),
then ps is not the LMF match given pd is matched.

Algorithm 1: TD-Saturation(R)

begin1
// R is the set of forwarding rules to be stored
foreach pd, ps do2

if � ∃(pd, ps, a) ∈ R then3
S = {(p̄s, p̄d, ā) ∈ R|p̄d = pd}4
S′ = {(p̃s, p̃d, ã) ∈ S|p̃s is a prefix of ps}5
Find (p̂s, p̂d, â) ∈ S′, ∀(p′

d
, p′s, a

′) ∈ S′, p′s is a prefix6
of p̂s
Fill the cell (pd, ps) with index value of â.7

end8

C. A Non-Homogeneous FISE Structure
We expect that in practice, only a few prefixes, e.g., the

prefixes that belong to private information, have more next
hops than the default ones. It is thus wasteful to leave a row
for every destination prefix. To become more compatible to the

current FIB structure and further reduce the SRAM space, we
divide the forwarding table into two parts. In the first part each
prefix points to a row in TD-table, and in the second part each
prefix points directly to an index value. For example, in Fig.
1, destination prefix 011* does not need any specific source
prefix, so it is stored in the second part.

In our implementation, we logically divide the table into
two parts using an indicator bit in the destination index. We
illustrate more details in Section V.

D. FISE Lookup
We first present the basic lookup steps and then show

a pipeline lookup. We will show that the pipeline lookup
achieves the same performances as the conventional forward-
ing table for each lookup operation.

The lookup action is shown in Fig. 3. When a packet arrives,
FISE matches the destination and source prefixes in parallel in
the destination and source tables in TCAM. This parallelism is
possible since we have a saturated TD-table. The destination
table and source table then each outputs the SRAM addresses
that point to the destination index and source index. The
SRAM addresses are passed to a FIFO buffer, which resolves
the un-matching clock-rates between TCAM and SRAM. FISE
then obtains the destination index and source index. FISE can
thus identify the cell in the TD-table, and return the index
value. Using this index, FISE looks up the mapping table, and
returns the nexthop.

Theorem 3: The lookup speed of FISE is one TCAM plus
three SRAM clock cycles.

Proof: The theorem is true because source and destination
tables (indexes) can be accessed in parallel.

As a comparison, the conventional forwarding table stores
prefixes in one TCAM, and accesses both TCAM and SRAM
once during a lookup.

We develop a pipeline lookup process (see Fig. 4) for further
amortizing each individual lookup operation. Pipelining itself
is not new and almost all routers implement it today. Using
the pipeline, the lookup speed of FISE can achieve one packet
per clock rate.

Observation 1: The lookup speed of the FISE (with pipelin-
ing) is the same as conventional forwarding tables.

III. FISE INCREMENTAL UPDATE

Although TD-Saturation() guarantees the correctness of
FISE. It need to re-compute all conflicted cells, and re-write
them in SRAM once update happens. Suppose that there are
10,000 source prefixes, and 500 updates on destination prefixes
per second. In the worst case, there are 5,000,000 accesses
in SRAM per second, which almost exceeds the speed of
hardware (in Bit-Engine 12004, line-cards work at 100MHz,
and line-cards need 20 clock cycles for a read/write operation).
Note that although update is necessary, not all cells need to be
re-written in the update process. In this section, our objective
is to find an incremental algorithm that minimizes the number
of cell updates. We use function TD(·, ·) to denote the TD-
table. Let Pd, Ps be the set of destination, source prefixes
respectively. Let fr(pd), pd ∈ Pd (or fc(ps), ps ∈ Ps) be a

4

������ ���

	

� �� ���

����
������ ��� ���� ��
��� �!" #�� ����#�

�� $%&�'(��

)*+ ,�
�- . �

��� ,�
�- . /

	 0����+

	���1�*

������ 1 ��

/�����2

+����
3�-+4��

,�
�- . 1

5�+��� +4�

��-+ 4��

��6��/�+���

7879
:�;;�

7���� %<�
��=�>

������)*+

	

� ��)*+

����

7���� ? �
��=�>

Fig. 3: Lookup action in FISE

Src/Dst table

TD-table

Mapping table

Src/Dst index

Space

Time1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Fig. 4: Space-time diagram of the lookup pipeline

mapping function that maps a destination (or source) prefix pd
(or ps) to a destination index (or source index). Let TD(x, y)
denote the cell in xth row and yth column of TD-table.

We first formally present the problem.
Problem 1: Optimal transformation: Given a TD-

table TD(·, ·) and Action(pd, ps, a), find a new TD-table
TD′(·, ·), such that the set {(pd, ps)|TD(fr(pd), fc(ps)) �=
TD′(fr(pd), fc(ps))} is minimized.

To achieve this, we will first build a prefix tree to organize
the cells. With this tree, we will develop algorithms for inser-
tion and deletion where only part of the cells will be updated.
This tree is stored in the control plane (more specifically in
DRAM). Note that current routers also store data structure
such as tries to organize prefixes. DRAM is much larger and
cheaper, so the extra burden for our algorithms is acceptable.
We will then prove that our algorithms indeed minimize the
computation costs and the number of cell rewrites.
A Colored Tree Structure and Update Algorithm

We build a prefix tree called colored tree, i.e., CT (pd),
for each destination prefix pd. The tree includes all source
prefixes in the source table as nodes Node(ps). Node(ps) is
an ancestor of Node(p′s) if ps is a prefix of p′s. The nodes are
marked with two colors, black and white, where white nodes
are those conflicted nodes in Definition 2 and the rests are
black nodes. An example is shown in Fig. 5.

Let B(pd) = {Node(ps)|∃(pd, ps, a) ∈ R} be the set of
black nodes, let W(pd) = {Node(ps)|¬∃(pd, ps, a) ∈ R}
be the set of white nodes. For example, in Fig. 5, we
show a colored tree CT (101*) for destination prefix 101*
where B(101*) = {Node(****), Node(01**), Node(101*),
Node(11**)} and W(101*) = {Node(100*), Node(111*)}.

To compute optimal transformation of an update, we define
domain of of a black node in colored trees.

Definition 3: In CT (pd), domain of Node(ps) ∈ B(pd)
is D(pd, ps) = {Node(ps)} ∪ N , where N ⊆ W(pd) and
Node(p′s) ∈ N satisfies: 1) Node(p′s) is a child of Node(ps);
2) ¬∃Node(p̂s) ∈ B(pd), where Node(p̂s) is an ancestor of
Node(p′s) and a child of Node(ps).

Intuitively, the domain of a black node is the largest sub-
tree that roots at itself and does not contain any other black
nodes. For example, in Fig. 5, the domain of Node(****) is
D(101*, ****) = {Node(****), Node(100*)}.

Theorem 4: When updating rule (pd, ps, a), changing cell
set {(pd, p′s)|Node(p′s) ∈ D(pd, ps)} to index of a is the
minimum.

Proof: We prove it by contradiction. Assume another
smaller cell set exists, indicating that at least one cell (pd, p̂s),
where Node(p̂s) ∈ |D(pd, ps), is not set to the index value of
a. Then if a packet matches pd and p̂s within FISE, it should
match rule (pd, ps, a). Thus the index value is wrong.

@@@@

AA@@

AAA@

BA@@ ABB@ ABA@

Fig. 5: Colored tree CT (101*) for Fig. 1

Note that the complexity of update algorithms is the size
of the domain to be updated. Our algorithms can also be
pipelined. Moreover, using dual-port SRAM [18], TD-table
update also does not need to interrupt the lookup process.

IV. PRACTICAL CONSIDERATIONS

We further improve the memory footprint and update oper-
ations for practical situations.
A. Compressing FISE

With FISE, we can further minimize both the TCAM and
SRAM space. We first formally define equivalence of two
tables. As such, we can select another table in the equivalence
class that has the minimum size. First, we use a 5-tuple
{Pd, Ps, fr(·), fc(·), TD(·, ·)} to denote a FISE table.

Definition 4: {P ′
d, P

′
s, f

′
r(·), f

′
c(·), TD

′(·, ·)} is equivalent
to {Pd, Ps, fr(·), fc(·), TD(·, ·)}, if for any destination ad-
dress d and source address s, d matches pd in Pd and p′d
in P ′

d, s matches ps in Ps and p′s in P ′
s according to LMF

rule, then TD(fr(pd), fc(ps)) = TD′(f ′
r(p

′
d), f

′
c(p

′
s)).

For a given forwarding table, our objective is to find an
equivalent forwarding table with the minimum storage space.
We discuss TCAM and SRAM separately.

Algorithm 2: Compress-TCAM(Pd, Ps, fr(·), fc(·), TD(·, ·))

Output : {P ′

d
, P ′

s
, f ′

r
(·), f ′

c
(·), TD′(·, ·)}

begin1
Eliminate prefixes that will never be matched2
∀pd ∈ Pd,DF(pd) = SHA-1(

−−−−−−−−−→
TD(fr(pd), ·))3

{P ′

d
,DF′(·)} ← ORTC(Pd,DF(·))4

∀p′

d
∈ P ′

d
, f ′(p′

d
) ← f(pd), ∃pd ∈ Pd,DF′(p′

d
) = DF(pd)5

∀ps ∈ Ps,SF(ps) = SHA-1(
−−−−−−−−−→
TD(·, fc(ps)))6

{P ′

s
,SF′(·)} ← ORTC(Ps,SF(·))7

∀p′

s
∈ P ′

s
, f ′(p′

s
) ← f(ps), ∃ps ∈ Ps,SF ′(p′

s
) = SF(ps)8

∀p′

d
∈ P ′

d
, p′

s
∈ P ′

s
, TD′(f ′

r
(p′

d
), f ′

c
(p′

s
)) ← TD(f ′

r
(p′

d
), f ′

c
(p′

s
))9

end10

1) TCAM Compression: We develop Compress-TCAM(),
based on algorithm Optimal Routing Table Constructor
(ORTC) [6], which computes the minimized TCAM for a
one dimensional forwarding table. In Compress-TCAM(), we
first map each row/column vector to a scalar using SHA-
1 function1, then apply ORTC separately to destination and
source tables in TCAM.

The complexity of Compress-TCAM() is O(N × M), be-
cause the complexity of Line 4 and 7 is O(N) and O(M),
and the complexity of SHA-1 is O(N ×M). However, with
hardware support, SHA-1 can process SRAM at 2.5Gb/s.

1SHA-1 has much smaller collision probability than hardware error rate.

5

2) SRAM Compression: Minimizing destination/source ta-
bles also reduces SRAM space. However, we can further
compress TD-table in SRAM.

To find the minimum TD-table, we simply compress the TD-
table by merging duplicated rows (columns). Different with
traditional structures, where only aggregation is possible. Due
to flexibility in SRAM, FISE indirectly points to the index val-
ues through destination/source indexes. If two rows/columns
pointed by two prefixes are identical, we can eliminate one of
them by making their destination/source indexes point to the
same row/column.

Theorem 5: Eliminating the duplicated rows and columns
computes the minimum TD-table.

Proof: We give the proof in [26].
With the compression techniques, the update algorithms

in Section III remains the same. Besides, we can compress
the full table periodically, after multiple updates, rather than
every time [24]. Thus, the compression will not influence the
FISE performance. Here, SRAM compression only relies on
merging. However, we can further compress SRAM due to
its flexibility. In [26], we show that we can divide rows into
sub-rows, and eliminate duplicated sub-rows even their related
rows are not identical.
B. Reducing Update Burden on TD-table

Although the update actions minimize the number of ac-
cesses to memory, we find that the updates on default entries of
the source table, e.g., Insert(pd, *, a), can cause a large number
of rewrites. This is because 1) source default prefix resides at
the root node of the colored trees, thus updating a default entry
may cause a lot of subsequent updates; 2) Unfortunately, the
default entry changes more frequently than others, because it
represents connectivity of destination prefixes. Nowadays, the
update frequency on connectivity information can reach tens
of thousands per second [18].

We propose to isolate default entries from the source table.
We remove these entries from the source table and rather than
being matched explicitly when the full wildcard is hit, the
default entry is matched when none entry in the source table
is matched. In Section V, we will illustrate this in detail.

Note that with this improvement, some cells in TD-table
may be empty. This is because in a colored tree after removing
the root node, a white node may do not belong to the domain
of any black node. For example, in Fig. 5, after isolating
node(****), node(100*) does not belong to the domain of
any black node, thus cell (101*, 100*) becomes empty. When
a packet matches an empty cell, the packet will be forwarded
to the nexthop of the default entry.

V. IMPLEMENTATION

As a proof-of-concept, we implement FISE on a commercial
router, Bit-Engine 12004, which supports 4 line-cards. Each
line-card has a CPU board (clock rate 100MHz), two TCAM
chips (IDT 75K62100), an FPGA chip (Altera EP1S25-780),
and several cascaded SRAM chips (IDT 71T75602). The
FPGA has internal SRAM memory.

Our implementation is based on existed hardware, and
does not need any new device. We re-design the hardware

logic through rewriting about 1500 lines of VHDL code (not
including C code) of the original destination-based version.

A. Router Framework

����
����

��	

���

���������

�����

Control Plane ������

� ��!"�#�

$%&��'
��(

)����**

�����

����+

�����

, -

./

0123456785697 58:;3
<1=9>?@3 58:;3
A1B2C58:;3
D1E8FF67GC58:;3

Data Plane

Fig. 6: The framework of router design

In Fig. 6, we show the framework of our design. In data
plane, the packet first arrives at the Interface module. After
matching, the TCAM module will output the matched prefix2,
and through the TCAM associated SRAM, FPGA will get
the destination and source indexes. Then FPGA accesses the
internal SRAM block for the TD-cell. After obtaining the
nexthop index, FPGA accesses the mapping table, which
resides in another internal SRAM block. Then FPGA gets
the next hop information, and delivers the packet to the next
processing module - switch co-process module, which will
switch the packet to the right interface.

B. A Scalable FISE Design

We incorporated the improvements mentioned in Section
II-C and IV-B, such that FISE accommodates more rules,
and allow more frequent updates. With the improvements, the
source index (see Figure 7(a)) only stores the column address.
However, the format of destination index changes (see Figure
7(b)): 1) it has an indicator bit, which is set only if the related
destination prefix points to a row in TD-table (see Section
II-C); 2) it stores the default entry for the related destination
prefix (see Section IV-B).

Column Number

HI
JKLM

(a) Source index format

Row Number

NOPQRST
UOVTWXY
Z[�OV

�������	
 ��� �
 ����

��
����

�
����

(b) Destination index format
Fig. 7: Source and destination indexes format

Within the modified structure, the lookup process changes.
After obtaining destination and source indexes. FISE checks
the indicator bit, if it is unset, then FISE gets the default index
directly. Else if none source prefix gets matched, then FISE
gets the default index. Else if a source prefix is matched, then
FISE accesses the corresponding cell in TD-table. If the cell
is empty, then FISE switches back to the default index, else
FISE gets the index value of the cell. Using the obtained index
value, FISE looks up in the mapping table, and gets the next
hop information. Compared with the original lookup process
in Figure 3, the additional steps are processed in CPU, so it
does not bring additional accesses in TCAM or SRAM.

2Many devices support multiple lookups in parallel [13].

6

VI. DISCUSSION ABOUT SCALABILITY

We admit that although SRAM is larger than TCAM, the
basic FISE will bring scalability issues in SRAM in extreme
cases. Current largest SRAM chip in the market is 144Mb
(288Mb SRAM is on the roadmap of major vendors) other
memory products such as RLDRAM can provide similar
performances (allows 16 bytes reading with random access
time of 15 ns) with memory denominations of 576 Mbit/chip.
Suppose multiple chips (line-cards of Bit-Engine 12004 sup-
ports 4 SRAM chips while most routers can support 12) is
used, and 576Mb storage space is available for TD-table.
CERNET2 has about 7000 prefixes in its FIB, thus CERNET2
can even achieve full policies (49 millions rules, need 392Mb
SRAM) between all destination and source prefixes with
FISE. This greatly improves the traditional structures, which
accommodates less than 1 million rules. However, this is still
not enough for larger enterprises.

The situation can be improved because 1) Using non-
homogenous structure can exclude most destination prefixes
from destination table, and not all source prefixes need to be
diverted; 2) In the real world, different prefixes usually share
the same policy, e.g., prefixes belong the the same university
in CERNET2 are treated equally. They can be compressed
to a coarser granularity; 3) We can enforce restrictions when
adding a row or column into the TD-table. Beside, we are
making continuous efforts to further compress the TD-table.

VII. PERFORMANCE EVALUATION
A. Evaluation Setup

Fig. 8: Evaluation environment
Our evaluation environment is shown in Fig. 8. It has

three components: 1) a PC host with a CPU of Intel Core2
Duo T6570 acting as the control plane, 2) a 4GE line-card
equipped with both ACL-like and FISE structures, and 3)
a traffic generator (IXIA 1600T) with speed of 4Gbps. The
traffic generator is connected to the line-card through optical
fibers and the line-card is connected to the PC host through
serial cables. The traffic generator sends packets of 64 bytes
(including 18 bytes Ethernet Header) at full 4Gbps speed. The
line-card receives the packets, performs lookups and sends the
packets back to the traffic generator. Besides, IXIA 1600T can
summarize the sending and receiving rate.

We control the forwarding table by the PC host through
the serial cable. We update the forwarding table through the
pre-defined interfaces. We test update at different frequency,
i.e., 500, 5,000, and 50,000 updates per second. The TCAM
memory is structured according to L-algorithm [19]. More
specifically, prefixes of the same length are clustered together
and free space between different clusters is reserved to guar-
antee fast updates in TCAM.

B. Data Sets
We study two practical scenarios in CERNET2: policy

routing and load balancing. Within each scenario, we generate
data sets of rules that need to be stored in the forwarding
table, and update sequence. Based on real data collected from
CERNET2, we can test performance of FISE on IXIA 1600T.
Note that problems in these scenarios can be solved by other
techniques, e.g., MPLS. However, we focus on forwarding
table design in this paper.

1) Scenario 1: Policy Routing in CERNET2: CERNET2 has
two international exchange centers connecting to the Internet:
IX1 in Beijing and IX2 in Shanghai. During operations, we
found that IX1 is very congested with an average throughput of
1.18Gbps (February 2011); and IX2 is much more spared with
a maximal throughput of 8.3Mbps at the same time. CERNET2
wants to divert out-going International traffic to IX2.

We collect the prefix and FIB information from CERNET2.
There are 6973 prefixes in the FIB, and 6406 are foreign
prefixes. At the initial stage, we select three universities: THU
(in Beijing, with 38 prefixes), HUST (in Wuhan, with 18
prefixes) and SCUT (in Guangzhou, with 28 prefixes), and
forward their traffic to IX2. We thus simulate three FIBs on
three routers, Beijing, Wuhan and Guangzhou (we call each
FIB PR-BJ, PR-WH, and PR-GZ).

We generate the update sequence on the router of WH as
follows: the initial forwarding table only contains destination
prefixes, and we add all rules into the forwarding table all at
once. In this way, we simulate a common scenario, where ISPs
decide to carry out a policy at some time point.

PR-BJ PR-GZ PR-WH LB-MO LB-AF LB-NI

Rules # 250366 186306 365674 7118 7342 7410
Updates # / / 365674 / / 475773

TABLE II: Data sets overview
2) Scenario 2: Load Balancing in CERNET2: In the future,

we need a more dynamic mechanism to balance the load
between IX1 and IX2. We collected about 1TB NetFlow traffic
data during one month in 2012 from three major routers. In
Fig. 9, we show the bandwidth utilizations of both IX1 and
IX2 during the month. We can see that IX1 is much more
congested than IX2.

We try to redistribute each macro flow, identified by a des-
tination and source prefix pair, to different exchange centers,
such that load is optimally balanced. The problem is known to
be NP-hard, thus we use the greedy first-fit algorithm, which
assigns each macro flow to the least utilized exchange center.
The algorithm achieves an approximation factor of 2.

We construct three forwarding tables, each at different time
points, i.e., 6:00, 14:00 and 22:00 during Jan 15, 2012 on the
router of WH (we call each forwarding table LB-MO, LB-
AF, and LB-EV). Among them, LB-EV is the largest one,
because more traffic should be moved when 22:00 is the peak
traffic point during a day. We generate the update sequence by
computing a new load balancing forwarding table every hour.
C. Evaluation Results

1) Forwarding Table Size: We evaluate the storage space
that FISE consumes for all forwarding tables, and the stor-

7

age space after compression and adopting non-homogeneous
structure. As a comparison, we set the ACL-like structure as a
benchmarks. We compare FISE and ACL-like in each step. We
also compare with SPliT [17] structure, which first lookups in
one dimension, outputs a sub-table, and merges sub-tables if
they are the same. Because SPliT undergoes totally different
steps, we only compare FISE and SPliT in the final step.

In Fig. 12, we show the consumed TCAM and SRAM
storage space of each forwarding table.

Basic FISE and ACL-like Structure: In Fig. 12(a), we can
see that the TCAM space in FISE can be 1/50 as compared to
ACL-like structure. For example, in PR-WH, FISE consumes
1Mb TCAM storage, while ACL-like structure consumes more
than 72Mb. In the LB scenarios, FISE gain is smaller. This
is because in the PR scenario, many rules share the same
destination or source prefixes yet in the LB scenario, there
are much less two dimensional rules.

In Fig. 12(e), we can see that, in the PR scenario, the
SRAM space in FISE can be 1/40 as compared to ACL-
like structure. For example, in PR-WH, FISE consumes 3Mb
SRAM storage, while ACL-like structure consumes 125Mb. In
the LB scenario, FISE consumes more SRAM storage. This is
because in the PR scenario, although many rules exist, the TD-
table is very dense, and nexthop index further condenses the
nexthop information. In LB scenario, the TD-table is sparser.

Compression: In Fig. 12(b), we show the TCAM space
after compression. We also compress ACL-like structure by
minimizing the number of TowD rules. We can see that,
after TCAM compression, FISE still consumes much less
TCAM storage than ACL-like structure. In Fig. 12(f), we show
the SRAM space after compression. We can see that FISE
can further compress SRAM after TCAM compression. For
example, SRAM storage of PR-WH is compressed to be less
than 90K bits. This is because 1) the flexible mapping structure
of FISE; 2) data redundancies in TD-table. However, in the
ACL-like forwarding tables, the SRAM storage is proportional
to the TCAM storage, and can not be further compressed.

Non-Homogenous Structure: In Fig. 12(c), we show
the TCAM space with non-homogeneous structure. Non-
homogeneous structure does not save TCAM storage in FISE
but saves TCAM storage in ACL-like structure. However, to
support non-homogeneous structure, ACL-like structure must
be physically divided, because most TCAM chips only support
uniform entry width. In contrast, with FISE, we can logically
divide the table into two parts. In Fig. 12(g), we show the
SRAM space with non-homogeneous structure. We can see
that, with non-homogeneous structure, FISE consumes much
less SRAM than ACL-like structure in all forwarding tables.

Compression with Non-Homogenous Structure: In Fig.
12(d) and 12(h), we apply non-homogeneous structure and
compression techniques to FISE and ACL-like structure. The
resulting tables are the smallest among all tables. We can see
that TCAM and SRAM spaces in FISE are much smaller than
ACL-like structure. The improvement in SRAM is quite large
compared to non-homogenous structure only, because there
still exists redundancies after using non-homogenous structure.

We also compare FISE with SPliT, in Fig. 12(d), we see that
in the PR scenario, although SPliT improves ACL-like struc-
ture, it still consumes much more TCAM storage than FISE.
For example, on PR-WH, SPliT consumes more than 4.5Mb
TCAM while FISE only consumes 800Kb. This is because
SPliT does not fully eliminate the “multiplication” factor in
TCAM while FISE does. In the LB scenario, the improvement
is not obvious, because only a few two dimensional rules exist.
In Fig. 12(h), we see that in the PR scenario, SPliT consumes
much more SRAM storage than FISE. In the LB scenario,
SPliT also consumes similar SRAM storage with FISE.

From the above evaluations, we can conclude that compared
to other structures, FISE can save large TCAM storage space.
Although the SRAM storage space may be larger initially,
through various flexible techniques, SRAM storage space of
FISE can be largely reduced. Note that the metric of storage
can be converted to monetary cost and power consumption,
thus ISPs can save money/power [26].

2) Lookup Speed and Update: We show that FISE can
achieve line-card speed, and compare its update performances
with ACL-like structure3.

Lookup Speed: In Fig. 10, we show the lookup speed
without updates. We can see that without updates, both sending
and receiving rates reach line speed (Ethernet frame contains
8 bytes preamble and 12 bytes gap, thus the maximum rate is
4× 64

64+20 ≈ 3.0476Gbps). We also look into the data traces,
and find none packet loss. Note that the speed reaches the
upper limit of the line-card we use, and it could be higher
with better line-cards.

TCAM Accesses During Update: We evaluate the number
of accesses to TCAM because updates in TCAM will interrupt
the lookup. In Fig. 13(a), we show the number of TCAM
accesses per 100 updates in PR and LB scenarios. We see
that the number of TCAM accesses that FISE causes are three
orders less than ACL-like structure. For example, in the PR
scenario, FISE causes 2-3 TCAM accesses per 100 updates
while ACL-like structure causes several thousands. This is
because FISE stores much less entries in TCAM.

In Fig. 13(b) and 13(c), we show the lookup speed, i.e.,
receiving rate on the traffic generator, of FISE with different
update frequencies during 5 minutes. In Fig. 13(b), we can
see that in the PR scenario, FISE has no influence on lookup
while ACL-like structure degrades the lookup speed by 7%
in the worst case. This is because FISE causes much fewer
accesses to TCAM. In Fig. 13(c), we can see that in the LB
scenario, FISE does influence the lookup speed when there
are 50,000 updates per second, however, the influence is still
much smaller than ACL-like structure.

We conclude that FISE structure will not impose high
update burden on lookups. In the PR scenario, all updates
can be finished in less than 10 seconds without influencing
lookups, which is fast enough for installing a policy. In the LB
scenario, the maximum number of updates per hour is 1,301,
that can be finished within 1s without influencing lookups.

3SPliT does not have an online incremental update algorithm.

8

0 10 20 30
0

50

100

Time (day)

U
ti

liz
at

io
n

 (
%

)

IX2
IX1

Fig. 9: Bandwidth utilization of IX1 and IX2

0 100 200 300
3.0475

3.0476

3.0476

Time (sec)

R
at

e
(G

b
p

s)

Receiving rate
Sending rate

Fig. 10: Lookup speed without update

0 10 20 30
0

500

1000

Time (day)

N
u

m
b

er
 o

f
u

p
d

at
es

LB

Fig. 11: Number of updates for load balancing

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

FISE
ACL−like

(a) TCAM with basic structure
PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2

0
2
5

2
10

2
15

2
20

2
25

2
30

2
35

TCAM−Compress
SRAM−Compress
ACL−like

(b) TCAM after compression
PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2

0
2
5

2
10

2
15

2
20

2
25

2
30

2
35

FISE
ACL−like

(c) TCAM with non-homogeneous
PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2

0
2
5

2
10

2
15

2
20

2
25

2
30

2
35

FISE
ACL−like
SPliT

(d) TCAM after compression, with non-homo

PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2
0

2
5

2
10

2
15

2
20

2
25

2
30

2
35

FISE
ACL−like

(e) SRAM with basic structure
PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2

0
2
5

2
10

2
15

2
20

2
25

2
30

2
35

TCAM−Compress
SRAM−Compress
ACL−like

(f) SRAM after compression
PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2

0
2
5

2
10

2
15

2
20

2
25

2
30

2
35

FISE
ACL−like

(g) SRAM with non-homogeneous
PR−BJ PR−GZPR−WHLB−MO LB−AF LB−EV2

0
2
5

2
10

2
15

2
20

2
25

2
30

2
35

FIST
ACL−like
SPliT

(h) SRAM after compression, with non-homo
Fig. 12: Size of each forwarding table

0 500 1000 1500 2000 2500
10

0

10
2

10
4

10
6

N
u

m
b

er
 o

f
ac

ce
ss

es

Update sequence number (x 100)

LB−FISE
LB−ACL−LIKE

PR−FISE
PR−ACL−LIKE

(a) # of accesses to TCAM per 100 updates

2.8

2.9

3

Time (sec)

FISE

0 50 100 150 200 250 300
2.8

2.9

3

Seconds

R
ec

ei
vi

n
g

 r
at

e
(G

b
p

s)

ACL−like PR−50000
PR−5000
PR−500

(b) Lookup speed with updates for PR

2.8

2.9

3

Time (sec)

FISE

0 50 100 150 200 250 300
2.8

2.9

3

Seconds

R
ec

ei
vi

n
g

 r
at

e
(G

b
p

s)

ACL−like LB−50000
LB−5000
LB−500

(c) Lookup speed with updates for LB
Fig. 13: Lookup speed with updates

0 500 1000 1500 2000 2500
10

1

10
2

10
3

10
4

N
u

m
b

er
 o

f
A

cc
es

se
s

Update sequence number (x 100)

LB−Incremental
PR−Incremental

LB−Saturation
PR−Saturation

(a) # of accesses to SRAM per 100 updates

0 500 1000 1500 2000 2500

10
2

10
3

10
4

C
o

m
p

u
ta

ti
o

n
 t

im
e

(μ
s)

Update sequence number (x 100)

LB−Incremental
PR−Incremental

LB−Saturation
PR−Saturation

(b) Computation time per 100 updates
Fig. 14: Comparison between incremental updates and TD-Saturation()

0 5 10 15 20 25 30
10

2

10
3

10
4

10
5

Time (day)

N
u

m
b

er
 o

f
u

p
d

at
es

LB−Non−Isolation
LB−Isolation

Fig. 15: Isolation VS. non-isolation

SRAM Accesses During Update: In Fig. 14, we show the
number of accesses to SRAM within incremental update and
TD-Saturation(). We can see that for both PR and LB scenario,
incremental update causes much less accesses to SRAM.
This is because during each update, TD-Saturation() has to
reset all conflicted cells while incremental update only has to
reset a small part of them. For example, in the LB scenario,
incremental update causes 600 accesses in SRAM, while TD-
Saturation causes 10,814. In the PR scenario, incremental
update causes only 100 accesses, this is because in the PR
scenario, the source table are composed of prefixes from U1
and U2, whose prefixes are disjoint except for two prefixes
(240c::/28 and 240c:3::/32). Thus update a cell in TD-table
brings almost none conflicted cells.

In Fig. 14b, we also show the computation time per 100
updates for both incremental update and TD-Saturation(). The
result is similar with Fig. 14, because more accesses to SRAM

indicates more cells that have to be computed.
In Fig. 15, we show the number of accesses to SRAM

with and without isolating default entry in source tables.
We only consider the LB scenario, because PR scenario is
a special case where all nodes in the colored tree of any
destination prefix are black, thus isolating default entry has
no effect. In the LB scenario, we randomly insert 100 updates
on the default next hops of destination prefixes, after each
hour when load balancing is carried out. In Fig. 15, we can
see that with isolation, each update cause none additional
accesses to SRAM, because we only have to update the TCAM
and destination index. However, without isolation, each 100
updates cause 10,000 accesses to SRAM, because we also
have to update the conflicted cells in TD-table.

VIII. RELATED WORK

With increasing demands for flexible routing policies in en-
terprise networks, many routing solutions have been proposed

9

throughout the history, e.g., PBR [5], MTR [8], TCR [14][2]
and recent software-defined network (SDN). Most of these
solutions focus on re-designing the control plane. Our work
re-designs the forwarding plane, and is orthogonal with them.

The simplest extension to support rich policies is using mul-
tiple one dimensional forwarding tables [14][8], However, this
solution does not scale. Improved solutions can be divided into
two broad categories: CAM-based and algorithmic solutions
[25]. Here, we focus on CAM-based solutions.

CAM-based, especially TCAM-based solutions are the de
facto standard in industry. Most enterprise networks uses ACL-
like structure, which is ‘fat’ in TCAM and ‘thin’ in SRAM
[16]. However, TCAM-based solutions are limited by its ca-
pacity [17]. What is worse, TCAM is highly customized, there
are limited techniques we can use to compress it. The most
popular technique is aggregation [11][15]. In [23], the optimal
two dimensional forwarding table compression is studied. In
[15], a non-prefix approach that re-orders the ternary strings in
prefixes to compress TCAM is studied. Compared with them,
we move the storage from TCAM to SRAM, thus 1) TCAM
storage is reduced; 2) More compression techniques can be
used in SRAM.

There are studies proposing new structures to reduce the
“multiplicative” effect in TCAM [16]. In [17], a scheme
called SPliT first lookups in a one dimensional table storing
destination prefixes, and outputs a sub-table. Thus, it can
merge different sub-tables if they are the same. Compared with
SPliT, we make one step further and fully eliminate the effect.

More works are proposed for algorithmic solutions, such as
trie-based, decision-tree, and bitmap-based approaches [25].
However, they suffer from non-deterministic performance and
do not scale well [13]. Although we focus on CAM-based, we
borrow ideas from other non-CAM solutions. Bit-vector linear
search [9] performs individual lookups in each dimension,
each dimension will output a O(n) length vector represent-
ing matched rules. By interseting bit-vectors, the algorithm
computes the final result. Cross-producting [21] extracts the
elements in each dimension, and stores all combinations in a
database. Based on their ideas, we formally organize the rules
into TCAM and a compact matrix in SRAM, which is simple
and provides deterministic lookup speed.

IX. CONCLUSION
In this paper, we put forward a new forwarding table

structure called FISE, where forwarding decisions are based
on both destination and source addresses. Our focus is to
accommodate the increasing number of policies in enterprise
networks, which is also a practical concern of CERNET2.
Through separation between TCAM and SRAM, FISE can
greatly reduce the TCAM storage and keep fast lookup speed.

We implement the FISE-based forwarding table on the line-
card of a commercial router. Our design does not need any new
device. We also made comprehensive evaluations with the real
design and data sets from CERNET2. The results showed that
the performances of FISE are promising.

Here, we focus on layer-3 two dimensional table, due to the
importance of source address in routing. It is also an initial step

towards higher dimensional forwarding in our future work.
REFERENCES

[1] Router fib technology. http://www.firstpr.com.au/ip/sramip-forwarding/router-fib/ .
[2] F. Baker. Routing a traffic class. Internet Draft, Jan 2012. draft-baker-

fun-routing-class-00.
[3] T. Benson, A. Akella, and D. A. Maltz. Mining policies from enterprise

network configuration. In Proc. ACM IMC’09, Chicago, IL, Nov 2009.
[4] M. Boutier. Source-specific routing. Internet Draft, Jul 2013. draft-

boutier-homenet-source-specific-routing-00.
[5] Cisco. Policy-Based Routing (white paper), 1996.
[6] R. P. Draves, C. King, S. Venkatachary, and B. N. Zill. Constructing

optimal ip routing tables. In Proc. IEEE INFOCOM’99, New York, NY,
March 1999.

[7] J. Fu and J. Rexford. Efficient ip-address lookup with a shared
forwarding table for multiple virtual routers. In Proc. ACM CoNEXT’08,
Madrid, Spain, Dec 2008.

[8] Juniper. Multi-topology routing (white paper), Aug 2010.
[9] T. V. Lakshman and D. Stiliadis. High-speed policy-based packet for-

warding using efficient multi-dimensional range matching. SIGCOMM
Comput. Commun. Rev., 28(4):203–214, 1998.

[10] A. Lindem, S. Mirtorabi, A. Roy, and F. Baker. Ospfv3 lsa extendibility.
Internet Draft, May 2013. draft-acee-ospfv3-lsa-extend-01.

[11] A. Liu, C. Meiners, and E. Torng. Tcam razor: A systematic approach
towards minimizing packet classifiers in tcams. Networking, IEEE/ACM
Transactions on, 18(2):490 –500, 2010.

[12] H. Lu and S. Sahni. Conflict detection and resolution in two-dimensional
prefix router tables. IEEE/ACM Trans. Netw., 13(6):1353–1363, 2005.

[13] Y. Ma and S. Banerjee. A smart pre-classifier to reduce power
consumption of tcams for multi-dimensional packet classification. In
Proc ACM SIGCOMM’12, Helsinki, Finland, Aug 2012.

[14] F. Baker. IPv6 Source/Destination Routing using OSPFv3. Internet
Draft, Feb 2013. draft-baker-ipv6-ospf-dst-src-routing-00.

[15] C. Meiners, A. Liu, and E. Torng. Bit weaving: A non-prefix approach
to compressing packet classifiers in tcams. In Proc. IEEE ICNP’09,
Orlando, Florida, Oct 2009.

[16] C. Meiners, A. Liu, and E. Torng. Hardware Based Packet Classification
for High Speed Internet Routers. Springer, 2010.

[17] C. R. Meiners, A. X. Liu, E. Torng, and J. Patel. Split: Optimizing
space, power, and throughput for tcam-based classification. In Proc.
ACM/IEEE ANCS’11, Brooklyn, NY, Oct 2011.

[18] T. Mishra and S. Sahni. Duos - simple dual tcam architecture for routing
tables with incremental update. In Proc. IEEE ISCC’10, Riccione, Italy,
Jun 2010.

[19] D. Shah and P. Gupta. Fast updating algorithms for tcams. IEEE Micro,
21(1):36–47, 2001.

[20] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar. Making middleboxes someone else’s problem: network
processing as a cloud service. In Proc. ACM SIGCOMM’12, Helsinki,
Finland, Aug 2012.

[21] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel. Fast and scalable
layer four switching. In Proc. ACM SIGCOMM’98, Vancouver, British
Columbia, Canada, Aug 1998.

[22] Y. Sung, X. Sun, S. Rao, G. Xie, and D. Maltz. Towards systematic
design of enterprise networks. Networking, IEEE/ACM Transactions on,
19(3):695 –708, 2011.

[23] S. Suri, T. Sandholm, and P. Warkhede. Compressing two-dimensional
routing tables. Algorithmica, 35:287–300, 2003.

[24] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen, A. Shaikh, J. Wang,
and P. Francis. Smalta: practical and near-optimal fib aggregation. In
Proc. ACM CoNEXT’11, Dec 2011.

[25] G. Varghese. Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices. Morgan Kaufmann, Waltham, MA,
2005.

[26] S. Yang, M. Xu, D. Wang, and J. Wu. Two dimensional router: Design
and implementation. Technical report, Tsinghua University, May 2013.
www.wdklife.com/tech.pdf.

[27] M. Yu. Scalable Management of Enterprise and Data-Center Networks.
PhD thesis, Princeton University, Sep 2011.

