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Abstract—China Education and Research Network 2 (CER-
NET2) is deploying Two Dimensional-IP (TwoD-IP) routing.
That is, the forwarding decision of each router is not only based
on the destination address, but also on the source address. One
driving force is that the network needs the ability to divert
traffic flows (identified by their source and destination IPs and
we call them the VIP flows) to pre-defined paths (we call them
the VIP paths). There are also increasing demands on load
balancing, security issues, etc. A pure IP based solution is
favored over MPLS.

An important research issue towards TwoD-IP routing is
the deployment of the TwoD-IP routing scheme. It is widely
known that making changes to the network layer is notoriously
difficult. The proposed scheme should have least impact on the
current Internet protocols and infrastructure. A node-by-node
incremental deployment scheme is highly preferred. Obviously,
without full deployment, the resulting paths for traffic div ersion
may deviate from the required VIP paths. The incremental
deployment scheme should minimize such deviation.

In this paper, we formulate the problem as finding a
deployment sequence where the VIP traffic flows should follow
the VIP paths given 1) the number of nodes to be deployed and
2) the extra burden each router can spare for TwoD-IP routing.
We novelly transform our problem to boolean clauses and
develop efficient solutions following the MAX-SAT problem.

After deploying part of the routers, network topology and
VIP flows may change, which will enlarge the deviation of
the resulting paths from the required VIP paths. To reduce
the deviation, we devise a new protocol called PaFid, that
makes routers adaptively change their forwarding operations
according to topology and VIP flow information. We develop
a dynamic programming based algorithm for the adaptive
forwarding problem.

We evaluate our algorithms using comprehensive simulations
with BRITE generated topologies and real world topologies.
We conduct a case study on CERNET2 configurations. Com-
pared to an ad-hoc deployment and an arbitrary TwoD-IP
forwarding, our algorithms compute a deployment sequence
that achieves close to optimal performance after deploying
a few nodes. Besides, our adaptive forwarding protocol can
greatly improve the performance when network topology and
VIP flows change.

I. I NTRODUCTION

China Education and Research Network 2 (CERNET2),
the world’s largest IPv6 backbone network (including 59
Giga-PoPs), provides services to end users in Chinese u-
niversities across over 22 major cities. CERNET2 is an
operational network, yet it also undertakes experimental
purposes for new infrastructure and protocols validation.

CERNET2 is currently deploying source IP functional-
ities for QoS and security reasons. At the edge routers,
CERNET2 has deployed SAVI (Source Address Validation
Improvement) [1], where the source address of each packet
is checked. SAVI guarantees that each packet will hold
an authenticated source IP address, and thus enhances the
security of the network.

We are now deploying Two Dimensional-IP (TwoD-IP)
routing [2]. More specifically, the forwarding decisions of
intermediate routers will be based not only on the destination
addresses, but also the source addresses. One driving force
is policy routing, i.e., the network has the ability to divert
traffic flows (identified by their source and destination IPs
and we call them the VIP flows) to pre-defined paths (we
call them the VIP paths). CERNET2 has two international
exchange centers connecting to the Internet, Beijing (CNGI-
6IX) and Shanghai (CNGI-SHIX). For example, we find in
operation that CNGI-6IX is very congested with an average
throughput of 1.18Gbps in February 2011; and CNGI-SHIX
is much more spared with a maximal throughput of 8.3Mbps
at the same time.

With an overall considerations on security, load balancing,
policy routing, we chose to enhance the network with source
IP functionalities. We have developed a prototype router
(BitEngine 12004) and are designing TwoD-IP routing with
support from National Basic Research Program of China
(973).

There are many research issues to address for TwoD-IP
routing. An important problem is the deployment of the
TwoD-IP routing scheme. Unlike SAVI, which was deployed
on edge routers, TwoD-IP routing requires upgrade of the
CERNET2. It is widely known that making changes to the
network layer is notoriously difficult. The proposed scheme
should have least impact on the current Internet protocol
stack and infrastructure. A node-by-node incremental de-
ployment scheme is highly preferred.

Clearly, if only partial nodes are deployed, a VIP flow
may not strictly follow its VIP path. We need to minimize
the deviation. In this paper, we define a deviation that is
practically meaningful. We formulate a problem where we
need to derive a deployment sequence and minimize the
deviation given the number of nodes to be deployed. We
show that the problem is NP-complete by reducing it to
a dense-k subgraph problem. We then novelly transform
our problem to boolean clauses and develop algorithms
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Figure 1: Example of TwoD-IP routing

following the principle of the branch-and-bound algorithm
for MAX-SAT. We study several closely related problems for
different practical scenarios. We develop efficient algorithms
for these problems to compute incremental deployment
sequence.

Although we provide guidelines on deployment sequence,
the ISPs may do not want to follow the sequence. Even if
they follow, network topology and VIP flows may change af-
ter deploying. These factors can all enlarge the deviation.To
reduce the deviation, we propose to let the deployed routers
adaptively change their forwarding operations, according
to network topology and VIP information. We develop a
protocol call PaFid, which collects the needed information
and controls the forwarding operations of routers. We also
design a dynamic programming based algorithm, which is
optimal for reducing the deviation.

We conduct comprehensive simulations using BRITE gen-
erated topologies. We also evaluate our algorithms using the
topology of China Education and Research Network (CER-
NET), a medium scale IPv4 network with 110 routers and
238 links. The results show that our algorithm can achieve
close to optimal performance by deploying a few carefully
selected nodes. The adaptive forwarding mechanism can
greatly improve the performance, when ISPs do not follow
the optimal deployment sequence, or network topology and
VIP flows change after deploying. Besides, the adaptive
forwarding mechanism only stretch a little for the path that
VIP traffic flows through.

We carry out a case study with CERNET2 configuration
and our primary concerned VIP traffic flows. We suggest the
deployment sequence of TwoD-IP routing. By deploying 5
routers, we can successfully divert our concerned VIP traffic
flows from the congested CNGI-6IX to CNGI-SHIX.

II. BACKGROUND AND THE OPTIMAL INCREMENTAL

DEPLOYMENT PROBLEM

A. Background on TwoD-IP Routing

We first give the background of the TwoD-IP routing in
our context. In each router, there is a TwoD-IP forwarding
table, which is made up of two tables stored in TCAMs and
two tables stored in SRAM (see Fig. 1). One table in TCAM
stores the destination prefixes (we call itdestination table
thereafter), and the other table in TCAM stores the source
prefixes (we call itsource tablethereafter). One table in
SRAM is a two dimensional table that stores the indexed
next hop of each rule in TwoD-IP (we call itTD-table
thereafter) and we call each cell in the arrayTD-cell (or in
short cell if no ambiguity). Another table in SRAM stores
the mapping relation of index values and next hops (we call
it mapping-tablethereafter).

When a packet arrives, the router first extracts the source
address and destination address. Using the LMF rule, the
router finds the matched source and destination prefixes in
both source and destination tables that reside in the TCAMs.
According to the matched entry, the source table will output
a column address and the destination table will output a
row address. Combined with the row and column addresses,
the router can find a cell in the TD-table, and return an
index value. Using the index value, the router looks up the
mapping table, and return the next hop that the packet will
be forwarded to.

For example, in Fig. 1, a packet with a destination
address of 1001 and source address of 1111 will match
100* in the destination table, and 111* in the source table.
The destination table will output1st row, and the source
table will output1st column. The cell in1st row and1st
column of TD-table is 2, which corresponds to 1.0.0.2 in the
mapping table. Thus the packet will be forwarded to 1.0.0.2.

The updates of TwoD-IP forwarding table can be man-
ually configurable for registered VIP flows. Our current



CERNET2 requirement of diverting a few traffic flows will
end up in this way. In the future, when more source IP
functionalities are needed and VIP traffic flows are more
dynamic, a decentralized (e.g., OSPF-like) or centralized
(e.g., OpenFlow-like) mechanism can be developed.

B. The Optimal Incremental Deployment Problem

Let G = (V,E) be a network, whereV is the set of
nodes, andE is the set of links. In this network we have
multiple VIP traffic flows. LetT denote the set of traffic
flows, andt ∈ T be a VIP traffic flow. Let the source and
destination prefixes oft bePs(t), Pd(t), t can be represented
as < Ps(t), Pd(t) >. In this paper, we often omit the
destination prefix, i.e., only use the source prefix to identify
a flow if there is no ambiguity. For eacht, the user expects
it to travel on a pre-defined VIP path (which usually is not
the shortest path). We useV IP (t) = {v0t , v

1
t , . . . , v

j
t , . . .}

to denote the VIP path fort.
For a destination IP prefixPd (we omit the traffict if

there is no ambiguity). On a nodev, we call it forwardingan
operationId

v (Pd) to mapPd to a set of next hopsId
v (Pd) =

{a0, a1, . . . , aj , . . .}, each of which can lead the packets to
the destination (satisfying [3] to be loop-free and failure-
tolerant). In conventional routing, the result of a forwarding
Id
v (Pd) is a single next hop on the shortest path.
For a source IP prefix, we call itTwo Dimensional-IP

(TwoD-IP) forwardingas an operationIs
v(Ps) to mapPs to a

next hopat ∈ {a0, a1, . . . , aj, . . .}. TwoD-IP routingis that
for each packet, the routers perform a forwarding operation
and a TwoD-IP forwarding operation to find a next hop on
the pre-defined VIP path (note that for packets of non-VIP
traffic, a forwarding operation already results in a next hop).
Let the path of a packet forwarded by TwoD-IP routing be
L(Ps) = {v0, v1, . . . , vj , . . .}; here we only use the source
prefix Ps to denote a packet for simplicity.

If we deploy node v, this node is TwoD-IP forwarding
capable, i.e., this node can perform operationIs

v(Ps). A
deploymentG is a set of nodesV ′ ⊆ V that are deployed
to be TwoD-IP forwarding capable. If we do not deploy
nodev, v will use conventional shortest path routing. In a
deployment process, letκ be the number of nodes we want
to deploy.

Since a deploymentG may include a subset of nodes,
the resulting path for a VIP traffic flowt may deviate
from its V IP (t). Note that givenG, for a VIP traffic t

(identified by itsPs), its path is determined. LetL(G, Ps)
denote such path. Clearly, we want such deviation to be
small. To quantify such deviation, In our formulation, we
used hamming distance to represent the deviation between
paths. While hamming distance is a well-known indicator
of the differences between vectors and was widely used by
previous works [4], there exists other meaningful metrics.
We will consider other metrics and their comparison in our
future work. Note that we do not exclude other meaningful

metrics and they should be discussed in our future work.
We defineD(Li,Lj) = max {|Li|, |Lj |} − |Li ∩ Lj | the
distance between two pathsLi and Lj . Since shortest
path is used if a node is not deployed, we always have
|L(G, Ps)| ≤ |V IP (t)|. Thus,

Observation 1. D(V IP (t),L(G, Ps)) = |V IP (t)| −
|V IP (t) ∩ L(G, Ps)|.

Our objective is that given the number of routers that we
want to deploy, find a deployment that minimizes the total
distance of the paths of the VIP flows and their pre-defined
VIP paths.

Problem 1. Optimal Deployment: Givenκ, find a deploy-
mentGo where|Go| = κ so that

∑

t D(V IP (t),L(Go, Ps))
is minimized.

In practice, according to different volume of the VIP
traffic flows, we may need to assign different weight-
s, i.e., wt for flow t. In our problem formulation,
we can add this weight to the distance and modify
∑

t D(V IP (t),L(Go, Ps)) to
∑

t wtD(V IP (t),L(Go, Ps))
to show different importance oft in the aggregated distance.
In this paper, we will focus our study on the unweighted
problem. Our analysis and solutions will not change in the
weighted version. We will briefly mention the weighted case
in our case study.

As said, incremental deployment is highly favored in
practice. LetGi = Vi and Gj = Vj be two deployments.
We call Gj incrementalto Gi if Vi ⊆ Vj . An incremental
deploymentis a series of deploymentG0,G1, . . . ,Gj , . . .,
such thatGj is incremental toGi if i < j. Thus,

Problem 2. Optimal Incremental Deployment: Giv-
en κ0, κ1, . . . , κj, . . ., find an incremental deployment,
Go
0 ,G

o
1 , . . . ,G

o
j , . . ., such that |Go

i | = κi, and Go
i is an

optimal deployment.
Table I: Notation List

Notation Definition Notation Definition
V set of nodes Idv forwarding operation
t traffic flows Isv TwoD-IP forwarding
T set of traffic flows G a deployment
V IP (t) VIP path for t L(G, Ps) TwoD-IP path
Ps source IP prefix κ deployed number
Pd destination IP prefix

Table II: Forwarding operations for the routersc in Fig. 2

Destination Idc (·)
Pd =
(11∗)

{e}

(a) Conventional

Destination Idc (·) Source Isc (·)
Pd =
(11∗)

{d, e}
Ps(t0) d
non-VIP e

(b) TwoD-IP

We illustrate our definitions with an example topology
in Fig. 2. Here we assumea is the source ande is the
destination. For a traffic flow the shortest path froma to e
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Figure 3: Transformation from a graph

is {a, c, e}. Assume there is one VIP flowt0 and one non-
VIP flow. Assume the pre-defined VIP path isV IP (t0) =
{a, b, c, d, e}. As discussed, the VIP flow is identified by
its source IP prefix and destination IP prefix. Assume the
source and destination prefixes oft0 are Ps(t0) = (00∗)
andPd(t0) = (11∗); the source and destination prefixes of
non-VIP flow is(10∗) and(11∗). The forwarding operation
on nodec for conventional routing is shown in Table III(a).

To achieve TwoD-IP routing, nodec should forward the
packets oft0 to d, and the packets of non-VIP flow toe,
that is,Is

c (Ps(t0)) = d. We show the forwarding operation
and TwoD-IP forwarding operation on nodec for TwoD-IP
routing in Table III(b).

Assume we deploy one node, i.e.,κ = 1 and we selectc,
i.e., deploymentG = {c}. Then L(G, Ps) = {a, c, d, e},
and D(V IP (t0),L(G, Ps)) = 5 − 4 = 1. The optimal
deployment isGo = {c}.

III. O PTIMAL INCREMENTAL DEPLOYMENT

We will first develop an algorithm for the optimal deploy-
ment given the number of nodes to be deployed (Problem 1).
We show it can be naturally extended to solve the optimal
incremental deployment (Problem 2).

Theorem 1. Finding the optimal deployment (Problem 1) is
NP-Complete.

Proof: It is easy to see that the decision problem
of validating a given optimal deployment is solvable in
polynomial time. Therefore, finding the optimal deployment
is in NP class. To show this problem is NP-hard, we reduce
the dense-k subgraph problem to it; the former is known to
be NP-complete [5].

The dense-k subgraph problem is, given a graph(V,E)
and a positive integerk, find a subsetGk ⊆ V where|Gk| =
k, so that the number of induced edges is minimized, i.e.,
((u, v) ∈ E) ∩ (Gk × Gk).

We expand(V,E) to a network(V ′, E′), whereV ′ =
⋃

(u,v)∈E{u, v, p, q}, E′ =
⋃

(u,v)∈E{(u, v), (u, p), (v, p),
(v, q), (q, p)}. And we add a VIP traffic flowt = {u, v, p, q}
for each(u, v) ∈ E. Fig. 3 shows the transformation.

We next show that the optimal deploymentGo where
|Go| = κ = k in (V ′, E′), is equal to the so-
lution Gk to dense-k problem. Ifu, v ∈ Go, then
L(Go, Ps) = {u, v, p, q}; if u ∈ Go, v 6∈ Go, then
L(Go, Ps) = {u, v, q}; else L(Go, Ps) = {u, p, q}

(shortest path fromu to q). Thus only if u, v ∈ Go,
D(V IP (t),L(Go, Ps)) = 0, elseD(V IP (t),L(Go, Ps)) =
4 − 3 = 1. Obviously,

∑

t D(V IP (t),L(Go, Ps)) =
|E|−|((u, v) ∈ E) ∩ (Go × Go)|. So it is equal to maximize
|((u, v) ∈ E) ∩ (Go × Go)|. Obviously,Gk = Go.

Though the optimal deployment problem is NP-complete,
if κ, the number of nodes to be deployed, is a constant,
the problem is polynomial-time solvable even we perform
exhaustive search. However, ifκ is large, a straight-forward
exhaustive search is computationally unacceptable. There-
fore, whenκ is large, we develop a heuristic where we divide
κ into smallκ′ and find the deployment for each individual
κ′. This also naturally leads to an algorithm for the optimal
incremental deployment problem.

We first definepassing-through propertyof each node.
Intuitively, v has passing-through property ifv is on both
the path of the VIP traffic flow and its pre-defined VIP path.

Definition 1. Node v has passing-through property for
traffic t under deploymentG, if v ∈ V IP (t) ∩ L(G, Ps(t)).

Clearly, the more nodes have passing-through property,
the smaller the total distance. LetC(v, Ps(t)) denote the
passing-through property ofv for traffic t. We develop Algo-
rithm Passing-Through() to evaluateC(v, Ps(t)) of all nodes.
Intuitively, evaluation of passing-through properties ofall
nodes needs to check all possible deploymentsG, which
is exponential. We develop a novel Algorithm Passing-
Through() which does not need to perform an exhaust
search in the solution space. We will use Algorithm Passing-
Through() as a subroutine to solve the optimal deployment
problem.

Let θv be an indicator variable for nodev, if v gets
deployed,θv = 1, elseθv = 0. Our idea is that we do not
need to make an assignment toθ at the beginning (which will
reflect to a specific deployment). We use this abstractθ and
transfer the problem to a generalized MAX-SAT problem.
Our solution thus does not need to specify the deployment.

We first use an example in Fig. 2 to explain our idea.
For example, nodec has (or does not have) passing-through
property if and only if{(θa ∧ θb)∨¬θa} is equal to one (or
zero). We see that nodec has passing-through property in
two conditions: 1)a is not deployed or 2) botha andb are
deployed. In condition 1), sincea is not deployed, the traffic
will follow conventional shortest path routing. In condition



2), sincea is deployed,a will perform TwoD-IP forwarding
and the traffic will flow the VIP path to nodeb. Since b

is also deployed and will perform TwoD-IP forwarding, the
traffic will be forwarded toc. Correspondingly,{(θa ∧ θb)∨
¬θa} is equal to 1 if 1)θa = 0 or 2) θa = 1 and θb = 1.
We thus provide a mapping between clause satisfaction and
our problem. Similarly, we can see that the passing-through
property of nodea, b, d, e can be transformed to clauses ‘1’,
{θa}, {(θa∧θb∧θc)∨(¬θa∧θc)}, {(θa∧θb∧¬θc)∨(¬θa∧
¬θc)∨ (θa ∧ θb∧ θc)∨ (¬θa∧ θc)∨ (θa ∧¬θb)} respectively.

We defines child(v, t) as the first successor node that is
on bothV IP (t) and the shortest path. For example, in Fig.
2, s child(a, t0) = c, indicating thatc is the first successor
node onV IP (t0) = {a, b, c, d, e} and also on the shortest
path from a to e. Algorithm Passing-Through() computes
the passing-through properties of each node as follows.

Algorithm 1: Passing-Through(V IP (t))
Output : C(v, Ps(t)), ∀v ∈ V IP (t)

1 begin
2 C(v0t , Ps(t))←‘1’// v0t is the source node
3 s child(v0t , t)← compute s child(v0t , t)
4 for i = 1 to |V IP (t)| − 1 do
5 s child(vit, t)← compute s child(vit, t)

6 if vit = s child(vi−1
t , t) then

C(vit, Ps(t))← C(v
i−1
t , Ps(t))

7 else C(vit, Ps(t)) ← C(v
i−1
t , Ps(t)) ∧ (θ

v
i−1

t

)

8 for j = 0 to i− 2 do
9 if vit = s child(vjt , t) then C(vit , Ps(t))←

C(vit, Ps(t)) ∨ (C(vjt , Ps(t)) ∧ (¬θ
v
j
t

))

The input of Algorithm Passing-Through() is a VIP path
V IP (t), and the output is the passing-through properties
of each node onV IP (t). Basically, Algorithm Passing-
Through() follows a dynamic programming structure. We
show an example of Algorithm Passing-Through() using
Fig. 2 as the input. We show the last round execution
of Algorithm Passing-Through() to computeC(e, Ps(t0)).
As shown in Fig. 2,s child(d, t0) = e and d is the
predecessor node ofe alongV IP (t0). And nodeb, c satisfy
s child(b, t0) = e, s child(c, t0) = e. So C(e, Ps(t0)) =
C(d, Ps(t0)) ∨ (C(b, Ps(t0)) ∧ ¬θb) ∨ (C(c, Ps(t0)) ∧ ¬θc).

Theorem 2. The complexity of Algorithm Passing-Through()
is O(|V IP (t)|2), which is bounded byO(|V |2).

Proof: The loop in line 4 has to run for|V IP (t)| −
1 times, and the complexity ofcompute s child(v, t) is
bounded byO(|V IP (t)|). Thus, the theorem gets proved.

We now solve the optimal deployment problem. Recall
the generalized MAX-SAT problem as: given a setU of
variablesθi, a collection of clauses, where each clause is a
disjunction of conjunction of literals (e.g.,(θi ∧ θj) ∨ ¬θj ),
find a truth assignment such that the number of satisfied

clauses is maximized. We develop our Opt-Deploy() follow-
ing the branch-and-bound algorithm for MAX-SAT [6]. We
improve the branch-and-bound algorithm by exploring the
search tree in a depth-first order. At each node, the algorithm
compares the number of clauses violated (unsatisfied with
certainty) by the best assignment (called upper boundub),
with the number of clauses violated by the current assign-
ment plus an underestimation. The underestimation is the
number of clauses that become violated if we extend the
current partial assignment into a complete assignment. If
the current assignment plus the underestimation is greater
than the best assignment, the subtree of the node is pruned,
else the algorithm searches one level deeper into the tree. If
a clause is certain to be satisfied, it will be removed from
the union of clauses (Γ). Initially, ub is computed by a local
random search procedure callGSAT () [7]. When each step
the algorithm searches deeper, a variable inΓ is selected
following J-W rule [8], which gives precedence to variable
in shorter clauses.

The inputs of Algorithm Opt-Deploy() areub, Γ andκ.
The outputs of the Algorithm Opt-Deploy() are the optimal
deploymentGo and the minimum distance.

Algorithm 2: Opt-Deploy(ub, Γ, κ)
Initialize : Γ←

⋃
v∈V IP (t),θv 6=1 C(v, Ps(t)), ub←

GSAT (Γ)
Output : < Go, ub >

1 begin
2 if Γ = ∅ or Γ only contains violated clausesthen

// return the number of violated clauses
3 return < ∅, violated num(Γ) >

4 if lower bound(Γ) > ub then return < ∅,∞ >
5 u← select variable(Γ)// following J-W rule
6 if

∑
v∈V θv < κ then // setθv to be 1 inΓ

7 < G, ub1 >← Opt-Deploy(ub,Γ|θu, κ)
8 if ub1 ≤ ub then ub← ub1

9 < G′, ub2 >← Opt-Deploy(ub,Γ|¬θu, κ) // setθv to be 0
10 if ub2 ≤ ub then ub← ub2, return < G′, ub >
11 else return < G ∪ {u}, ub >

Theorem 3. The complexity of Algorithm Opt-Deploy() is
O(

(

|V |
κ

)

× |T | × maxt |V IP (t)|
2
), which is bounded by

O(|V |κ+2 × |T |).

Proof: The algorithm has to check at most
(

|V |
κ

)

cases.
Each case has at most|T | × maxt |V IP (t)| clauses, each
clause has at mostmaxt |V IP (t)| variables.

This complexity is exponential. However, we can see
that if κ is constant, the complexity becomes polynomial
and we can perform exhaustive search. But whenκ is
large, the computing time increases fast withκ. To reduce
computing time, we develop a heuristic, which computes
Opt-Deploy(ub, Γ, κ) by running Opt-Deploy(ub, Γ, 1) for
κ times. The complexity is then reduced toO(|V |3×|T |×κ).

Note that this heuristic can naturally be used to solve our
optimal incremental deployment problem. We call it Inc-



Deploy() for future reference.
Next, we reduce the search space of our problem given a

key observation as follows.

Observation 2. D(V IP (t),L(G, Ps)) = 0 if and only if for
0 ≤ i ≤ |V IP (t)− 2|, θvi

t
= 1 whens child(vit) 6= vi+1

t .

Proof: The correctness proof is in Appendix. A.
Let K = {vit|s child(vit) 6= vi+1

t , ∀t, 0 ≤ i ≤ |V IP (t)−
2|}, Observation 2 shows that we only need to deploy nodes
in K to guarantee that the paths that VIP flows are identical
with pre-defined VIP paths. We call the nodes inK key
nodes.

Table III: Algorithm Table

Algorithm Problem Definition Problem
Opt-Deploy() Optimal Deployment Problem 1
Inc-Deploy() Optimal Incremental Deployment Problem 2

Adp-Forward() Adaptive Forwarding Problem 3

IV. A DAPTIVE FORWARDING

The deployment sequence derived from Algorithm Inc-
Deploy() is fixed. In practice, the deployment may need to
be more flexible. Even the deployment sequence is settled,
the network topology or VIP paths may change. As such,
we need a more adaptive deployment scheme.

To address this problem, our idea is to make the de-
ployed routers adaptive in the forwarding operation, i.e.,
Is
v(Ps). More specifically, a deployed router may change the

TwoD-IP forwarding operation of VIP flows. LetJ (G) =
{Is

v(Ps(t))|v ∈ G, t ∈ T }, we call J (G) an adaptive
forwarding for deploymentG. Our objective is that givenG,
find an adaptive forwarding that minimizes the total distance
between the paths of the VIP traffic flows and their pre-
defined VIP paths. Formally,

a b c

e
VIP(t0)

shortest

d

f

Figure 4: Adaptive forwarding example

Problem 3. Adaptive Forwarding: Given a deploymentG,
find an adaptive forwardingJ (G) that minimizes the total
distance

∑

t D(V IP (t),L(G, Ps)).

We use an example in Fig. 4 to illustrate the definition.
Here we assumea is the source andd is the destination.
The shortest path froma to d is {a, b, c, d}. Assume
there is one VIP flowt0 whose VIP path is{a, b, e, f, d}.

After deploying nodea, i.e., G = {a}, the distance be-
tween the path oft0 and the pre-defined VIP path is
D(V IP (t0),L(G, Ps(t0))) = 5 − 3 = 2. Within adaptive
forwarding, nodea can divert the traffic oft0 to nodee, i.e.,
Is
a(Ps(t0)) = e, then the traffic oft0 flows along{a, e, f, d},

and the distance decreases to be 1.
To find the adaptive forwarding, we devise a centralized

protocol, that can change the forwarding operations of each
router according to the topology and VIP flow information.
We also develop a dynamic programming based algorithm,
that computes the adaptive forwarding operations.

A. PaFid Overview

Unlike in the optimal deployment scheme, where we can
simply deploy, here we need to deploy a new protocol
to facilitate the computing and changing of the forward-
ing operations. In this section, we devise PaFid (Protocol
for AdaptiveForwarding duringIncrementalDeployment),
which is a centralized protocol that can collect topology and
VIP flow information, and return the computed results to
each router. PaFid is based on centralized control, because
the controller can easily obtain the global topology and
VIP flow information, and flexibility change the forwarding
operations on each router.

In Fig. 5, we show the information flow of PaFid. Within
PaFid, deployed routers sends the topology information to
the controller, users send VIP flow information to the con-
troller, and the controller computes the adaptive forwarding,
then returns the forwarding operations to each router. We
list the three main communication procedures of PaFid as
following.

• Topology Information: The deployed routers should
notify the controller of the routers being deployed. The
notification should be sent once a router is deployed,
and sent periodically to maintain a soft state on the
controller. And one of the deployed router should
send the global network topology information to the
controller (we assume that link state routing protocol
(e.g., OSPF) is used).

• VIP Flow Information: User can subscribe VIP flows
to the controller. The VIP flow information includes the
routers sequence that the flow passes by. The controller
is responsible for VIP flows validation, including user
identity validation and path validation, i.e., satisfying
[3] to guarantee loop-free. Note that “users” generally
refers to the entities that set up the VIP flows, routers
themselves can also be “users”.

• Forwarding Operation information: After computa-
tion, the controller sends back the forwarding opera-
tions to each router. And routers install the forwarding
operations into their forwarding tables.



Forwarding 

operations

Topology

Deployed Routers

Un-deployed Routers

Controller

Users

VIP flows

Figure 5: Information flow of PaFid

B. Adaptive Forwarding Algorithm

After collecting the topology and VIP flow information,
the controller of PaFid should compute the adaptive forward-
ing. In this section, we develop a dynamic programming
based algorithmAdp-Forward()which is optimal.

To be loop-free and failure-tolerant, we adopt the deflec-
tion rules in [3]. In this paper, due to page limit, we use the
simplest “one hop down” rule, i.e., a router can divert vip
traffic to any neighbor given that the neighbor is closer to
the destination. Algorithms using other rules can be found
in [9]. To avoid high stretch of VIP paths, we defineǫ as
the maximum stretch ratio, such that|L(G,Ps)|

|V IP (t)| ≤ ǫ.

Algorithm 3: Adp-Forward(G, ǫ)
Output : J

1 begin
2 for t ∈ T do
3 λ = ǫ× |V IP (t)|, d = v

|V IP (t)|−1
t

4 R = V − {d}, f(d, i) = 1, 0 ≤ i ≤ λ− 1
5 while R 6= ∅ do
6 Selectu ∈ R that is closest tod
7 if u ∈ G then
8 FindN ⊂ V , v ∈ N if (u, v) ∈ E, andv is

closer tod
9 f(u, i) = minv∈N f(v, i− 1) + Iu∈V IP (t),

1 ≤ i ≤ λ− 1
10 f(u, 0) = 0
11 Isv(Ps(t)) = w, where

w ∈ N , f(w, i− 1) = minv∈N f(v, i− 1)

12 else
13 Find w, the successor ofu along shortest path
14 f(u, i) = f(w, i−1)+Iu∈V IP (t), 1 ≤ i ≤ λ−1,

f(u, 0) = 0

15 R = R− u

16 return J (G) = {Isv(Ps(t))}, t ∈ T , v ∈ G

The input of Adp-Forward() is a deploymentG, i.e., the
subset of routers that have sent notifications to the controller,
and the maximum stretch ratioǫ. The output of Adp-
Forward() is the adaptive forwarding, i.e., the forwarding
operations for all VIP flows on each deployed router. In
Algorithm Adp-Forward,Iu∈V IP (t) is an indicator function,
such thatIu∈V IP (t) = 1 if u ∈ V IP (t), elseIu∈V IP (t) = 0.

Theorem 4. The complexity of Adp-Forward() isO(|V | ×
log(|V |)× |T |).

Proof: The loop in line 2 runs for|T | times, the loop in
line 5 runs for|V | times. The complexity of the action (line
8) to find the lowest cost neighbor to reach the destination
is O(|V |). However, for each VIP path, we can perform a
ranking algorithm on all node ofV based on their costs
to reach the destination. The lowest complexity of ranking
algorithms will be0(|V | × log(|V |)).

V. I MPLEMENTATION

We realize the algorithm Inc-Deploy() as an offline soft-
ware that runs on PC hosts. We also implement the PaFid
on routers and a PC host that acts as the centralized
controller. On a commercial router (BitEngine 12000) that
has been equipped with TwoD-IP, we realize the interfaces
through which we can change the forwarding operations
of the router. We implement PaFid, such that VIP flows
information is maintained in the controller, and the deployed
routers will send both topology and VIP flow information
to the controller. We realize the controller as a module in
OpenFlow [10], which can provide centralized control on
forwarding operations of routers over the network. After
collecting the needed information, the controller will send
back the forwarding operations to routers through the pre-
defined interfaces.

VI. PERFORMANCEEVALUATION

A. Simulation Setup

We evaluate the performance of our TwoD-IP routing
scheme using both BRITE [11] generated topologies and
CERNET. A case study on CERNET2 is in the next section.

1) Topology:We generate topologies with nodes from 50
to 400. To set up a VIP flow, we first randomly select a pair
of source-destination nodes, and then randomly select its
VIP path which 1) is not the shortest path and 2) satisfies
the rules in [3] to prevent routing loops. The number of VIP
flows is between 10 and 100. The maximum stretch ratio of
adaptive forwarding is set to be 1.5. The default values and
other parameters of our evaluation are in Table IV.

Table IV: Parameter Table

VIP flows No. Nodes links/new node Mode
30 150 3 Router Only

Model Placement α / β ǫ

Waxman Random 0.15/0.2 1.5

We also use the topology of CERNET, which is a
medium-scale IPv4 network with 110 routers and 238 links.

We compare our algorithm with random deployment
(RD). We admit that random deployment is artificial, and
service providers may attempt other schemes. We thus com-
pare with human-like deployment (HD), that only selects
key nodes to deploy (see Observation 2). Note however,
HD is based on an observation within the contribution



of our study. Besides, we also set full deployment (FD)
as a benchmark for comparison. Our evaluation metric is
the averaged normalized distance (or in shorta-distance
thereafter) between the paths computed by our algorithms
and the pre-defined VIP paths. Formally, a-distance equals to∑

t D(L(G,Ps),V IP (t))∑
t |V IP (t)| . The smaller the a-distance, the better.

If a-distance equals to zero, the performance is identical to
the FD, i.e., the computed paths are identical to the pre-
defined VIP paths. The results shown in this section are
averaged by ten random and independent experiments.

B. Simulation Results

1) Optimal Incremental Deployment:Fig. 6(a) shows a
typical incremental deployment process and compares differ-
ent deployment algorithms. There are 150 nodes and 30 VIP
flows. We deploy three nodes in every incremental step. In
Fig. 6(a), we see that even we do not deploy any router, the
a-distance is still around 50%. This is because the shortest
path can travel through a few VIP nodes already. When
we deploy more nodes, the a-distance decreases. However,
Algorithm Inc-Deploy() performs better than RD and HD.
For example, after we deploy 33 nodes, the nodes chosen by
Algorithm Inc-Deploy() match the nodes on the VIP paths
very well, and the a-distance is only 2.02%. On the contrary,
if we randomly choose 36 nodes to deploy, the a-distance
is 39.08%, if randomly choose 36 key nodes to deploy, the
a-distance is 17.82%. When we look into the details of the
simulation trace, we see that there are only 4 nodes that
do not match the VIP nodes using Algorithm Inc-Deploy(),
while there are 68 VIP nodes not covered using RD, 31
VIP nodes not covered by HD. We emphasize again that
the essence of incremental deployment is to demonstrate the
benefits of TwoD-IP routing when deploying as few nodes
as possible. Clearly, our algorithm achieves this.

In Fig. 6(a), we see that for the paths computed by RD,
the a-distance to the VIP paths can even increase after
more nodes are deployed. For example, when 36 nodes
are deployed, the a-distance is 36.78%. After we deploy
another 3 nodes, the a-distance increases to 37.36%. On
the contrary, we see in Fig. 6(a), this never happens to
Inc-Deploy(). We also evaluate adaptive forwarding Adp-
Forward() in Fig. 6(a). We see that its impact is quite small.
Both HD and Inc-Deploy() will achieve optimal performance
after deploying all key nodes, however, the a-distance of Inc-
Deploy() decreases much faster than HD.

Fig. 6(b) shows the impact of the incremental step size.
We compare the performance for four step sizes, 1, 2, 5, 10
(i.e., 1, 2, 5, 10 nodes are deployed in each incremental
step). We see that there is not much difference between
different step sizes. Therefore, our heuristic algorithm,using
small step size to reduce the computational complexity, is
satisfactory.

In Fig. 7, we study the impact of the network size. We see
that for Inc-Deploy() and HD, the a-distance decreases when

the network size increases. For RD, the a-distance increases
when the network size increases. This is because when the
network is larger, the number of nodes that belong to VIP
paths increases slower than the total number of nodes. Since
Inc-Deploy(), and HD always choose from this set of nodes,
the performance improves. On the contrary, RD selects
randomly from all nodes, making its performance decrease.
In Fig. 7, we also compare different deploy algorithms
within two different deployment ratios, 10%, 20% (i.e., 10%,
and 20% of all nodes are deployed). Clearly, the more
nodes deployed, the shorter the a-distance. And by deploying
10% more nodes within RD, the improvement (i.e., the gap
between 10% and 20% deployment ratio) is smaller than
Inc-Deploy() and HD. Although the a-distance both Inc-
Deploy() and HD decrease with network size, the a-distance
of Inc-Deploy() drops more quickly to be zero, especially
when deployment ratio is low. The result indicates that better
performance can be achieved by deployed carefully selected
nodes based on our algorithm, especially at the initial stage
of incremental deployment.

In Fig. 8, we study the impact of the number of VIP
traffic flows. In practice, when the number of VIP traffic
flows increases, we will also deploy more nodes to be TwoD-
IP capable. Thus, we set an increasing ratiox between the
number of VIP flows and the nodes deployed, i.e., every
x additional nodes will be deployed when there is one
additional VIP traffic flow. We compare different deploy
algorithms within two different ratios 1 and 0.2. We see
that the a-distance decreases when the number of VIP flows
increases for all algorithms. This shows that deploying more
nodes has higher positive impact. RD performs the worst,
even the increasing ratio of RD is 1, its performance is
still worse than Inc-Deploy() with increasing ratio of 0.2.
When the ratio is high, the a-distance of HD is quite small.
However, when the ratio is low, the a-distance of HD is
almost as worse as RD.

2) Adaptive Forwarding:We use Inc-Adp(), RD-Adp and
HD-Adp to denote adaptive forwarding running on nodes
selected by Inc-Deploy(), RD and HD.

Fig. 9 shows the impacts of adaptive forwarding on a
random deployment process (RD or HD) that does not follow
the optimal incremental deployment. We deploy three nodes
in every incremental step. We see that adaptive forwarding
improves both RD and HD. For example, if we randomly
choose 90 nodes to deploy, the a-distance is 34.71%, howev-
er, the a-distance decreases to be 27.65% if we use adaptive
forwarding between these 90 nodes; if we randomly choose
12 key nodes to deploy, the a-distance is 28.49%, and the
a-distance decreases to be 22.93% if adaptive forwarding
is used. In the extreme case, adaptive forwarding improves
RD by over 7% maximally, while improves HD by 5.5%
maximally. This is because RD will choose non-key nodes,
which can also act as relay nodes to further decrease the
a-distance.
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Figure 6: a-distance as a function of number of deployed nodes
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of deployed nodes
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Figure 11: a-distance as a function of number of changed nodes
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Figure 12: a-distance as a function of the maximum stretch ratio

In Fig. 10, we study the benefits of adaptive forwarding
when VIP flows change. After setting up 30 VIP flows and
choosing 30 nodes to deploy according to Inc-Deploy(), we
generate 10-70 new VIP flows. We see that when the number
of VIP flow increases, the a-distance will increase. The more
the new VIP flows join in, the larger the a-distance. However,
with adaptive forwarding, the a-distance increases slower,
i.e., the gap between Inc-Deploy() and Inc-Adp() becomes
larger when more VIP flows generated. This is because
adaptive forwarding can regulate the VIP flows that are away
from the right VIP paths.

In Fig. 11, we study the benefits of adaptive forwarding
when topology changes. After deploying 30 nodes, we

randomly revoke 5-10 existed or add 5-30 new nodes1.
The a-distance will increase when more nodes are added.
This is because when new nodes are added, the forwarding
action (e.g., the next hop on the shortest path) of each node
may change. Thus the a-distance will increases because the
deployed nodes are computed based on the original topology.
With adaptive forwarding, the a-distance increases slower.
The result is similar with Fig. 10, indicating that through
adaptive forwarding, we can achieve substantial benefits
when VIP flows or network topology change.

In Fig. 12, we study the impact of the maximum stretch
ratio on adaptive forwarding. We set maximum stretch ratio
to be 1.0-1.8 when randomly deploying 60 nodes or 15 key

1the influenced VIP flows will be regenerated



nodes. Fig. 12 shows that the a-distance increases when the
maximum stretch ratio increases from 1.0 to 1.2. However,
the a-distance remain almost the same when the maximum
stretch ratio is larger than 1.2. This is because adaptive
forwarding only slightly stretch the path, by at most 20%.

3) Simulation Results on CERNET:We further validate
our results using CERNET. Due to page limit, we only
evaluate optimal incremental deployment algorithms. Fig.
13(a) shows an optimal incremental deployment process
by deploying two nodes at each step. We see that the a-
distance is 26.7% even we do not deploy any router, this
is because of the low connectivity of CERNET topology.
When we deploy more nodes, the a-distance decreases and
Inc-Deploy() performs much better than RD and HD. After
deploying 8 nodes, the a-distance of Inc-Deploy() is 1.78%,
the a-distance of RD is still 22.49%, and the a-distance of
HD is 5.92%. Fig. 13(b) shows the impact of the number of
VIP flows. Here, we set the increasing ratio to be 0.1 and
0.5, i.e., deploying 0.1 and 0.5 nodes after adding a VIP
flow. In Fig. 13(b), a-distance decreases with the number of
VIP flows. Inc-Deploy() decreases faster and performs the
best. HD achieves nearly optimal result when the ratio is
high, but much worse when the ratio is low.

VII. T WOD-IP ROUTING FORCERNET2:A CASE
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Figure 15: CERNET2 topology

We conduct a case study with the real topology and
prefix information of CERNET2. Our work also serves as a
reference for the future deployment of TwoD-IP routing on
CERNET2.

We want to move the out-going International traf-
fic of three universities, i.e., THU (in Beijing, with
38 prefixes), HUST (in Wuhan, with 18 prefixes) and
SCUT (in Guangzhou, with 28 prefixes) to CNGI-
SHIX (Shanghai portal). There will be three VIP path-
s, V IP (t0) ={Beijing, Tianjin, Jinan, Hefei, Nanjing,

Shanghai}, V IP (t1) ={Wuhan, Nanjing, Shanghai} and
V IP (t2) ={Guangzhou, Xiamen, Hangzhou, Shanghai}.

In the CERNET2 scenario, we apply the weighted version
of our problems and each VIP traffic flow is assigned a
weight that is proportional to the traffic volume. In our case,
we set the weights towt0 = 19.6, wt1 = 5.1, wt2 = 11.0
(for details of the weight assignment, please refer to [9]).

Fig. 14(a) shows the optimal incremental deployment
process, where we deploy nodes one by one. We compare
Inc-Deploy() and HD algorithm (here nodes are randomly
selected from the VIP paths, the candidate node set includes
Beijing, Tianjin, Jinan, Hefei, Nanjing, Shanghai, Wuhan,
Guangzhou, Xiamen, Hangzhou). For Inc-Deploy(), the de-
ployment sequence we suggest is Guangzhou, Wuhan, Jinan,
Tianjin and Beijing. We see that after deploying the router
of Guangzhou (occupies 30.8% of the total traffic), the a-
distance falls from 100% to 69.2%. For HD to achieve
similar performance, we need to deploy routers at five cities.

VIII. R ELATED WORK

There is little work on two dimensional routing since IP
routing won over circuit based routing such as PNNI [12].
Because of the important semantic in source address, recent
years see more research on giving sources control.

IP (loose/strict) source routing [13] allows the sender to
take full control of the routing path. However, due to security
reason [14], source routing is disabled in most networks.
In addition, source routing is inefficient because of the
additional IP option header, and it hands most control to
the end users, which is unfavorable for ISP operators.

MPLS [15] is often used to manage traffic per-flow.
However, due to the control and management overheads,
MPLS raises concern for scaling when the number of label
switching paths (LSPs) increases [16]. The more the LSPs,
the heavier the system burden [17]. MPLS only supports
limited number of LSPs (one Cisco moderate router supports
600 LSPs, according to data in 2005 [18]).

There are many other routing schemes that have been
integrated with source address lookup. Such as Policy based
routing (PBR) [19] , Customer-specific routing [20], Mutli-
topology routing [21], and even overlay routing [22], which
is beyond the network layer. However, for an ISP, a light
weight, pure IP-based, more network controllable solution
is favored.

Due to security and accounting problems, CERNET2
has deployed SAVI to validate the source address of each
packet at the edge points of the network. Currently, SAVI
has been installed by more than 100 university campus
network. Confirmed SAVI users are more than 900,000
[23]. CERNET2 then decides to make full use of source
address for better reliability, security and traffic distribution
by integrating the source address lookup into IP routing.

Incremental design is advocated [24] for network layer
proposals. Many protocols and new algorithms can be in-
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crementally deployed [3][25][26]. Our problem is specific
and unique to TwoD-IP routing. Thus a design from scratch
is needed.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a study of TwoD-IP routing
where the forwarding decisions is not only based on the
destination IP addresses but also on the source IP addresses.
Our focus is on incremental deployment requirement, a
practical concern of CERNET2. We formulated our problem
such that we need to find a deployment sequence given
the number of deployed nodes. We proved the problem to
be NP-complete. We then novelly transformed our problem
to boolean clauses and developed an efficient algorithm
following the principles of branch-and-bound algorithm for
MAX-SAT.

We evaluated our algorithms comprehensively using CER-
NET and other topologies. We showed that by deploying
a few nodes suggested by our deployment sequence can
successfully manage the traffic flows, and adaptive for-
warding mechanism can flexibility manage the traffic flows
when topology or VIP flows change. We then presented a
case study on CERNET2 and provided a fine deployment
sequence.

Based on our specific consideration, we use hamming
metric to represent the deviation between paths. While there
are other meaningful metric in graph theory, our next work
includes trying different metrics for other considerations.
We assertively use summation of individual path distance
to express the total deviation, validation
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APPENDIX

A. Proof for Observation 2

Proof: fff It’s easy to prove that it is a sufficient
condition. With precondition thatC(v0t , Ps(t)) is 1, sup-
pose that for allj < k, C(vjt , Ps(t)) are 1. Then if
s child(vk−1

t , Ps(t)) = vkt , C(vkt , Ps(t)) must be 1, else
according to Observation 2 we haveθ

v
k−1

t
= 1, thus

C(vkt , Ps(t)) is 1. So we can conclude that all clauses
C(v, Ps(t)) are 1.

Then we prove that the condition is necessary. According
to Algorithm 1, if s child(vjt , Ps(t)) 6= v

j+1
t and θ

v
j
t
6= 1,

there must existk0 < j such thats child(vk0

t , Ps(t)) =
v
j+1
t (s child(vk0

t , Ps(t)) 6= vk0+1
t ) and θ

v
k0
t

6= 1. Indicat-

ing there must bek1 < k0 such thats child(vk1

t , Ps(t)) 6=
vk1+1
t and θ

v
k1
t

6= 1. Thus there is a integer sequence
k0 > k1 > k2... until kl = 0(l > 0), obviously,
if s child(v0t , Ps(t)) 6= v1t , θv0

t
must equal to 1 (else

C(v1t , Ps(t)) will be 0). Thus the assumption is false.


