
When Zero-Trust Meets Federated Learning
Xinran Zhang∗, Dan Wang†, Yifei Zhu‡, Weilong Chen∗, Zheng Chang∗§ and Zhu Han¶∥

∗School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
†Department of Computing, The Hong Kong Polytechnic University, Hong Kong

‡UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, China
§Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
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Abstract—Nowadays, Federated Learning (FL) has emerged
as a promising and critical machine learning scheme to protect
data privacy and reduce communication overhead. As the scale
and connectivity expand in the FL system, enhancing the
model’s robustness against security threats from malicious clients
grows ever more critical. An effective defensive solution involves
selecting benign clients appropriately, thereby mitigating the
vulnerability of the FL system to malicious attacks. However,
clients exhibit varying behaviors over time, which complicates
the task of accurately modeling their future trustworthiness.
Moreover, blindly trusting clients with high trust values poses
risks, given the potential for severe losses from betrayal. To tackle
these problems, we propose a zero-trust policy in FL aimed at
establishing continuous trust in each client while maintaining
skepticism towards potential betrayal attacks. Specifically, we
develop a Dirichlet-based trust evaluation technique to enable
a comprehensive selection of trustworthy participants. This
technique leverages the posterior distribution to estimate clients’
trust values from their evolving behavior records over time.
Then, we anticipate potential betrayal from a selected client
and formulate a min-max optimization problem to minimize the
worst-case betrayal loss, thereby boosting the system’s betrayal-
aware robustness. Next, we convert this problem into a convex
optimization problem and utilize the interior point method for
resolution. We conduct extensive simulations to validate the
efficacy of our proposed zero-trust policy in accurately assessing
trust and enhancing the model’s robustness to betrayal.

Index Terms—federated learning, client selection, zero-trust,
trust evaluation, betrayal attack.

I. INTRODUCTION

Federated Learning (FL) [1] is becoming a thriving research
area in both academia and industry, primarily attributed to its
advantage in protecting data privacy and boosting communi-
cation efficiency in machine learning tasks. However, as FL
networks expand, their vulnerability to malicious client attacks
increases, posing a significant risk to model robustness. To
maintain cyber security, numerous studies have focused on
developing defensive strategies. Specifically, [2] presents a
framework that counters local model poisoning and maintains
accuracy by using federated anomaly analytics to identify and
assess potentially malicious local models. The work in [3]
employs the beta distribution function to model the credibility
of FL clients, scheduling trustworthy clients through their
continuous trustworthiness. The selection of benign clients
or models for FL involvement has proved effective, but the
evaluation typically yields multiple levels rather than binary

outcomes. Therefore, the adoption of a multi-valued satisfac-
tion scale becomes essential for accurate trust evaluation [4].

As one of the Bayesian approaches, the Dirichlet distri-
bution can be employed to estimate the probabilistic clients’
behavior in the future, considering multi-valued satisfaction
ratings [5]. Given the dynamic and complex nature of client
behaviors, tracking uncertainty over time with the Dirichlet
distribution is crucial for assessing their trustworthiness. To
mitigate potential attacks from abnormal behaviors in mobile
ad hoc networks, [6] uses the Dirichlet distribution for precise
reputation modeling of nodes, evaluating trustworthiness by
their performance and the peer-assigned reputation credibility.
[7] employs the Dirichlet distribution within a blockchain-
based system to automatically predict user reliability in
an incentive scheme, enhancing the data quality. Although
the Dirichlet-based trust management technique accounts for
clients’ evolving behavior, the potential loss incurred by the
betrayal of highly trustworthy clients is substantial.

Zero trust can be regarded as an emerging security prin-
ciple in FL to acknowledge and mitigate the aforementioned
betrayal risks. The key idea of zero trust lies in abolishing
implicit trust in any client and employing continuous risk-
based trust verification [8], [9]. The zero-trust model consists
of core components including trust evaluation and policy
engine [10], which enables the system to build trust in clients
while maintaining skepticism toward everyone. To this end,
the system can proactively defend against malicious attacks
and unexpected betrayals, protecting cyber security and ro-
bustness in heterogeneous and large-scale network systems.
Due to these critical advantages, the zero-trust principle has
been widely implemented in various network systems. For
instance, to protect the satellite networks with increasing data
exchange, ZTEI [11] employs continuous authentication and
re-evaluation in a multi-dimensional monitoring process. Sim-
ilarly, MUFAZA [12] aims to secure next-generation networks
by employing a moving-horizon dynamic trust evaluation with
multiple sources of evidence.

In this paper, we extend the zero-trust principle to FL,
introducing a comprehensive zero-trust policy to tackle se-
curity threats posed by clients’ dynamic behaviors and po-
tential betrayal attacks. The proposed policy aims to boost
the security and resilience within FL, establishing a more
robust defense against potential attack and betrayal. We first



establish each client’s trust for a client selection technique, and
then emphasize the zero principle for a min-max optimization
to defend against the worst-case betrayal attacks. Our main
contributions are outlined as follows.

• We propose a zero-trust policy in FL to ensure the
reliability and robustness of FL against the evolving risks
of clients’ attacks and betrayals.

• In particular, we apply the Dirichlet distribution model to
evaluate clients’ trustworthiness, facilitating an accurate
selection technique by incorporating clients’ behavior
over time based on the multi-valued satisfaction analysis.

• Moreover, in adherence to the principle of maintaining
zero trust in all participants, we implement a skepti-
cism mechanism to guard against potential betrayals.
To enhance model robustness, we formulate a min-max
optimization problem to minimize losses from worst-case
betrayals, thus protecting the FL system from unexpected
security challenges.

• To validate our proposed zero-trust policy, we conduct
extensive simulations. Simulation results show our policy
outperforms baseline methods, regarding the effective-
ness of trustworthiness and robustness against betrayals.

The structure of this paper is outlined as follows: Section
II presents the system model, including the FL model, the
Dirichlet-based trust evaluation model, and the threat model.
Section III defines the zero-trust policy in FL, formulates
a min-max optimization problem, and proposes solutions
accordingly. Section IV presents the numerical simulation
results. Finally, Section V concludes the paper.

II. SYSTEM MODEL

A. FL Model

We consider a FL system consisting of a set C =
{1, 2, . . . , C} of clients and a central server. Due to the limited
resources and the presence of potentially malicious clients,
only a selected subset K ∈ C of clients can engage in the
FL task, with their number of participants represented as
K(K < C). Each client k ∈ K collects its private dataset
Dk with data size Dk = |Dk| and the size of all training data
D is denoted as D =

∑
k∈KDk.

The primary objective of the FL task is to minimize
the global loss function by identifying the optimal model
parameter w with a dimension of E:

min
w

F (w) =
∑
k∈K

pkFk(w), (1)

where w ∈ RE represents global model parameters, and
pk = Dk

D represents the weight of client k, and we have∑
k∈K pk = 1. Note that the global loss function is expressed

as the weighted aggregation of individual local loss functions.
The local loss function Fk(w) generated by client k can be
calculated as the overall discrepancy between the predicted
and actual results.

Let M = {1, 2, . . . ,M} denote the set of the global
communication rounds and I = {1, 2, . . . , I} denote the set

of the local training rounds. The global model at global round
m can be expressed as wm and the local model of client k in
local round i at global round m can be represented as wi

k,m.
The local stochastic gradient descent method is employed with
the learning rate η. By aggregating all the local models wk,m

after I local rounds, we can obtain the global model

wm+1 =
∑
k∈K

pkwk,m. (2)

B. Dirichlet-based Trust Evaluation Model

To enhance the reliability of local updates, a trust-based
technique can be utilized to identify and exclude malicious
clients. The server selects clients for FL training based on
the managed trustworthiness memory for all clients. Clients’
future satisfaction levels are estimated by analyzing the dis-
tribution of satisfaction levels among client performances.
To quantitatively evaluate client contributions, a satisfaction
function S(x), ranging from 0 to 1, is employed to quantify
the degree of satisfaction with provided performances [13].

Let a discrete random variable X quantify the client sat-
isfaction levels, drawn from a set X = {x1, x2, . . . , xN} of
N (N ≥ 2) finite rival events [14]. Each xn ∈ [0, 1] defines
the various levels of satisfaction and satisfies xn+1 > xn. The
weight τn assigned to each satisfaction level xn increases as
xn increases, and the total sum of weights for all levels equals
1. Let the vector π = {π1, π2, . . . , πn} denote the probability
distribution of X where

∑N
n=1 πn = 1. The likelihood of X

taking each possible satisfaction level xn can be defined as

P{X = xn} = πn, (3)

where P[·] is the probability function.
Let α = {α1, α2, . . . , αN} denote the cumulative observa-

tions and initial beliefs of clients, serving as the foundation
for understanding the probability distribution of X . To assign
greater significance to recent observations compared to older
ones, a forgetting factor γ (∈ [0, 1]) is incorporated into the
observation vector α in the following manner

αt = γY t−1 + Y t =

t∑
i=1

γt−iY i + b0γ
tY 0, (4)

where t represents the times of the observations. Y t is the
satisfaction level of the t-th observation, and it be expressed
as a N dimensional tuple (0, 0, . . . , 0, 1, 0, . . . , 0), where a 1
in the n-th element indicates the satisfaction level is equivalent
to xn. The parameter b0 > 0 reflects the prior belief, and Y 0

serves as the initial setting for the probability distribution.
By integrating prior knowledge with observations to quan-

tify decision uncertainty, the Dirichlet distribution is leveraged
to proactively update trust estimations for clients. It represents
initial beliefs about uncertain events, evolving into a posterior
distribution when merged with sample data. This facilitates
dynamic trust updates based on interaction history, leading to
the following definition.

Definition 1. Suppose the satisfaction level xn is obtained
from N numbers, the probability for xn is πn, and the



observation for xn is αn. The posterior Dirichlet distribution
of P can be expressed as

f(π|α) = Dir(α) =
1

B(α)

N∏
n=1

πn
αn−1. (5)

Let α0 =
∑N

n=1 αn and B(α) can be expressed in terms of
the gamma function as follows

B(α) =

∏N
n=1 Γ (αn)

Γ (α0)
. (6)

Then, the expectation of the probability πn, considering the
historical observations in α, can be expressed as follows [15]:

E[πn|α] =
αn

α0
. (7)

Therefore, the mean of the posterior expected values of
{π1, π2, . . . , πN} are applied to represent the trustworthiness
of client k, which can be expressed as:

Vk =

N∑
n=1

τnE[πn|α] =

∑N
n=1 τnαn

α0
. (8)

C. Threat Model

Although trustworthy clients can participate in FL training,
there’s a risk of them initially gaining trust and betraying the
system later. To simplify the further analysis, we assume a
single malicious client, who adds random noise from a Gaus-
sian distributionN (0, σ2IE) to the uploaded parameters as the
attack approach 1. The betrayer employs subtle noise attacks
to degrade the model’s accuracy while evading detection by
the trust evaluation system.

To further derive the loss of betrayed attacks, we first
introduce the definition of (ϵ, ζ)-Potential Attack Under Zero
Trust, as follows.

Definition 2. (ϵ, ζ)-Potential Attack Under Zero Trust states
that when the betrayer applies the attack model Y , for
all measurable output sets R, and any pair of neighboring
datasets X and X ′, the following inequality holds:

P[Y (X ) ∈ R]− ζ
P [Y (X ′) ∈ R]

≤ eϵ, (9)

where ϵ > 0 represents the attack impact, and ζ ∈ [0, 1]
denotes the probability of failure.

A smaller ϵ results in a reduced distinguishability between
neighboring datasets due to the betrayer introducing more
intense noise. Inspired by [16], the Gaussian noise standard
deviation σk can be represented as

σk =
2ρ

√
2M log(1.25/ζ)

pkϵkD
, (10)

where ρ is defined as the upper bound of the model parameters
∥w∥, and pkD is the data size for client k.

1We assume a Gaussian noise attack in our threat model, but other attacks
can also be employed given their similar goals and impacts on the FL system.

We consider the general assumptions of the non-convex loss
function similar to other works [17] as follows:

Assumption 1. Fk(w) is L-smooth and lowered bounded
for all k ∈ {1, 2, . . . ,K}. For all w1 and w2: Fk (w2) −
Fk (w1) ≤ (w2 −w1)

T ∇Fk (w1) +
L
2 ∥w2 −w1∥22, where

Fk (w) ≥ F ≥ −∞.

Assumption 2. Fk(w) is β-Lipschitz: for all w1 and w2:
∥Fk (w2)− Fk (w1) ∥ ≤ β ∥w2 −w1∥.

To measure the impacts of the noise attack on the perfor-
mance of FL, we provide an upper bound of E[F (wT )] −
F (w∗) by deriving Theorem 1 as follows.

Theorem 1. Let Assumptions 1 and 2 hold. Let ∆0 =
F (w0) − F (w∗), where F (w0) and F (w∗) represent the
loss functions with the initial parameters w0 and the optimal
parameter w∗. When only client k betrays the system, we can
derive the following upper bound for E[F (wM )]− F (w∗):

1

M

M∑
m=1

E[∥∇F (wm−1) ∥2] ≤
∆0 +A1pkσk +A2(pkσk)

2

ηMI(1− LηI)
,

(11)
where A1 =

√
2
πβME and A2 = LME2.

Proof. Since only one betrayal attacker k utilizes the noise
attack with the standard deviation σk, and the local data size
is up to the weight pk, we can get the result by substituting
(10) into [16].

Theorem 1 establishes a connection between the Gaussian
noise attacks, denoted by σk, and the convergence of FL,
quantified by E[F (wT )] − F (w∗). Stronger attacks with
higher standard deviation σ increase the upper bound, con-
sequently leading to decreased accuracy. Moreover, a higher
weight pk further degrades the FL convergence performance
since betrayers can deteriorate the global aggregation more
significantly. Therefore, assigning appropriate weights is cru-
cial for maintaining the FL system’s robustness by balancing
the global trustworthiness and potential attack impacts.

III. OUR PROPOSED ZERO-TRUST POLICY IN FL

In this section, we integrate the Dirichlet-based trust evalua-
tion technique and the betrayal-aware defense mechanism into
FL, and propose our zero-trust policy, intending to mitigate
evolving security threats and worst-case betrayal attacks, as
shown in Fig. 1. Firstly, we design a client selection mecha-
nism to guarantee the performance of FL considering complex
and dynamic clients’ behavior. Then, we formulate a min-
max optimization problem to model the maximal betrayal
loss minimization. Next, we propose a solution to solve the
problem effectively with the given algorithm.

A. Zero-Trust Policy

To filter potentially malicious clients, we set a threshold
ψ based on the trust values V calculated in (8) for client



Fig. 1: The zero-trust policy including the posterior trust
evaluation technique and betrayal-aware defense mechanism
in FL.

selection. We schedule reliable users satisfying:

ak =

{
1, Vk ≥ ψ,
0, otherwise,

(12)

where ψ is a threshold on the trustworthiness scores. If ak =
1, client k is scheduled for FL training; otherwise, clients are
not selected.

While the above client selection method effectively ex-
cludes highly untrustworthy clients, it overlooks the subtle
difference in trustworthiness among the remaining clients.
In the context of diverse trust levels, simply equalizing the
weight of each client’s contribution risks exposing the model
to vulnerabilities. It is crucial to allocate different weights
pk(k ∈ K) based on the trust scores of clients during model
aggregation to enhance robustness. To this end, we introduce
a new threshold θ to set a lower boundary for the accumulated
impact of weighted trust evaluation, which can be written as∑

k∈K

akpkVk ≥ θ. (13)

In addition, to fully embrace the zero-trust policy, we
maintain suspicion toward all clients even those who are
highly trustworthy. If highly trustworthy clients betray, the
losses can be more severe than those from less trustworthy
clients, posing a significant threat to the robustness of the
system. By tackling the worst-case betrayal attack directly,
we aim to enhance the overall security and effectiveness of
our strategy. Therefore, we formulate a min-max optimization
problem to acknowledge and address the potential severity of
the most adverse betrayal in the following subsection.

B. Min-Max Problem Formulation

Here, we aim to minimize potential worst-case betrayal
losses without compromising the integrated stability based on
clients’ trustworthiness. To achieve the zero-trust goal, the
objective to be minimized can be simplified as A1akpkσk +

A2(akpkσk)
2 from (11) by removing the constant values.

Moreover, we restrict the lower bound of the sum of weighted
trust values to ensure the FL performance. We formulate
the following min-max optimization problem by optimizing
a = [a1, a2, . . . , aK ] to select clients, and the aggregation
weights p = [p1, p2, . . . , pK ] to allocate aggregation weights
to each client:

min
a,p

max
k∈K

{A1akpkσk +A2(akpkσk)
2}, (14a)

s.t.
∑
k∈K

akpkVk ≥ θ, (14b)∑
k∈K

akpk = 1, (14c)

pk ∈ (0, 1],∀k ∈ K, (14d)
ak ∈ {0, 1},∀k ∈ K, (14e)

where the constraint in (14b) indicates that the accumulated
trustworthiness should exceed a threshold θ, as explained
in (13). The constraints (14c) and (14d) limit the feasible
values of the optimization variable pk. The constraint in (14e)
restricts that the selection index is a binary choice. Hence,
it is of great significance to strike a balance between global
trustworthiness and potential betrayal attacks by optimizing
the selection indices a and clients’ weight p.

C. Our Proposed Solution

It is challenging to solve the aforementioned problem
directly due to the uncertainty of the maximal loss and the
integer constraints on ak. To provide an effective solution, we
first introduce an auxiliary variable ξ. Then, we eliminate the
parameter a by setting pk = 0 when ak = 0, and pk > 0
when ak = 1. Subsequently, the problem can be reformulated
as follows

min
ξ,p

ξ, (15a)

s.t. A1pkσk +A2(pkσk)
2 ≤ ξ,∀k ∈ K, (15b)∑

k∈K

pkVk ≥ θ, (15c)∑
k∈K

pk = 1, (15d)

pk ∈ [0, 1],∀k ∈ K. (15e)

Since only the constraint in (15b) is convex and the ob-
jective and other constraints are linear, the problem (15) is
a convex optimization problem. Thus, we apply the interior
point method to solve it. The complete zero-trust process in
FL is illustrated in Algorithm 1. The major complexity lies in
solving (15), which involves complexity O(K3.5 · log(1/δ))
with accuracy δ by using the interior point method.

IV. SIMULATION ANALYSIS

To visualize the probability density function (pdf) of the
Dirichlet distribution, we consider N = 3 satisfaction levels:
{dissatisfied, neutral, satisfied} across 10 rounds. Initially,



Algorithm 1: The zero-trust process in FL
1: m← 0
2: while FL does not converge do
3: Calculate Vk of clients using (8);
4: Select clients satisfying (12);
5: Broadcast the global model and assign weights pk to

the selected clients by solving (14);
6: Clients utilize their pkD local data to train the model

and upload it to the server;
7: Aggregate the local models into a new global model

by following (2);
8: m← m+ 1;
9: end while

Fig. 2: The prior and posterior Dirichlet pdf for 2 clients.

with no prior information about the probability distribu-
tion, we assume a uniform prior distribution with Y 0 =
(2, 2, 2). The weights for the satisfaction levels are τ =
{0.01, 0.14, 0.85}, and the forgetting factor γ is set to 0.9.

Fig. 2 depicts the dynamic Dirichlet pdfs for two clients
across two rows. The left column shows the prior Dirichlet
pdf, which is the same for both users. In the right column,
the posterior Dirichlet pdf is shown after accumulating 10
new observations, with the peak narrowing compared to the
prior pdf. For Client 1, satisfaction level x3 dominates across
all rounds, resulting in a posterior pdf biased away from
the base of the triangle, which corresponds to the π3 axis.
Conversely, Client 2 gathers more evaluations at satisfaction
level x1, biasing the posterior pdf away from the right side of
the triangle, representing the π1 axis.

The figure in Fig. 3 illustrates the changes of trust values
over observation rounds, with three lines corresponding to
different initial belief weights (b0) of 10, 20, and 30. The
first two curves represent users exhibiting continual benign
behaviors, while the third curve demonstrates a user’s shift
towards malicious actions. Altering the initial belief weights
(b0) leads to varied convergence times for trust values. No-
tably, when b0 is lower and benign behavior persists, the trust
values rapidly stabilize. Conversely, a dissatisfied evaluation,

Fig. 3: The trust values under different settings.

depicted by the green curve, results in a swift decline in
trust. Therefore, while subsequent satisfactory performances
can alleviate the impact of this malicious transformation,
rebuilding trust requires significantly more time.

To examine the performance of the zero-trust policy, we
conduct a FL simulation involving 50 clients and 1 central
server, employing the MNIST dataset and a 3-layer deep
neural network. Each client conducts 2 local epochs, while the
global training spans 100 epochs, utilizing a learning rate of
0.01 and the Adam optimizer. We introduce the noise attack
from a Gaussian distribution to simulate malicious clients’
behavior. To highlight the superiority of the zero-trust policy,
we consider the following baselines for comparison:

• Benign: All clients are benign and no defense actions are
taken in the system.

• Betrayal: One of the trustworthy clients turns malicious
and attacks the model by adding subtle noise to the
uploaded model, and no defense actions are taken.

The loss functions of the three methods over FL iterations
are displayed in Fig. 4. We observe that all three methods
converge, even in scenarios involving betrayal. This resilience
can be attributed to the continuous trust evaluation that effec-
tively filters out malicious clients. The loss is highest in the
Betrayal scenario, indicating the substantial negative impacts
of betrayal on the FL performance. This is because potential
betrayers remain hidden within trustworthy user groups, and
they may attempt to attack the model while strategically
evading detection. Furthermore, our zero-trust policy results in
lower losses compared to the Betrayal scenario, demonstrat-
ing its efficacy in mitigating losses from trustworthy client
betrayals. This is attributed to consistent skepticism towards
each participant and the allocation of optimized weights
to minimize the worst-case betrayal loss, thereby ensuring
betrayal-aware robustness. Moreover, the loss incurred from
the zero-trust policy exceeds that in the Benign scenario,
attributable to the presence of potential betrayers.

Fig. 5 shows the loss function values under three methods
versus the attack intensity, represented by the Gaussian noise
standard deviation σ. From the figure, it can be observed that



Fig. 4: The training loss with different methods.

Fig. 5: The training loss under different attack intensities.

both Benign and Zero-trust policies experience an increase in
loss as the attack intensity rises, indicating decreased model
accuracy in the presence of a betrayal attack. This observation
aligns with Theorem 1, where a higher attack intensity leads
to increased interference by the attacker on the global model.
We can also find that the loss remains constant in the Benign
scenario, where no betrayal occurs.

V. CONCLUSION

In this paper, we emphasized the importance of integrat-
ing a multi-value trust evaluation technique and a betrayal-
aware mechanism within a zero-trust-enabled FL system. We
proposed a Dirichlet-based trust evaluation technique with a
multi-value assessment over time, enabling the continuous se-
lection of participants. Recognizing the risks of unconditional
trust in highly reputed clients due to the potential for signifi-
cant betrayal impacts, we adopted the zero-trust principle. Our
zero-trust policy involved a consistent skepticism toward all
clients, proactively guarding against the possibility of betrayal
from even highly trustworthy participants. Following that, we
introduced a min-max formulation aimed at mitigating the
worst-case loss of betrayal. Through extensive simulations,

we verified the effectiveness of our zero-trust policy, demon-
strating its capacity to model accurate trust and significantly
enhance the betrayal-aware robustness of the model.
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