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Abstract
With the increase in AI applications, the energy consumption of
datacenters that run AI jobs is greatly increasing. The overall energy
consumption of a datacenter is closely linked with that of its cooling
system. Recently, there has been a revolution in immersion cooling
technologies, in which servers can be directly immersed in dielectric
cooling liquid (coolant). However, there is a lack of understanding
of how the performance of AI jobs is affected by immersion cooling
systems.While the physics behind immersion cooling is understood,
in this paper we observe key restricting factors: (1) the boiling state
of the coolant and (2) the heat removal rate of the coolant may
not match the heat generation rate of the GPUs, triggering the
thermal-throttle mechanisms of the GPUs.

In this paper, we study the energy-efficient and delay-ensured
computing of large language model (LLM) training jobs over a
cluster of GPUs in immersion cooling systems. We model the ther-
mal characteristics of the system (e.g., heat generation, heat re-
moval, and temperature) and develop an algorithm with workload
assignment and frequency scaling to avoid the delay incurred by
the thermal-throttle mechanisms and to execute the workloads in
energy-efficient frequencies. In our evaluation, we simulate the com-
putational fluid dynamics (CFD) of the immersion cooling systems
through the Ansys Fluent software. We show that we outperform
baseline algorithms by up to 53.2% in energy and 22.5% in delays.
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1 Introduction
With the surge in AI applications, the energy consumption of the
GPU datacenters that support AI jobs is greatly increasing [18]. The
overall energy consumption of a datacenter is closely linked with
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that of the cooling system. Typically, the servers consume 52.9% of
the energy of a datacenter, while the cooling system consumes 40%,
with a power usage effectiveness (PUE) of 1.89 [1, 24].

Recently, there has been a revolution in immersion cooling tech-
nologies, where servers can be directly immersed in the dielectric
cooling liquid (coolant) (see Fig. 1). Immersion cooling systems have
a much greater coefficient of performance (COP), i.e., by injecting
a certain amount of electricity, the overall heat removal capacity is
much greater. Intrinsically, traditional cooling systems need extra
electricity to cool the circulating air, yet this is no longer needed in
immersion cooling systems. The circulating coolant can absorb the
heat of the servers and dissipate heat in an ambient environment
through natural heat dissipation. Continuing reductions in the cost
of coolant have recently caused immersion cooling systems to be-
come economically viable. In Appendix A, we present background
on immersion cooling systems. Studies have shown that the energy
consumed by immersion cooling systems in the overall energy con-
sumption of a datacenter can be as low as 3.6%-13.0%, achieving a
PUE of 1.037-1.15 [12, 20].

Nevertheless, how immersion cooling systems may affect the
performance of AI jobs is unknown. Specific questions include: For
an AI job with certain workloads running on a cluster of GPUs,
what restrictions will the immersion cooling system introduce?
How can AI jobs be executed given such restrictions? This paper
presents the very first work to answer these questions. The focus
of this study is on LLM training jobs.

For the first question, we study the physics behind the immersion
cooling systems and observe two basic restricting factors given a
certain type of coolant: (1) the boiling state: a coolant has two states,
a normal-working state, and a boiling state. In the boiling state, a
vapor film forms over portions of the GPU surface and the heat
removal rate substantially decreases and (2) the heat removal rate of
the coolant may not catch up with the heat generation rate of a GPU.
Temperatures will increase and this will trigger the thermal-throttle
mechanisms of the GPUs when the GPUs are overheated.

For the second question, we study an Energy-efficient LLM train-
ing in Immersion Cooling (ELIC) problem, where we compute an
LLM training job with a delay requirement on a GPU cluster with di-
verse types of GPUs in an immersion cooling system with a certain
type of coolant. In computing this LLM job, we minimize the overall
energy of the GPU cluster.1 We capture the thermal characteristics
of the datacenter system using a coolant state model and a system
temperature model with a heat generation model and a heat removal
model. We develop an ELIC algorithm to output theworkload assign-
ment of the LLM job workloads and the frequency scaling of each

1We omit the energy consumed by the immersion cooling system since it is a small
amount and doing so simplifies the study. Additional discussions are in §5.
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GPU, which are two common techniques to save datacenter energy
[10, 25]. ELIC runs the LLM job at energy-efficient frequency lev-
els and avoids triggering the boiling state of the coolant and the
thermal-throttle mechanisms of the GPUs, which introduce delays.

We evaluate our algorithm using simulations. We adopt compu-
tational fluid dynamics (CFD) simulations using the Ansys Fluent
software to simulate the thermal environment. We evaluate typical
LLM training jobs (e.g., LLaMA 3-8B [3] and Phi-2 [11]) on regular
clusters of 8 GPUs of NVIDIA H100, A100, and L40S, with immer-
sion cooling systemswith standard coolants HFE-7100 (Novec 7100),
FC-72, and Ethanol. We observe that without the thermal charac-
teristics models on immersion cooling systems, a coolant agnostic
energy-first and a coolant agnostic delay-first algorithm can both
end up with long delays that cannot meet the delay requirements.
Even with an appropriately designed cooling-aware baseline al-
gorithm, ELIC shows an energy reduction of 53.2% and a delay
reduction of 22.5%. ELIC can effectively avoid the delay incurred
by the thermal-throttle mechanisms and execute the workloads in
energy-efficient frequencies. We also observe that for certain types
of coolant, high-end GPUs have to run at a low performance irre-
spective of the algorithm. This is due to the great heat generation
rates of the GPUs. We present solutions in our discussions §5.

2 Modeling the Thermal Characteristics of the
System

We present the general background of the immersion cooling sys-
tem in Appendix A. The coolant has two states: a normal-working
state and a boiling state. In §2.1, we present the cooling state model
that specifies the conditions for the GPUs to trigger the coolant
stage change given certain types of GPUs and certain coolants.

In LLM job computing, we need to manage GPU workloads
and frequencies, and thus temperatures, to avoid triggering GPU
overheating. The GPU temperature depends on the heat generation
rate and heat removal rate. In §2.2, we present a GPU temperature
model with a heat generation model and a heat removal model.

2.1 The Coolant State Model
The thermal property of the coolant in the boiling state differs
from that in the normal-working state. In the boiling state, the heat
removal rate decreases significantly. For example, the heat removal
rate in the normal-working state can reach 330.4W for a GPU A100
with Die Size 826mm2; but drops to 41.3W in the boiling state [9].

The intrinsic trigger of the change in the coolant state is the
power per unit area that impacts the coolant. It is called the heat
flux of a coolant (W/m2). The maximum heat flux that a coolant
allows is called the critical heat flux (CHF). Each coolant has a
specific CHF. Note that this is independent of the temperature. It is
the unit power that triggers the change in state of the coolant. As
an example, for coolant HEF7100, the CHF is 45.1W/cm2 [6]. CHF,
𝑞𝑚𝑎𝑥 , can be estimated using Zuber’s CHF model [17], 𝑞𝑚𝑎𝑥 =

0.131𝜌𝑣ℎ𝑓 𝑔 [
𝜎 (𝜌𝑙−𝜌𝑣 )𝑔

𝜌2𝑣
]1/4. We explain 𝑞𝑚𝑎𝑥 in detail in Appendix

B. Given a coolant, 𝑞𝑚𝑎𝑥 can be seen as a constant.
Given a datacenter with an immersion cooling system, the GPUs

and the coolant are determined. Thus, the die sizes of the GPUs
𝐴𝐺𝑃𝑈 and the CHF 𝑞𝑚𝑎𝑥 of the coolant are constants. We can
calculate the power of the GPU to trigger the boiling state. This is

the boiling limit, ¤𝑄𝑚𝑎𝑥 of the GPU:

¤𝑄𝑚𝑎𝑥 (W) = 𝑞𝑚𝑎𝑥 (W/m2) ×𝐴𝐺𝑃𝑈 (m2) (1)

If a GPU runs at a power that is greater than the boiling limit, the
coolant enters the boiling state.

2.2 The GPU Temperature Model
The GPU Temperature Model:We study the GPU temperature
in the normal-working state. The temperature of a GPU 𝑖 at time 𝑡 ,
𝑇𝑖 (𝑡), is dynamic. It can be captured using Eq. 2.

𝑇𝑖 (𝑡) = 𝑇𝑖 (𝑡 − Δ𝑡) + ( ¤𝑄𝐺 − ¤𝑄𝑅) × Δ𝑡

𝑚𝐶𝑖
(2)

𝑇𝑖 (𝑡) depends on the prior temperature 𝑇𝑖 (𝑡 − Δ𝑡), the heat genera-
tion rate ¤𝑄𝐺 (W), and the heat removal rate ¤𝑄𝑅 (W) in this period
(i.e., the total amount of heat removed from the substance), subject
to the heat capacity of this substance, i.e., the increase in the tem-
perature of this substance given the injection of a certain amount
of heat. Here, 𝑚 is the mass of the heat source (i.e., a GPU) and
𝐶𝑖 is the heat capacity of the heat source. We next derive the heat
removal rate ¤𝑄𝑅 and the heat generation rate ¤𝑄𝐺 .

The Heat Removal Model of Immersion Cooling Systems:
¤𝑄𝑅 changes dynamically. Specifically, ¤𝑄𝑅 depends on the intrinsic
property of the coolant, the heat flux 𝑞 (W/m2), and the die size of
the GPU 𝐴𝐺𝑃𝑈 . Intuitively, 𝑞 reflects the fact that the higher the
temperature difference between the heat source and the coolant,
the higher the heat removal rate. This is reflected in Eq. 3.

𝑞 =


𝜇𝑙 · ℎ𝑓 𝑔

[
𝐶𝐿 (𝑇𝑖−𝑇𝐿 )
𝐶𝑠 𝑓 ℎ𝑓 𝑔Pr1.7𝐿

]3 [
𝑔 (𝜌𝐿−𝜌𝑣 )

𝜎

]1/2
if 𝑇𝑖 ≥ 𝑇𝑂𝑁𝐵

ℎ𝑐𝑣 (𝑇𝑖 −𝑇𝐿) if 𝑇𝑖 < 𝑇𝑂𝑁𝐵
(3)

Here 𝑇𝑖 and 𝑇𝐿 are the temperature of the heat source (GPU 𝑖)
and the liquid coolant; and (𝑇𝑖 - 𝑇𝐿) is the difference. There is a
temperature of Onset of Nucleate Boiling 𝑇𝑂𝑁𝐵 , and 𝑞 is described
by a piecewise function where if 𝑇𝑖 ≥ 𝑇𝑂𝑁𝐵 , it is described by
the Rohsenow’s Correlation [29]; otherwise, it is described by the
natural convection [2]. Other terms are constants. A description of
the terms is given in Appendix B. Finally, ¤𝑄𝑅 is

¤𝑄𝑅 = 𝑞 ×𝐴𝐺𝑃𝑈 (4)

The Heat Generation Model of GPUs: The heat generation
rate ( ¤𝑄𝐺 (𝑖)) of a GPU 𝑖 is equal to the power consumption (𝑃𝑖 ) of
the GPU according to the 1st-law of thermodynamics [12], ¤𝑄𝐺 (𝑖) =
𝑃𝑖 (𝑓 ). According to the AccelWattch power model [13], the power
consumption 𝑃𝑖 (𝑓 ) of a GPU is a function of its core frequency 𝑓 ,
where 𝑃𝑖 (𝑓 ) can be estimated as

¤𝑄𝐺 (𝑖) = 𝑃𝑖 (𝑓 ) = 𝛽𝑖𝐺𝑖 𝑓 3 + 𝜏𝑖 𝑓 + 𝑃𝑐𝑖 (5)

Here 𝐺𝑖 is the gate capacitance decided by the GPU. 𝑃𝑐
𝑖
is the

constant power caused by peripheral components. 𝛽 and 𝜏 depend
on the specific LLM training job and the GPU type.

An LLM training job contains a series of foundational opera-
tions (GPU kernels) ({𝐾}). This operation set can be analyzed from
the computational graph of the foundation model [21]. The mod-
ern deep-learning framework provides efficient tools (i.e., Pytorch
Profiler and Tensorflow Profiler) to derive this operation set.
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Given the GPU(𝑖) and the GPU kernel (𝑘 ∈ {𝐾}), the power of
this kernel can be described by 𝛽𝑘

𝑖
and 𝜏𝑘

𝑖
. For example, Softmax

is a kernel and General Matrix Multiplications (GEMM) is also a
kernel. In practice, 𝛽𝑘

𝑖
and 𝜏𝑘

𝑖
are constants and can be profiled. For

example, the GEMM kernel by a GPU A100 SXM4 with frequency
1410Mhz will consume 385W, and the profiles of 𝛽𝐺𝐸𝑀𝑀

𝐴100 = 4.38
and 𝜏𝐺𝐸𝑀𝑀

𝐴100 = 2.18. Given the set of kernels {𝐾} and the number
of each kernel 𝑁𝑘 , 𝑘 ∈ {𝐾}, the 𝛽𝑖 and 𝜏𝑖 can be calculated by Eqs.:

𝛽𝑖 =
∑︁

𝑘∈{𝐾 }
𝑁𝑘 × 𝛽𝑘𝑖 , 𝜏𝑖 =

∑︁
𝑘∈{𝐾 }

𝑁𝑘 × 𝜏𝑘𝑖 . (6)

3 The Problem and Algorithm
The Energy-efficient LLM Training in Immersion Cooling
(ELIC) Problem:Given a datacenter withN GPUs, where each has
a set of frequencies F ; the thermal characteristics of the datacenter
system follow Eq. 1 and Eq. 2; and an LLM training job specified
by an LLM model M with W layers and a delay requirement D,
determine a workload assignment scheme to assign each GPU 𝑖

a set of model layers𝑊𝑖 , and a frequency scaling scheme to run
each GPU 𝑖 at a certain frequency 𝑓𝑖 ; so as to minimize the energy
consumption of the LLM training job.

In practice, the LLM training job has a scheduler for workload
assignments to parallel GPUs, and the operating system can per-
form frequency scaling. We leave it to a future work to develop
a system to control workload assignments and frequency scaling,
while focusing on the algorithmic aspects in this paper.

This problem has an intrinsic knapsack structure and is NP-
hard. We omit the proof for the sake of conciseness. We develop a
heuristic algorithm to solve this problem. In addition to the model
of the thermal characteristics of the system, we need to model the
performance (delay) of a certain amount of workloads of an LLM
job given a specific GPU.

The performance of an LLM job on a GPU: We follow the
model from LLMCarbon [7]. Given the number of floating point
operations that the LLM model layer𝑤 requires (𝐹𝐿𝑂𝑃𝑤 ); the set
of layers assigned to GPU 𝑖 (𝑊𝑖 ); and the frequency 𝑓𝑖 of GPU 𝑖 to
execute𝑊𝑖 , the computing time 𝑡𝑖 is determined using Eq. 7 and 8

𝑡𝑖 (𝑓𝑖 ) =
∑︁
𝑤∈𝑊𝑖

𝐹𝐿𝑂𝑃𝑤

(𝐹𝐿𝑂𝑃 (𝑓𝑖 ) · eff 𝑖,𝑤)
(7)

𝐹𝐿𝑂𝑃 (𝑓𝑖 ) = 𝑁 𝑖𝑐𝑜𝑟𝑒 · 𝑓𝑖 · 2 (8)

Here eff 𝑖,𝑤 is the hardware efficiency for a given GPU 𝑖 and an
LLM model layer 𝑤 ; and 𝑁 𝑖𝑐𝑜𝑟𝑒 is the core number for the given
GPU 𝑖 . Both of those parameters can be profiled.

The ELIC Algorithm:We propose a greedy-based algorithm.
The boiling state and the thermal throttle mechanism can substan-
tially reduce the performance of the computing of the LLM job. We
call these the coolant constraints (i.e., Eq. 1 and Eq. 2). We search
for the workloads𝑊𝑖 assigned to each GPU 𝑖 and the frequency 𝑓𝑖
of each GPU 𝑖 . ELIC has three steps. The rationale is to first assign
the workloads in a balanced manner (Step 1 and Step 2) and then
iteratively adjust the workload across different GPUs based on their
energy efficiency (Step 3). The pseudo-code is given in Appendix C.

Step 1 (lines 2-8): We start with the maximum frequency of each
GPU and assign workloads to allow GPUs to finish their workloads
simultaneously (using Eq. 7), subject to the coolant constraints.

Figure 1: Visualization of the thermal environment
Step 2 (lines 10-12): For each GPU, we decrease its frequency

to a scale that ensures its workloads are completed by the delay
constraint D. The energy is minimized for each GPU.

Step 3 (lines 14-25): We iteratively adjust the workloads among
the GPUs, since the energy efficiency across GPUs is not balanced.
In each iteration, we find the most energy-efficient GPU 𝑖 and the
least energy-efficient GPU 𝑗 . The energy efficiency is the FLOPs
processed per unit of energy. We adjust the workloads from GPU 𝑗

to GPU 𝑖 , subject to coolant constraints. The iteration is repeated
until there is no further reduction in energy consumption.
4 Simulation and Evaluation
4.1 Simulation Setup
LLM Training Job: The LLM training jobs include 1) pre-training
LLaMA3-8B [3] on dataset RedPajama [28] for 5 epochs; 2) fine-
tuning 10% of parameters in Gemma-7B [26] on OpenMathInstruct-1
[27] for 10 epochs; 3) fine-tuning 20% of parameters in Phi-2 [11]
on no_robots [22] for 25 epochs. The GPU types are L40S, H100,
and A100. The other details are shown in Appendix D
Computational fluid dynamics (CFD) simulation: We need
to simulate the process of heat exchange, a CFD process. In other
words, when our system generates heat, this simulated environ-
ment will facilitate heat exchanges until the heat is removed and
the temperature dynamics are maintained. As such, we use the
software Ansys Fluent to conduct the simulation. Note that the
CFD simulation utilized the built-in models in the Ansys Fluent.
The models listed in this paper are used to guide the algorithm. For
example, with the power of the GPU, the software can simulate the
core temperature of the GPU to be 83.68◦𝐶 , and the periphery with
a certain distance of 3.47 cm to be 58.48◦𝐶 (see Fig. 1).
4.2 Evaluation
In this section, we evaluate the overall performance of ELIC under
different cases, coolants, and training jobs on three baselines. We
list the performance on different quantities of GPUs, and task delay
requirements in Appendix G.
4.2.1 Evaluation Methodology. We evaluate the ELIC under three
commonly used coolants in the immersion cooling system: HEF-
7100 [5], FC-72 [6], and Ethanol [8], the thermodynamic charac-
teristics of which are listed in Table 2 of Appendix E. The delay
requirement is set to 40% longer than the ideal minimum delay (i.e.,
each GPU works at Boost Frequency and the cooling system can
efficiently remove heat without limitations.)

Baseline. We compare ELIC with three baselines: 1.) Delay First
(DF ): the frequency of each GPU is scaled first where the heat gener-
ation rate equals the boiling limit; the workloads are then assigned
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Figure 2: Performance of various cases
with coolant FC-72 during pretraining.
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Figure 3: Performance of various coolants
on Case 1 during pretraining.
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Figure 4: Performance of various training
jobs on Case 1 and FC-72.

based on the throughput at such a frequency. 2.) Scheduler Agnostic
Energy First (SA-EF ): the workloads are assigned first to achieve
the maximum throughput; the frequency is then scaled based on
the cooling constraint and delay constraint. 3.) Coolant Agnostic
Energy First (CA-EF ) aggressively migrates layers to more energy-
efficient GPUs without considering cooling constraints, resulting
in overheating and triggering the thermal throttle mechanism.

Metrics. i.) Energy consumption of the computing system (J);
ii.) Delay in the training job (s).
4.2.2 Evaluation Results.
ELIC under different Cases: Fig. 2 presents the energy consump-
tion and delay in different cases on the FC-72 coolant. We first take
Case 3 as an example. We observe that SA-EF and DF spend 3.67𝑒13
J and 5.57𝑒13 J of energy when ELIC is 2.60𝑒13 J, saving 53.2% and
29.1%, respectively. This is because ELIC has a lower frequency
than DF and more proper workload assignments based on GPU
energy efficiency compared to SA-EF. Moreover, ELIC and CA-EF
have similar energy consumption levels, as they did not exceed the
cooling constraint. From the aspect of delay, all baselines maintain a
similar delay, approximating the delay requirement of about 1.65𝑒10
s, except for DF, the one with the lowest delay, since it runs at the
highest frequency, resulting in a 1.28𝑒10 s delay. In another case,
Case 1, we observe that CA-EF can save 3.62% of energy compared
to ELIC; however, to save this 3.62% of energy, CA-EF aggressively
assigns more workloads to a single GPU but increases the execut-
ing delay. To maintain the delay requirement, CA-EF has to run so
that it exceeds the cooling constraint, i.e., overheating, requiring
22.5% more time to cool down. In contrast, ELIC detects the cooling
constraint and abandons this assignment. The results show that
ELIC is the most energy-efficient in different server configurations
under an immersion cooling system.
ELIC under different Coolants: Fig. 3 presents the energy con-
sumption and delay under different coolants on case 1. When using
Ethanol, we observe that the ELIC, SA-EF, and DF have similar
levels of energy and delay, that is 7.34𝑒13 J energy and 2.68𝑒10 s
delay. This is because even the DF, the fastest approach, already
exceeds the delay requirement, meaning that there is no space for
energy optimization. Therefore, among the three coolants, Ethanol
is the least suitable for GPU servers since all approaches exceed
the delay requirement. This is because Ethanol’s CHF 𝑞𝑚𝑎𝑥 is only
23.48 W/cm2 [16], resulting in the boiling constraint of GPU H100
being 191.13W, 27.3% of the maximum power of 700W. In contrast,
HFE-7100 and FC-72 can better support the GPU servers. This is
because the CHF of HFE-7100 and FC-72 are 45.1 W/cm2 [5] and
39 W/cm2 [6], respectively. The higher the CHF of the coolants,
the greater the energy savings of the ELIC. The results show that
under a suitable coolant, ELIC can save more energy when using

a coolant with a higher CHF, also outperforming when compared
with other baselines, and guaranteeing the delay requirements.
ELIC under different training jobs: Fig 4 presents the energy
consumption and delay under different training jobs on Case 1
using the FC-72 coolant. The results are normalized since there is
a huge gap in workload between the fine-tuning job and the per-
taining job. From Phi-2, we observe that the ELIC spends 8.32𝑒9 J
of energy, while SA-EF spends 1.04𝑒10 J of energy. The ELIC can
save 20.2% more energy than SA-EF in fine-tuning the Phi-2 model.
The ELIC saves more energy in fine-tuning than in pre-training
(14% for LLaMA 3 pre-training). This is because, during fine-tuning,
the computation of each epoch is dynamic for each LLM layer,
making the workload hard to schedule. ELIC calculates the FLOPs
of each layer and assigns the layer with the maximum workloads
to an energy-efficient GPU to save energy, which can adapt to
the dynamic workload of each layer. The results show that ELIC
can handle dynamic workloads and outperform other baselines in
energy reduction under different training jobs.

5 Conclusion and Discussions
Immersion cooling systems represent a revolution in cooling sys-
tems for datacenters, as they can substantially reduce the energy
of cooling systems. Existing studies on immersion cooling systems
have focused on how to improve immersion cooling technologies,
e.g., materials, the phase changes of the coolant, costs, and perfor-
mance measurements. This paper presented the first work on how
to perform energy-efficiency LLM training given immersion cooling
systems. We developed models to capture the thermal characteris-
tics of immersion cooling systems. We showed that such models
are critical in providing key information to develop algorithms to
perform energy-efficient delay-ensured AI training.

This is a pioneer study, and many gaps remain to be filled. In this
paper, we studied both the AI jobs and immersion cooling systems
in their standard forms. AI workloads have unique patterns that
can be leveraged, and inference jobs differ from training jobs. An
immersion cooling system can increase the pressure on the coolant
or speed up the circulation of coolant to prevent localized boiling
near the heat source. These operations can change the boiling limit
and the characteristics of the heat removal rate. Yet, they raise
the energy consumption of the immersion cooling systems. New
thermal models and new (joint)-optimization processes need to
be developed to achieve high-performance and energy-efficient
computing for AI jobs in immersion cooling systems.
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A Background on Immersion Cooling Systems

A two-phase immersion cooling system is shown in Fig. A.1. There
are two cooling cycles. The first cooling cycle removes the heat from
the immersed servers to the coolant; and from the coolant to the
water in the condenser pipe. The second cooling cycle removes the
heat from the water in the condenser pipe to the open atmosphere.

The physics for why an immersion cooling system is more
energy-efficient than a traditional cooling system is that a tradi-
tional cooling system uses air to absorb heat, whereas an immersion
cooling system uses coolant to absorb heat. Air has a lower capacity
than coolant to absorb heat. Thus, in a traditional cooling system
the air first needs to be chilled to a low temperature (e.g., from an
ambient temperature of 23◦C to 8◦C) by a compressor, and this pro-
cess requires a significant amount of energy. Coolant has a much
greater capacity to absorb heat through phase change. Circulation
of the coolant (relayed by water) to ambient air can remove the heat
to the environment. A comprehensive experiment was conducted
in [20] where 140 T2T CPUs were used with an immersion cooling
system of coolant Novec 7100. The collective power of the CPUs
ranged from 1127 W to 1577 W, yet the power of the immersion
cooling system remained at 59 W. When a traditional air cooling
system was used in a similar setting with the servers having a heat
generation capacity of 2000 W, the power consumption of the tra-
ditional cooling system was 1020 W [4]. Continuing reductions in
the cost of coolants has finally made immersion cooling systems
economically viable.

Figure A.1: A two-phase immersion cooling system
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B Description of Coolant Models
Zuber’s CHF Model: The critical heat flux (CHF) is the maximum
heat flux that can be applied to the surface of the heat source. Be-
yond this point, a vapor film forms over portions of the surface
due to the rapid generation of vapor. This prevents direct contact
between the liquid coolant and the heated surface, resulting in a sig-
nificant decrease in the heat removal rate. The CHF can be estimated
using Zuber’s CHF model [17], 𝑞𝑚𝑎𝑥 = 0.131𝜌𝑣ℎ𝑓 𝑔 [

𝜎 (𝜌𝑙−𝜌𝑣 )𝑔
𝜌2𝑣

]1/4,
where 𝜌{𝑙,𝑣} is the density of the liquid and vapor coolant;ℎ𝑓 𝑔 is the
latent heat of vaporization; and 𝜎 is the surface tension coefficient.
Heat Removal Model: When the heat flux is lower than the CHF,
the coolant works at a normal-working state. Rohsenow’s Correla-
tion [29] and natural convection [2] can describe the relationship
between the heat flux and the temperature, divided by the temper-
ature of Onset of Nucleate Boiling 𝑇𝑂𝑁𝐵 , as shown below:

𝑞 =


𝜇𝑙 · ℎ𝑓 𝑔

[
𝐶𝐿 (𝑇𝑖−𝑇𝐿 )
𝐶𝑠 𝑓 ℎ𝑓 𝑔Pr1.7𝐿

]3 [
𝑔 (𝜌𝐿−𝜌𝑣 )

𝜎

]1/2
if 𝑇𝑖 ≥ 𝑇𝑂𝑁𝐵

ℎ𝑐𝑣 (𝑇𝑖 −𝑇𝐿) if 𝑇𝑖 < 𝑇𝑂𝑁𝐵

Here, 𝜇𝑙 is the chemical potential of the liquid coolant; ℎ𝑓 𝑔 is the
latent heat of vaporization of the coolant; 𝐶𝐿 is the heat capacity
of the liquid coolant; 𝐶𝑠 𝑓 is an empirical constant representing
surface properties; Pr𝐿 is the Prandtl number for a liquid, defined
as the ratio of momentum diffusivity to thermal diffusivity; and
𝜎 is the surface tension coefficient. Those parameters in the CHF
and Heat Removal models are thermodynamic constants that de-
scribe the physical properties of materials and these values are
well-documented and stable. Table 2 lists some examples of those
thermodynamic parameters under standard atmosphere.

C Algorithm Pseudo-codes
In this section, the pseudo-codes of the ELIC algorithm are pre-
sented as shown in Algorithm 1. Specifically, the input of the ELIC
algorithm is the set of GPUs {𝑖}, Coolant, Delay constraint D, and
LLM modelM. The output is the Workload assignment {𝑊𝑖 } and
frequency scaling {𝑓𝑖 } of each GPU 𝑖 . The algorithm works in three
steps. In lines 2-8, we start with the maximum frequency of each
GPU and assign workloads to allow all GPUs to finish simultane-
ously (using Eq. 7), subject to the constraints of coolant. In lines
10-12, for each GPU, we decrease its frequency to the scale that its
workloads can be completed by the delay constraint D. The energy
is minimized for each GPU. In lines 14-25, we iteratively adjust the
workloads among the GPUs since the energy efficiency across the
GPUs is not balanced. In each iteration, we find the most energy-
efficient GPU 𝑖 and the worst energy-efficient GPU 𝑗 . The energy
efficiency is the FLOPs processed per unit of energy. We adjust the
workloads from GPU 𝑗 to GPU 𝑖 subject to coolant constraints. The
iteration is repeated until no further reductions occur in energy
consumption.

D Datacenter Configurations
To support the LLM training jobs, we simulate three typical datacen-
ter configurations. Each configuration contains two instances from
AWS EC2 [23] and each instance is equipped with 8 GPUs. Those
datacenter configurations use three types of GPUs: L40S, H100, and

Algorithm 1: ELIC Algorithm
Input: GPUs {𝑖 }, Coolant, Delay constraint D, LLM model M
Output: workloads {𝑊𝑖 } and frequencies { 𝑓𝑖 }
// Step 1: Initialize Frequencies and Workloads

1 foreach GPU 𝑖 do
2 Calculate𝑄𝑚𝑎𝑥

𝑖
by Eq. 1 and 2;

3 Calculate 𝑓𝑚𝑎𝑥
𝑖

by Eq. 5 with𝑄𝑚𝑎𝑥
𝑖

;
4 set 𝑓𝑖 = 𝑓𝑚𝑎𝑥

𝑖
;

5 Calculate 𝑡𝑖 by Eq. 7;

6 for layer in M do
7 Assign layer to GPU 𝑖 with minimum 𝑡𝑖 ;

// Step 2: Minimize Energy for Each GPU

8 foreach GPU 𝑖 do
9 Calculate 𝑓𝑚𝑖𝑛

𝑖
by Eq. 7 with D;

10 set 𝑓𝑖 = 𝑓𝑚𝑖𝑛
𝑖

;

// Step 3: Balance Energy Efficiency Across GPUs

11 repeat
12 foreach GPU 𝑖 do
13 Calculate power 𝑃𝑖 by Eq. 5 with 𝑓𝑖 ;
14 energy 𝐸𝑖 = 𝑃𝑖 · 𝑡𝑖 ;
15 energy_eff𝑖 =𝑊𝑖/𝐸𝑖 ;
16 Identify GPU 𝑖 with maximum energy_eff𝑖 ;
17 Identify GPU 𝑗 with minimum energy_eff𝑗 ;
18 Move layer with maximum FLOPs from GPU 𝑗 to GPU 𝑖;
19 Scale 𝑓𝑖 and 𝑓𝑗 to minimize energy following line 11-12;
20 if 𝑓𝑖 > 𝑓𝑚𝑎𝑥

𝑖
OR 𝑓𝑗 > 𝑓𝑚𝑎𝑥

𝑗
then

21 Discard this assignment;

22 until no further reduction in energy consumption;
23 return {𝑊𝑖 } and { 𝑓𝑖 }

A100. They all have a large GPU memory (> 40GB) suitable for LLM
training. Details of the specifications are listed in Table 1.

Table 1: Server Configurations
Case Specifications (GPUs)
Case 1 p5.48xlarge (8×NVIDIA H100) + p4d.24xlarge (8×NVIDIA A100)
Case 2 p5.48xlarge (8×NVIDIA H100) + g6e.48xlarge (8×NVIDIA L40S)
Case 3 p4d.24xlarge (8×NVIDIA A100) + g6e.48xlarge (8×NVIDIA L40S)

To support such datacenters, a typical immersion cooling system
is created from liquidstack [19], with a tank of 880mm× 1584mm×
733mm (W × H × D) that can contain 800mm height coolant.

E Details of the Computational Fluid Dynamics
Simulation

Computational Fluid Dynamics (CFD) simulations involve simulat-
ing and analyzing the immersion cooling system’s heat transfer and
boiling phenomenon. Ansys Fluent is a widely used and validated
professional CFD simulation software that is used to simulate fluid
flow, heat transfer, and related physical phenomena in complex
systems.

In the CFD, Reynolds-Averaged Navier-Stokes (RANS) equations
describe the mass and energy transfer between both phases (liquid
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Table 2: Thermodynamic parameters of various coolants.

Properties HFE-7100 FC-72 Ethanol
Saturation
Temperature (◦C) 61 56.4 78.24

Liquid density (kg/m3) 1372 1602 736.44
Latent heat of
vaporization (kJ/kg) 111.6 94.9 849.95

Liquid thermal
conductivity (W/(m·K)) 0.062 0.054 0.153

Liquid viscosity (Pa·s) 3.61𝑒 − 4 4.25𝑒 − 4 4.41𝑒 − 4
Surface tension (N/m) 0.010 0.008 0.015

Table 3: Settings of the CFD model

Setting Parameters Settings/Options
Multiphase Model Volumn of The Fluid (VOF)

Evaporation & Condensation Model Lee’s Two-Phase Flow Model
Viscous Model Standard k-epsilon Model

Pressure-Velocity Coupling Scheme SIMPLE
Spatial Gradient Least Squares Cell Based
Spatial Pressure Body Force Weighted

Spatial Momentum QUICK
Spatial Volume Fraction Geo-Reconstruct

Spatial Turbulent Kinetic Energy QUICK
Spatial Turbulent Dissipation Rate QUICK

Spatial Energy QUICK

Figure E.1: Visualization of Boiling Figure E.2: Temperature with Threshold

and vapor). The RANS equations are shown in Eq. 9-11.

𝜕

𝜕𝑡
(𝜌) +

3∑︁
𝑗=1

𝜕

𝜕𝑥𝑖
(𝜌𝑢𝑖 ) = 𝑆𝑀 (9)

𝜕

𝜕𝑡
(𝜌𝑢𝑖 ) +

3∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗
· (𝜌𝑢𝑖𝑢 𝑗 ) = − 𝜕𝑝

𝜕𝑥𝑖
+

3∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗
(−𝜌𝑢′

𝑖
𝑢′
𝑗
) + 𝑆𝐹,𝑖

+
3∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗
[𝜇 ( 𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖
− 2
3
𝛿𝑖 𝑗

3∑︁
𝑙=1

𝜕𝑢𝑙

𝜕𝑥𝑙
]

(10)

𝜕

𝜕𝑡
(𝜌𝐸) +

3∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗
(𝜌𝐸𝑢 𝑗 ) =

3∑︁
𝑖=1

3∑︁
𝑗=1

( 𝜕

𝜕𝑥 𝑗
(𝜏𝑖 𝑗 − 𝜌𝑢′𝑖𝑢

′
𝑗
)𝑢𝑖 ) −

3∑︁
𝑗=1

𝜕

𝜕𝑥 𝑗
𝑞 𝑗 + 𝑆𝐸

(11)
Eq. 9 describes the conservation of mass within the two-phase

immersion cooling system, which is used to simulate the volume
of fluids, where 𝑆𝑀 is the source term in the mass conservation
equation(kg/m3s). Eq. 10 describes the conservation of the momen-
tum to simulate the movement of the fluids, where 𝑆𝐹 is the source
term in the momentum conservation equation(kg/m2s2). Eq. 11
describes the conservation of energy to simulate the heat transfer
of the fluids, where 𝑆𝐸 is the source term in the energy conservation
equation (J/m3s).

In the Ansys Fluent, the volume of the fluid (VOF) model is
used to simulate the boiling heat transfer in the tank. Lee’s two-
phase flow model [15] is used to simulate the evaporation and
condensation of the coolant. The standard k-epsilon model [14] is
used to simulate the viscosity. The method setting in the Ansys
Fluent software is summarized in Table 3. The thermodynamic
characteristics of coolants are listed in Table 2; these were used to
define the liquid in the simulation.

We set the heat flux of 3 H100 GPUs to {45, 40, 35}W/cm2 respec-
tively. This setting for heat flux was chosen since the CHF of the
HFE-7100 is 45.1 W/cm2. Fig. E.1 demonstrates the simulated heat
removal process of 3 H100. The vapor and liquid are distinguished
by volume fraction. In addition, we add a temperature threshold
to ensure that the temperature of the GPU is under the operation
range to simulate the thermal-throttle mechanism of the GPUs. The
temperature results are shown in Fig. E.2. The GPUs are shut down
at 16.25 s. Hence the last curve of the temperature results shows
the effect of cooling.

F Details of Profiling
We need to profile three sets of parameters: 1.) The GPU kernels
{𝐾} executed by the LLM training job. 2.) The (𝛽𝑘

𝑖
, 𝜏𝑘
𝑖
, 𝑃𝑐
𝑖
) for each

GPU kernel 𝑜𝑝𝑒𝑟 . 3.) The 𝛼𝑖,𝑤 for each GPU.
Methodology: We employ a uniform sampling method with a de-
fined delay cutoff to filter out infeasible frequency configurations
{𝑓𝑖 } for each GPU 𝑖 . Given the monotonic relationship between
delay and frequency, we discard invalid frequencies and redistribute
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Figure G.1: Performance of GPU quantities with coolant FC-72
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saved samples, ensuring uniform exploration of valid configura-
tions within the search space. Given the LLM training model M, a
server configuration with a set of GPU {𝑖}, we execute the LLM job
on the given GPU server with several iterations of each frequency
in the sampled set {𝑓𝑖 }. The frequency can be scaled and the Power
Consumption of the GPU can be measured using the NVIDIA Man-
agement Library (NVML), which is a C-based API for managing
and monitoring various aspects of NVIDIA GPUs.

During execution, we monitor the sequence {𝐾M } and power
consumption {𝑃𝑘

𝑖
(𝑓𝑖 )} of GPU kernels and the execution time

𝑡𝑖,𝑤 (𝑓𝑖 ) for layer𝑤 using NVIDIA Nsight Compute [21]. The FLOPs
of the model M can be approximated by 𝐹𝐿𝑂𝑃𝑠 ≈ 6𝑁𝑃𝑁𝐷 [7],
where 𝑁𝑃 is the number of parameters ofM and 𝑁𝐷 is the number
of tokens in the dataset. Then we can fit the parameters (𝛽𝑘

𝑖
, 𝜏𝑘
𝑖
)

through the collected sample data {𝑃𝑘
𝑖
(𝑓𝑖 )} and {𝑓𝑖 } using Eq. 5, and

fit the parameters 𝛼𝑖,𝑤 through the collected sample data 𝑡𝑖,𝑤 (𝑓𝑖 ),
and calculate 𝐹𝐿𝑂𝑃𝑠 using Eq. 7.

G Additional Evaluation
G.1 Impact of GPU quantities
Fig. G.1 presents the energy consumption and delay in different
GPU quantities. We used three cases: (8xL40S & 8xH100), (4xL40S
& 8xH100), and (1xL40S & 8xH100), according to the instance spec-
ifications of Amazon EC2 [23]. The x-tick name refers to the ratio
L40S to H100. We observe that as the proportion of H100 increases,
the overall energy consumption also increases. This is because L40S
is more energy-efficient than H100. We also observe that as the
proportion of H100 increases, the ELIC saved energy decreases com-
pared with SA-EF (from 15.2% of 1:1 to 4.7% of 1:8). This is because
as the proportion of H100 increases, the heterogeneity of the server
decreases. Hence, the SA-EF can come close to the optimal energy
consumption even if it is scheduler agnostic.

G.2 Impact of delay requirements
Fig. G.2 presents the energy consumption of SA-EF, DF, and ELIC
with different delay requirements. The delay requirements are ex-
pressed as a multiple of the ideal minimum delay. We observed
that the delay requirement must be more than 1.35 times that of
the ideal minimum delay for FC-72, where SA-EF, DF, and ELIC
consume similar amounts of energy. Otherwise, the LLM pretrain-
ing job cannot be accomplished. We also observed that ELIC saves

16.8% of energy as the delay requirement extends from 1.35 times to
1.4 times, compared with SA-EF, which only saves 3.2%. But when
the delay requirement extends from 1.4 times to 1.45 times, ELIC
only saves 4.4% of energy, compared with SA-EF which saves 4.7%.
This is because, during the first period, ELIC saves energy from
both workload assignment and frequency scaling. However, during
the second period, the workload assignment is the same as that in
the first period, which means that ELIC saves energy only from
frequency scaling.

H Discussion and Future Work
This paper studies the restrictions of the immersion cooling system
and transfers them to the power constraint of GPUs. Meanwhile,
since we only changed the GPU workload assignment and frequency
scaling, we ignored the changes in the non-GPU server energy. For
the LLM training task, real systems may not always have explicit
deadlines; in this paper, the deadline serves as an abstraction for
performance constraints.

This work utilized simulation to evaluate the performance of the
proposed models and algorithm. Although simulation provides a
flexible and controlled environment for evaluating thermal behavior
and energy dynamics, real systems can exhibit additional factors
such as fluctuations in ambient temperature. But both frequency
scaling and workload assignment are feasible in practice, and we
plan to explore a system-level implementation in a future work.

Several potential techniques can be utilized in the immersion
cooling system. Pressure management affects the density of the
vapor coolant, while dynamic coolant circulation influences the liq-
uidity of the liquid coolant. Both factors directly impact the critical
heat flux (CHF) of the coolant and may increase the permissible
GPU power constraint but also increase the energy consumption
of the cooling system. We plan to investigate those techniques and
the corresponding consequences in the future.

This paper is the first work on LLM training given an immersion
cooling system. It focuses on average power consumption patterns
and ignores the specific patterns of the LLM training task. In ad-
dition, this paper discusses only GPU clusters on a small scale. In
this paper only the operational energy costs were considered, while
the total costs of ownership (TCO), including the construction and
maintenance costs, were not discussed. Those are the limitations of
this paper and we will investigate those problems in a future work.
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