
A General Framework for Efficient
Continuous Multidimensional Top-k Query

Processing in Sensor Networks
Hongbo Jiang, Member, IEEE, Jie Cheng, Dan Wang, Member, IEEE,

Chonggang Wang, Senior Member, IEEE, and Guang Tan, Member, IEEE

Abstract—Top-k query has long been a crucial problem in multiple fields of computer science, such as data processing and

information retrieval. In emerging cyber-physical systems, where there can be a large number of users searching information directly

into the physical world, many new challenges arise for top-k query processing. From the client’s perspective, users may request

different sets of information, with different priorities and at different times. Thus, top-k search should not only be multidimensional, but

also be across time domain. From the system’s perspective, data collection is usually carried out by small sensing devices. Unlike the

data centers used for searching in the cyber-space, these devices are often extremely resource constrained and system efficiency is of

paramount importance. In this paper, we develop a framework that can effectively satisfy demands from the two aspects. The sensor

network maintains an efficient dominant graph data structure for data readings. A simple top-k extraction algorithm is used for user

query processing and two schemes are proposed to further reduce communication cost. Our methods can be used for top-k query with

any linear convex query function. The framework is adaptive enough to incorporate some advanced features; for example, we show

how approximate queries and data aging can be applied. To the best of our knowledge, this is the first work for continuous

multidimensional top-k query processing in sensor networks. Simulation results show that our schemes can reduce the total

communication cost by up to 90 percent, compared with a centralized scheme or a straightforward extension from previous top-k

algorithm on 1D sensor data.

Index Terms—Sensor networks, algorithm/protocol design, top-k extraction.

Ç

1 INTRODUCTION

THE recent development of sensor networks [8], [10], [19],
[20], [21], [22] has made it possible for users to search

information not only in the cyber-space, but also in the
physical world. It can be imagined that in the near future
people would be able to enjoy searching temperature,
humidity, light, smoke of various times, in a forest,
according to their own preferences. The fire service
department may focus more on the temperature and smoke
of the region, while the zoologists may be more interested in
light and temperature. These application requirements call
for a key function from the system design, an efficient

processing of the continuous multidimensional top-k
queries in sensor networks.

Top-k query processing has long been an important task
in various research domains [29], [39] where the k highest
(or lowest) data points are retrieved from a large data set.
The unique challenges we face in the aforementioned
applications come from two aspects. First, from the client’s
perspective, there can be a large number of different users.
Each of them has his own preference; they not only put
different weights on different dimensions of data but also on
different time periods of data. This multidimensional nature
has made many algorithms [2], [34], [38] developed for 1D
top-k queries unsuitable or inefficient. With multidimen-
sional sensor data, they have to pose as many queries as the
number of user requests since each user could assign a set of
weights representing his own preference, which results in
huge communication overhead. Second, from the system’s
perspective, the sensing devices are distributed and usually
with great resource constraints. Especially, for the energy
limited sensor nodes, the communication should be tightly
optimized. Therefore, most centralized schemes developed
in the database community such as [39] cannot be applied
here. As an example, ordinary nodes have no information
about the user preference and if all sensor data are extracted,
it could incur a large amount of communications.

To this end, we develop a framework based on dominant
graph (DG) [39]. DG is a layered data structure to build a
relationship between different data points in multidimen-
sions. To successfully apply DG in distributed sensor
networks, we face many challenges. In [39], the server
extracts top-k results using the given query function. This is a
pure centralized operation. In a distributed sensor network,

1668 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

. H. Jiang and J. Cheng are with the Department of Electronics and
Information Engineering, Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology, 1037 Luoyu Road,
Wuhan 430074, China.
E-mail: {hongbojiang2004, Jiecheng2009}@gmail.com.

. D. Wang is with the Department of Computing, The Hong Kong
Polytechnic University, Hung Hom, Kowloon, Hong Kong.
E-mail: csdwang@comp.polyu.edu.hk.

. C. Wang is with the InterDigital Communications, 781 Third Avenue,
King of Prussia, PA 19406. E-mail: cgwang@ieee.org.

. G. Tan is with the Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town,
Shenzhen 518055, China. E-mail: guangtan@gmail.com.

Manuscript received 27 Jan. 2012; accepted 31 Jan. 2012; published online 8
Feb. 2012.
Recommended for acceptance by S. Papavassiliou, N. Kato, Y. Liu, C.-Z.
Xu, and X. Wang.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number
TPDSSI-2012-01-0063.
Digital Object Identifier no. 10.1109/TPDS.2012.69.

1045-9219/12/$31.00 � 2012 IEEE Published by the IEEE Computer Society

unfortunately, it is impossible for the sensor nodes to know
the query functions since the query is performed at the sink.
To successfully carry out the top-k query in sensor networks,
there must be interactions between the sink and the sensors in
the network. The incurred communication traffic dominates
the energy consumption, and is of crucial importance for
system efficiency, thus it requires special treatment.

We believe the best way to handle such difficulties is to
develop a framework for the sensor network. In the
framework, the complexity of multidimensional top-k
query processing and system efficiency can be clearly
assigned to sinks and the sensor nodes, respectively. In this
paper, we discuss our framework and the associated
algorithms. To the best of our understanding, we are the
first to develop solutions for continuous multidimensional
top-k query processing in sensor networks. Our contribu-
tions are summarized as follows:

. We propose a novel framework that efficiently
realizes DG in a distributed sensor network. The
framework supports top-k queries for arbitrary user-
defined linear convex query functions over multi-
dimensional sensor data.

. For each sensor, where the query function is
unknown, we develop a top-k extraction algorithm
to efficiently retrieve necessary data points that will
be sent to the sink.

. We propose schemes working with the top-k
extraction algorithm for reducing communication
traffic. Our key observation is that the continuously
collected sensor data does not change abruptly. With
previously generated global top-k results, we devel-
op novel scheme for each node to update and
maintain its local dominant graph for later data
suppression. In addition, we propose local filters to
further reduce the communication traffic.

. We develop a comprehensive set of modules and
interactions. Our framework is general enough so that
many modules can be added piece by piece. We show
two examples on how to handle data aging and
accommodate approximate queries so as to adapt to
different user requirements and system performance.

. We evaluate our framework on both real and
synthetic data sets. Simulation results show that
our schemes can reduce the total communication cost
by up to 90 percent, compared with the centralized
scheme or a straightforward extension from previous
top-k algorithm designed for 1D sensor data.

The remainder of this paper proceeds as follows: Section 2
describes the background of top-k (preference) query in
multidimensional data and our framework; Section 3 is
devoted to the top-kquery processing algorithms; in Section 4
issues related to overhead reduction and complexity analysis
are discussed. We evaluate our schemes in Section 5; Section 6
presents related work and finally, Section 7 summarizes the
paper and gives future plan.

2 ARCHITECTURE DESIGN

2.1 The Problem

Assume a data set D ¼ fd1; d2; . . . ; dng. Each di is an m-
dimensional data point represented by an ðmþ 2Þ-tuple

di ¼ ðdi:x1; di:x2; . . . ; di:xm; di:id; di:tÞ, where di:x1 through

di:xm represent its values in the m dimensions, and di:id

and di:t are its unique ID [30], [34], [38] and arrival

timestamp (used in slide window queries), respectively. Let

a user-defined query function be F ðdiÞ ¼ �m
j¼1wj � di:xj

where wj represents the weight on the jth dimension. A

top-k preference query (or top-k query for short) is to retrieve

k data points from D whose values of function F are the

highest. Consistent with [29], [39], we only consider the

typical linear convex query functions here. Also known as

aggregate monotone functions [13], this kind of functions

satisfy F ðx1; . . . xmÞ � F ðx10; . . . xm0Þ if xj � xj0, for all j.

Without loss of generality, we present our design with two

dimensions. That is, each data point di is a 4-tuple

< di:x1; d:x2; di:id; di:t > , including its values of two attri-

butes, its unique ID, and its arrival timestamp.
A user starts a query with: 1) a set of user-defined

weights; 2) k, the number of data points to be retrieved; and

3) a time period s � 1 during which the top-k query results

should be retrieved. With a sliding window model, the top-

k results in the previous time window of size s is returned.
Since each user may assign a set of weights representing

his own preference, the sink typically retrieves more than k

data points (i.e., the top-k results, denoted by RS) from the

network to allow arbitrary user-defined linear convex query

functions over multidimensional sensor data. In Section 3, a

formal definition of the top-k results RS will be given.

2.2 The Dominant Graph

We say that a data point d 2 D dominates d0 2 D in

multidimensional space if and only if: 1) d:xj � d0:xj for

each dimension j; 2) there exists l such that d:xl > d0:xl. The

second condition holds to avoid a special case from the first

condition: d:xj ¼ d0:xj for each dimension j. This dominat-

ing relationship always holds in top-k queries:

Lemma 1. If d dominates d0, we have, for any aggregate

monotone function F , F ðdÞ � F ðd0Þ.
Proof. Since d dominates d0, d:xj � d0:xj for each dimension

j. According to the definition of aggregate monotone

function, we have F ðdÞ � F ðd0Þ. tu

Following [11], [39], we call the data point d a maximal point

if it is not dominated by any other data point inD. We refer to

the first maximal layer L1 (hereinafter called a layer; in some

previous works [29] it is also called a skyband) as the set of

maximal points inD. In addition, the kth layerLk is the set of

maximal points in D� [l¼1...k�1L
00
l . Fig. 1 shows an example

including the first layer, consisting of {P1, P2, P3, P4}, and the

second layer, consisting of {P5, P6, P7}, in a 2D space.
A dominant graph (DG) [39] is defined by a set of bipartite

graphs gk where there exist direct edges each of which

represents a data point d in the kth layer that dominates a

data point d0 in the ðkþ 1Þth layer. Fig. 1c shows an example

of DG. L00k represents the kth layer of the dominant graph.

Many previous algorithms [5], [39] can be used to find each

layer of DG. As a result, we build the parent-children

relationship between the kth layer and the (kþ 1)th layer.

JIANG ET AL.: A GENERAL FRAMEWORK FOR EFFICIENT CONTINUOUS MULTIDIMENSIONAL TOP-k QUERY PROCESSING IN SENSOR... 1669

2.3 The Multidimensional Top-k Framework

We propose a framework as shown in Fig. 2. This framework
resides on top of the data routing layer. We note that the
framework does not rely on any routing infrastructure such
as [12], [14], [28]. In this framework, there are interrelated
base station (or sink) actions and sensor network actions. The
main flows of the framework are the data flow and the
control flow (shown in the white and gray arrows in Fig. 2).
In addition, the framework is open to additional modules.

The data flow (shown in the white arrows) is mainly
associated with sensor network actions. Based on its sensor
“Data,” the individual node is able to set up a local
“Dominate Graph.” Based on “Query Process” require-
ments, when a node receives an RS (local top-k results)
from its downstream node, it will go through its own DG
(to be explained in Section 3), and then the RS (“Local top-k
results”) will be aggregated and sent along upstream nodes
(“Data Aggregation”) until reaching the sink.

The control flow involves both sensor network action
and base station action. Notice that the base station has the
most complete view of the top-k query, the user weight

functions, as well as the DG. Therefore, the base station will
periodically send the global top-k information (“Feedback
Control”) to the sensor network (Section 3.2), or adaptively
diffuse the global filter information (“Filter”) over the
whole network (Section 3.3). Ultimately, such information is
stored in the query processing unit of the sensor nodes,
which will affect the calculation of the top-k results.

With the query processing units in both the base station
and the network, the framework is able to incorporate
optional units (the Optional Modules in Fig. 2). For
example, we can accommodate data aging (detailed in
Section 4.2) and approximate queries (Section 4.3). In the
remaining part of the paper, we will detail all our designs.

3 OUR ALGORITHMS

Our distributed algorithms aim to retrieve information for
top-k queries. While the algorithms use a routing tree, the
construction of such a tree is out of the scope of this work.
Numerous recent studies have focused on this topic, and
many of them, for instance [25], can be used in conjunction

1670 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Fig. 1. An example of multiple layers.

Fig. 2. The framework for multidimensional top-k query processing.

with our approach. Here we simply assume that such a
routing tree has been constructed, in which each node
knows its parent/children nodes.

3.1 Distributed Top-k Extraction Algorithm

We first consider the top-k extraction algorithm assuming
the existence of a DG. As mentioned in Section 1, the
extracted top-k results should support arbitrary query
functions (thus the extraction algorithm proposed in [39]
cannot be used).

Observe that in Fig. 1, for every posed top-1 query, one of
{P1, P2, P3, P4} is returned to the user according to the
query function F . Recall that our goal is to process multiple
queries, each having its own query function F . Accordingly,
the sink should retrieve all {P1, P2, P3, P4} for top-1 queries
and retrieve {P1, P2, P3, P4, P6} for top-2 queries. It is worth
noting that the set of points returned for top-2 queries is a
subset of the top two layers: not every point in the second
layer needs to be returned. In general, we present a criterion
of the top-k query results RS:

Definition 1. We refer to the top-k query resultsRS as the data set
such that any d 2 RS is dominated by less than k data points.

Note that the top-k results are a subset of the top k layers.
Then we have the following theorem.

Theorem 1. The top-k results built using the rule of Definition 1
enable the sink to answer top-k queries for arbitrary user-
defined linear convex query functions over multidimensional
sensor data.

Proof. Proof by contradiction. Assume that there exists data
point d0 2 RS that is dominated by at least k data points.
According to Lemma 1, for any aggregate monotone
function F , the F ðd0Þ value cannot be a top-k result. This
contradicts the fact that RS contains the top-k results for
any query. That is, for any data point d 2 RS, the number
of data points dominating d is less than k. tu

This theorem implies that the system often returns more
than k data points for top-k query processing. It immedi-
ately leads to the following result.

Definition 2. For any query function F , the data point d is a
nontop-k result if it is dominated by at least k data points.

This definition implies that, in Fig. 1, {P5, P7, P8, P9} are
nontop-2 query results for any query function F since any
of them is dominated by at least two data points.

In the algorithm, each node first builds its DG locally. We
denote by LiðdÞ the layer number of a data point d in the
local DG (a smaller L means a higher layer) at node i.
According to Definition 2, those data points with more than
k predecessors are nontop-k results. Furthermore, all their
successors in DG are nontop-k results too. The local top-k
extraction algorithm at individual nodes is illustrated in
Algorithm 1. One observation is that if the data point is in
the top-k results, so is its parent. Specifically, when the data
point is identified to be a top-k result (Lines 5-6), its children
are put into Q0candidate for further identifying in the next loop
(Line 7). While Algorithm 1 is performed at ordinary nodes,
it can also be used to extract possible top-k results at the

sink which can be exploited by our basic and enhanced
schemes (to be discussed later).

Algorithm 1. Top-k Extraction Algorithm

Require: Input: a DG of valid data set at node i

Output: the local top-k results, RSi.

1: All data points at 1st layer of DG are put into RSi and

Qcandidate.

2: Q0candidate ;
3: while Qcandidate is not empty do

4: for every data point d in Qcandidate do

5: if d has less than k predecessors in DG then

6: RSi RSi [fdg //move d into the result set

7: move all of d’s children into Q0candidate
8: else

9: Qcandidate Qcandidate n fdg //remove d from

the candidate set

10: end if

11: end for

12: Qcandidate Q0candidate
13: Q0candidate ;
14: end while

So far we have described the distributed top-k extraction
algorithm (Algorithm 1) given a DG. A straightforward
approach to continuous multidimensional top-k query
processing can then be based on this algorithm. Using
Algorithm 1, individual nodes collect top-k result set
suitable to support top-k queries for arbitrary user-defined
linear convex query functions over multidimensional data.
Intermediate nodes aggregate the top-k results RS from the
children and the results from their own, and send the
aggregated results to parents. The sink also builds a DG to
maintain the top-k results to allow user requests of the top-k
query with arbitrary time period and weights. However,
such an approach may incur heavy traffic. Our algorithm
thus allows interaction between ordinary nodes and the
sink so that the traffic can be reduced. Next we discuss two
schemes to address this issue.

3.2 Basic Scheme

In this section, we propose a basic scheme for query
processing. The basic idea behind it is that if ordinary nodes
have global top-k information, it is helpful to filter out the
nontop-k results for continuous monitoring.

3.2.1 Diffuse Top-k Results RSsink from the Sink

The sink periodically initiates a flooding to disseminate all its
top-k results extracted by Algorithm 1 over the whole
network. It is noted that the sink continuously collects the
top-k results from the sensor network and has a complete
view. One fact used in the design is that an ordinary node i in
most cases does not need to report all data points inRSi. Most
of data points can be identified to be nontop-k results from the
sink’s point of view, as long as the node has the knowledge of
the previous top-k query results RSsink from the sink.

For the data point d collected by the node i, if d in RSi is
sent to i’s parent j, then its layer number has the following
property.

Lemma 2. The layer number of the data point d at node i, LiðdÞ,
is nondecreasing as new data points are inserted into i’s DG.

JIANG ET AL.: A GENERAL FRAMEWORK FOR EFFICIENT CONTINUOUS MULTIDIMENSIONAL TOP-k QUERY PROCESSING IN SENSOR... 1671

Proof. Recall that by definition, for the data point d0 on the
kth layer, there is another data point d1 on the ðk� 1Þth
layer (see Lemma 2.1 in [39]). Accordingly, we can find a

data set fd0; d1; d2; . . . ; dk�1g (we call it a chain) where dm

dominates dm�1 (1 � m � k� 1).
For any new data point d0 inserted into the DG, we

have two cases. The first case is that we can find a chain
fd0; d1; d2; . . . ; dk�1g such that: 1) d0 is dominated by
some dm while itself dominates dm�1; 2) d is in the
chain. In this case, d’s layer is increased by 1 if d0

dominates d. That is, LiðdÞ will be increased after a new
data point is inserted into the DG. In the second case
LiðdÞ remains unchanged. tu

Lemma 3. The data point d’s layer number at node i is no more

than its layer number at i’s parent j. That is, LiðdÞ � LjðdÞ.
Proof. Note that when we compare LiðdÞ and LjðdÞ, due to

the aggregation, it is equivalent to the case that there are
many new data points to be inserted into the DG at the
node j as node j receives many data from its children.

According to Lemma 2, we have LiðrÞ � LjðrÞ. tu
Theorem 2. The data point d’s layer number at the node i is no

more than its layer number in the DG at the sink. That is,

LiðdÞ � LsinkðdÞ.
Proof. According to Lemma 3, The layer number of the data

point d at node i is no more than its layer number at i’s
parent. Since the sink is obviously i’s predecessor in the

routing tree, we have the result. tu

Theorem 2 implies that the node often sends “useless”
data (nontop-k results) to the sink over the routing tree when

those data cannot be included in the final top-k query results.
To address this problem, we consider sending all the data
points in RSsink back to individual nodes so that the nodes
are capable of filtering out most nontop-k results locally.

3.2.2 The Node Processing Module

Each node, after receiving RSsink from the sink, will update
its local DG by inserting data of RSsink into its local DG.
According to Theorem 2, many data points obtained from
the sink may dominate most local ones. In a realistic sensor

data set [1], we observed that most data points of RSsink also
dominate the local newly collected ones since the data are
stable over time. Besides the sink, the sensor nodes
dynamically maintain their local DGs: insert new readings

and remove outdated ones. For details of the insert and
delete operations of DG see [39].

Each node i, after looking through its local DG, sends
RSi calculated by Algorithm 1 in its DG to its parent at the

initial phase. Afterward, the node updates its local DG
when collecting data itself or receiving data from its
children and identify whether the incoming data should
be sent. A schematic diagram of the node processing loop is

presented in Algorithm 2. First, the node updates its local
DG after receiving the set of RSsink (Lines 2-4). Second, since
we aim at the sliding window query, when the data point
expires, its children have a chance to become the top-k

results (Lines 6-10). Similar to Lemma 2, we have the
following result.

Algorithm 2. Node i’s Processing Module
//Initial Phase

1: Build node i’s local DG based on the data points

collected by itself and those from its children

2: Calculate RSi using Algorithm 1

3: Send RSi to node i’s parent

//Node Processing Loop

1: loop

2: if receive the new RSsink diffused by the sink then

3: Update its local DG //perform insertion

4: end if

5: Remove all outdated data (denoted by EDi) in DG

6: if any data point d0 2 e’s successor where e 2 EDi

then

7: if d0 has less than k predecessors in DG

and !d0:sent then

8: Send d0 to node i’s parent; d0:sent TRUE

9: end if

10: end if

11: if node i has new sensor data di then {//di can be

generated by node i or received from i’s child}

12: Insert di into its DG; di:sent FALSE

13: if di has less than k predecessors in its DG then

14: Send di to node i’s parent
15: di:sent TRUE

16: end if

17: end if

18: end loop

Lemma 4. For the data point d at node i, LiðdÞ does not increase
when some expiring data points are removed from the DG.

Finally, according to Definition 2, the new data point d
will be sent if it is dominated by less than k data points in
DG (Lines 13-16).

In the basic scheme, each node generates a snapshot of
dominant graph with up to k layers. All the sensor nodes
will form a hierarchical routing tree. That is, each node will
send the snapshot back to the sink in a hop-by-hop fashion
with data aggregation at intermediate nodes. While not
claiming the credit for the construction of the DG, we note
that our contribution here is a novel data aggregation
scheme that forwards partial dominant graphs in the
routing tree.

3.3 Enhanced Scheme

A drawback of the basic scheme is that the sink has to
periodically diffuse all the potential top-k results for later
data suppression. When jRSsinkj is large, diffusing them
will incur a large amount of communication. One fact is that
the size of RSsink is often much larger than k. For example,
in our experiments, a top-6 query leads to around 40-50
results. In this section, we propose an enhanced scheme to
refine the basic scheme and set up a so-called filter structure
to reduce the diffusion overhead. The basic idea is to avoid
diffusing the high layer data in a DG.

In the first step of the basic scheme, the sink diffusion
causes around jRSsinkj �N traffic. However, if the sink only
diffuses the necessary data in RSsink, the communication cost

1672 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

can be reduced. Thus, the problem becomes how to extract
these necessary data of RSsink. Fig. 3a shows an intuitive
example of our proposed filter ({P5, P9, P7}) to answer a
top-3 query according to the data set in Fig. 1.

3.3.1 Filter Construction

We define the filter as a data set FL ¼ fd1; d2; . . . ; dFgwhich
are diffused by the sink to all nodes. In the case of 2D space,
the df in the filter is a tuple <df :x1; df :x2; df :expired>.

Definition 3. We say that the data point d is dominated by the
filter FL ¼ fd1; d2; . . . ; dFg if there exists at least one data
point df 2 FL that can dominate d.

After receiving FLsink, the node will not send those data
points that are dominated by this filter. For instance, the
data points in the pink area in Fig. 3a will not be sent since
they are dominated by the filter. (Note that the filter used
here is different from the skyband in [29]. For example, the
3-skyband in Fig. 1 is {P8, P9} but the filter for top-3 query is
{P5, P7, P9}) Another problem is that given the time
window associated with the query, some data may expire.
For instance, in Fig. 3b, when P1 expires, P5 cannot be in the
filter since it is dominated by only P2 instead of P1P2. In
this case, the filter should be composed of only P9 and P7,
shown in Fig. 3b. If the new data falls into the green area,
say P10, it should be included in the top-3 query results.

Algorithm 3 presents the details of the filter construction.
Line 6 shows the calculation of the expiring time of the filter
data. The sink then iteratively collects those data which can

be dominated by at least (k� 1) other data points (Line 7).
The final filter will not contain those nodes whose parents
have been identified to be included (Lines 10-14).

Algorithm 3. Filter Construction Algorithm

Require: Input: a DG of valid data set at the sink

Output: the filter, FLsink.
1: All data at 1st layer of DG are put into Qcandidate.

2: Q0candidate ;; FLsink ;
3: while Qcandidate is not empty do

4: for every data point d 2 Qcandidate do

5: if d has more than ðk� 1Þ predecessors, denoted

by M, in DG then

6: d:expired minimal expiring time of d and

the ðk� 1Þ latest-expiring points in M
7: FLsink FLsink [fdg //move d into the filter

8: continue

9: end if

10: for every child d0 of d do

11: if No parent of d0 is in FLsink then

12: Q0candidate Q0candidate [fd0g
13: end if

14: end for

15: end for

16: Qcandidate Q0candidate; Q
0
candidate ;

17: end while

The fact that the data point d is dominated by df 2 FLsink
means that there exist at least k data points in the DG at the
sink that can dominate d. According to Definition 2, it is
easy to prove the correctness of Algorithm 3:

Theorem 3. If the new data point d is dominated by FLsink, then
d is not a top-k result.

Proof. If the data point d is dominated by FLsink, there exist
at least k data points in the DG at the sink that can
dominate d. That is, d is not a top-k result. tu

3.3.2 Filter Update

It is infeasible for the sink to continuously diffuse its updated
filter because of the high communication cost. In addition, by
setting an expiring time for the filter data, each node is aware
of when the data point should be removed from the filter so
that the filter can remain valid at the individual nodes even
without being informed by the sink. As shown in Fig. 3b,
when P5 has expired, the node uses fP9; P7g as its filter. The
downside is that this filter will become more and more
conservative because the new data points that are nontop-k
results are possibly not filtered out by the filter maintained at
the individual nodes. The filter dominating, while guaran-
teeing the sufficient condition for identifying nontop-k
results based on Theorem 3, is unfortunately not a necessary
condition. Fig. 4 shows an example where many data points
in the pink area will be sent to the sink. While the sink is
finally capable of finding the unwanted nontop-k data, a
significant of communication resource is wasted. To address
this problem, the sink should rediffuse the updated filter
when the old one is too conservative as shown in Fig. 4.

To that end, we count the number of data points falling
in the region that is dominated by the real filter but not by
the old one, that is, the pink region in Fig. 4, denoted by

JIANG ET AL.: A GENERAL FRAMEWORK FOR EFFICIENT CONTINUOUS MULTIDIMENSIONAL TOP-k QUERY PROCESSING IN SENSOR... 1673

Fig. 3. The filter based on the data set in Fig. 1.

Counter. When the filter is too conservative, that is, Counter
is too large, the sink should diffuse its updated filter FLsink.
Algorithm 4 presents the detail of filter update process. �P
represents the average path length to transmit data to the
sink. The estimation of �P in the real world can be done by
each node sending several small packets to the sink during
the setup phase of the network. jFLsinkj �N presents the
amount of incurred traffic to diffuse the new filter. When
there is new incoming data or some data expires in the DG
at the sink, it recalculates a new filter (real filter)
accordingly (Lines 2-4). If the new data points are not
dominated by the old filter maintained by ordinary nodes,
but dominated by the new filter (fall in the pink region in
Fig. 4), Counter will be increased by one to indicate how
many nontop-k results have been sent by nodes (Lines 5-7).
In addition, the sink records those nodes denoted by NS
that really send the nontop-k results (Line 6). When the old
filter is too conservative (Lines 8-11), the sink will diffuse a
new filter. It is worth noting that the sink only diffuses the
new filter to the nodes in NS (Line 9) instead of all nodes in
order to keep a low communication cost.

Algorithm 4. Filter Update Algorithm
1: loop

2: if new data d is coming at the sink or some data

points expire in DG then

3: Update the DG at the sink //perform insertion

and deletion

4: Calculate FLsink based on its DG by Algorithm 3

5: if new data d (coming from node i) is dominated

by FLsink then

6: Counter Counterþ 1; NS NS [fig
7: end if

8: if Counter � �P > jFLsinkj � jNSj then

9: The sink diffuses FLsink to all nodes in NS

10: Counter 0; NS ;
11: end if

12: end if

13: end loop

3.3.3 The Node Processing Module

Like in the second step of the basic scheme, each node
updates its local filter and prepares the data set for
transmission. The node processing module is illustrated in
Algorithm 5. It updates the filter FLi locally when it
receives a new filter data set FLsink diffused from the sink
(Lines 2-4). Then the node removes the outdated data in the
filter (Lines 5-9). The node looks up those data points which

are previously not in the top-k results but should be sent
later (Lines 10-14). Finally, if the new data di is dominated
by FLi, it will not be sent to the node’s parent (Lines 15-20).
Here TSi is the transmitted data set and will be updated at
each loop to remove the expiring data.

Algorithm 5. Node i’s Processing Module

//Initial Phase

. . . //similar to Algorithm 2

//Node Processing Loop

1: loop

2: if receive the new filter FLsink diffused by the sink

then

3: FLi FLsink; TSi ;
4: end if

5: for each data point dif 2 FLi do

6: if dif expires according to dif :expired then

7: FLi FLinfdifg //remove outdated data
points in the filter

8: end if

9: end for

10: for each valid data point d0 not in TSi do

11: if d0 is not dominated by FLi and d0 is not

dominated by at least k data points in TSi then

12: Send di to i’s parent; TSi TSi [fd0g
13: end if

14: end for

15: if node i has a new data point di then {//di could be

generated by node i or received from node i’s child}

16: if di is dominated by FLi or di is dominated by at

least k data points in TSi then

17: exit //the data point cannot be in the top-k

results

18: end if

19: Send di to i’s parent; TSi TSi [fdig
20: end if

21: end loop

The enhanced scheme differs from the basic one in several
respects. First, each node no longer holds a DG. Instead, a
filter is maintained at nodes which roughly represents the
last layer in DG for answering top-k queries. Second, the
updated filter is diffused to those nodes which may not have
top-k query results rather than being diffused to all nodes in
the network (Line 9 in Algorithm 4). Finally, the sink
diffusion is performed adaptively instead of periodically,
providing a mechanism to improve energy efficiency.

4 DISCUSSION

4.1 Time and Message Complexity

Time and message complexity are important factors for
efficient top-k query processing. Let N be the total number
of nodes in the network, �P be the average path length to the
sink. logN could be a very optimistic estimate of �P , but if
the sensors are deployed in the real world, say roughly in
2D, typically we have the transmission path length of �

ffiffiffiffiffi
N
p

(or �N1=3 in 3D) where � is a constant. Obviously the
message complexity is OðN

ffiffiffiffiffi
N
p
Þ if all nodes continuously

send their readings to the sink. Let M be the cardinality of
the data set within the sliding window (i.e., the number of

1674 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Fig. 4. Filter update.

the active data points over all nodes). Besides, with basic
scheme, the sink diffuses its RSsink every T time ticks. For
simplicity, we consider the case where the data are
uniformly distributed [29]. The following theorems show
the scalability of our algorithm.

Theorem 4. The message complexity of our algorithms is OðNÞ
where N is the network size.

Proof. First, we consider the basic scheme without diffusion
from the sink. In this case, the probability that the new
data will be sent is jRSij=M where jRSij is the average
cardinality of the local top-k results at ordinary nodes
(obtained from Algorithm 1). Due to the data aggrega-
tion at the intermediate nodes, the number of transmis-
sions for the data is N instead of �N

ffiffiffiffiffi
N
p

. Thus, the
message complexity of the basic scheme without diffu-
sion from the sink is C1 ¼ N � jRSij=M 2 OðNÞ.

Second, for the basic scheme, since RSsink diffused
by the sink represents the global information of the
top-k results, the probability that the new data point
will be sent becomes jRSsinkjM�N . Therefore, to transmit all
these jRSsinkj

M�N �N data points, the message complexity is
jRSsinkj
M�N �N�

ffiffiffiffiffi
N
p

. In addition, the sink diffuses RSsink
every T time ticks and thus each diffusion causes
jRSsinkj �N=ðM � T Þ traffic. Overall, the message com-
plexity of the basic scheme is C2 ¼ �

ffiffiffiffiffi
N
p
� jRSsinkj=M þ

N � jRSsinkj =ðM � T Þ 2 OðNÞ.
Finally, we turn to the enhanced scheme where the

sink adaptively diffuses the filter consisting the data
points close to the k-layer (as such, the cardinality is
roughly 1=k of jRSsinkj). The first part of traffic is similar
to that of the basic scheme: �

ffiffiffiffiffi
N
p
� jRSsinkj=M. But for the

second part, the diffusion only causes jRSsinkj �N=ðM �
T � kÞ traffic. In addition, the sink only diffuses FLsink
when the diffusion is necessary (see Lines 8-11 in
Algorithm 4). When the diffusion is unnecessary, the
traffic cost becomes N � jRSij=M. Therefore, the message
complexity of the enhanced scheme is C3 ¼ minf�

ffiffiffiffiffi
N
p
�

jRSsinkj=M þ jRSsinkj �N=ðM � T � kÞ; C1g 2 OðNÞ. tu

The proof of Theorem 4 implies our algorithms have the
following properties:

Claim 1. The enhanced scheme always outperforms the
nondiffusion basic scheme and the basic scheme.

Claim 2. The basic scheme can cause a higher communication
cost than the basic scheme without diffusion.

This is because when k is large, jRSsinkj could be much
larger than jRSij. In this case, C2 > C1.

As for time complexity, the time complexity at ordinary
nodes to update DGs is OðM2Þ [39]. Besides, as mentioned
above, the average path length is Oð

ffiffiffiffiffi
N
p
Þ. As a result, the

time complexity for our proposed algorithm is OðM2 �
ffiffiffiffiffi
N
p
Þ,

that is, when M <<
ffiffiffiffiffi
N
p

we have:

Theorem 5. The time complexity of our proposed algorithms is
Oð

ffiffiffiffiffi
N
p
Þ.

4.2 Data Aging

Users may be more interested in recent data than in past
ones and thus a data aging (called information aging in [33])

function can be applied to each data point. The usage of
data aging represents that data vectors are contracted
toward the origin (shortened) as they age. In particular,
each data point can be multiplied by a factor facðcur�d:tÞ,
where cur is the current time and d:t is the generation time
of the data point. fac represents the degree of the data
aging. For example, if the data point is considered to
account for half of original value from 6 am to 12 pm and
the sensor reading is generated every 30 seconds like [1], the
aging factor fac is around 0:51=720 � 0:999.

Our algorithms can be easily adapted to realize the aging
function with minor modifications. First, for the basic
scheme, since this only affects DG (at nodes or the sink), all
data points at DGs will be updated every time. It is noted
that even the data point has been updated, it can be easily
recovered by multiplying fac�ðcur�d:tÞ. By doing so, updat-
ing the DG inherently represents the preference on recent
data point. Second, for the enhanced scheme, the node
should update the filter FLi by multiplying the aging factor
(between Lines 5 and 6 in Algorithm 5). We show only
representative results in Section 5 concerning the aging
factor as they were found to be close to those without aging.

4.3 Approximate Queries

When approximate results are acceptable, a sampling-based
approach can be used that reduces communication cost by
avoiding data transmission from nodes whose data points
are unlikely in the query results. To this end, we propose a
sampling-based query planning using linear programming,
which can be easily integrated to our basic or enhanced
scheme. The goal is to minimize the communication cost,
while satisfying the user predefined top-k accuracy. In
short, our algorithms can be easily extended to allow a
tradeoff between the accuracy of the results and the
communication cost.

Let ci be the number of values coming from the node i in
RSsink (

PN
i¼1 ci ¼ jRSsinkj). We refer to hi as the hop distance

between node i and the sink, thus hi � ci represents the
communication cost incurred by node i reporting its top-k
results to the sink. In addition, let ui 2 ½0; 1� be the probability
that the node i will report its results. If the user defines an
accuracy ’ 2 ½0%; 100%� that the sink could capture the top-k
results, we have the following linear program:

Minimize
XN

i¼1

uihici

s:t:
XN

i¼1

uici � ’jRSsinkj

0 � ui � 1 8i:

ð1Þ

The first line of (1) represents the optimization goal of
minimizing the communication cost. The second line of (1)
specifies the accuracy lower bound of the solution. It is
practical to integrate this linear program into our schemes.
The sink periodically solves the linear program and then
diffuses the probability uið1 � i � NÞ. In practice, the
ordinary nodes still perform Algorithms 2 or 5 but send
data (Lines 8 and 14 in Algorithm 2; Lines 12 and 19 in
Algorithm 5) with the probability ui. (It is noted that for the
data received from children, the node does not perform
probabilistic operation but deterministic one. Otherwise the

JIANG ET AL.: A GENERAL FRAMEWORK FOR EFFICIENT CONTINUOUS MULTIDIMENSIONAL TOP-k QUERY PROCESSING IN SENSOR... 1675

top-k results are unlikely sent back to the sink) Besides, we
cannot assume that the sensor data pattern is unchanged all
the time, and therefore the sink informs nodes to transmit
with full accuracy periodically (every 30 minutes in our
implementation) to refresh RSsink.

By integrating the linear programming into our schemes, it
may happen that the actual accuracy slightly drops below the
user predefined one ’ as we try to minimize communication
cost. That is, the accuracy lower bound in (1) is in terms of the
probability of sensors returning precise results. When an
exact accuracy is required, the sink would flood additional
queries into the network if the returned results are not
sufficient. In that case, we found this is not an issue as long as
we slightly increase the value of kwhen flooding the queries,
say retrieving top-(k+1) results. By doing so, sufficient results
are often obtained and no additional queries are required.

4.4 Deployment Issues

An important issue related to the deployment is the flexibility
for multiple users whose interests on k may vary, say from
top-2 query to top-20 queries. According to our design, a
large amount of various k values could affect the system
performance greatly. Recall that each node will extract top-k
results and send to its parent based on Algorithm 1. The size
of diffusion messages from the sink, no matter for the basic
scheme or for the enhanced scheme, are highly dependent on
the value of k (the upper bound of the message complexity
highly relies on RSsink or jRSij according to the proof of
Theorem 4). One approach to handling this problem is that
the sink estimates from the historical queries an appropriate k
value. For example, if there are more that 90 percent users
request only up to top-10 queries, the sink will use 10 as the
maximum k value, denoted byK, and each node extracts top-
10 query results to send to its parent.

In general, the sink is capable of dealing with the case
when the user poses top-k (k < K) query. For those queries
with k0 > K, however, it is nontrivial as each nodes and the
sink only extracts up to top-K results at their local DG. To
address this problem for k0 > K, we can calculate the
additional results beyond top-K results in a pipelined
fashion like [30] where each node maintains a heap list
containing its own data and the last set of data requested from
its children. When a node receives a request from its parents
for additional data, the node will check its own heap list and
send the request to its children that do not have data in the
heap list. Besides, the node will send all data at highest layer
in all untransmitted data. This process will be ended when
the sink obtains enough data to construct the top-k0 results.

5 PERFORMANCE EVALUATION

To evaluate the performance of our algorithms, we conduct a
series of simulation experiments. We first describe the data
sets used and alternative techniques for comparison. Then
we present the results and analysis. Due to the space limit,
we only present some representative results in this paper.

5.1 The Data Sets

5.1.1 Intel Berkeley Lab Data

This publicly available sensor data set was collected by the
Intel Berkeley Research Lab during a 1-month period [1].

The data consist of environmental data regularly collected
from 54 nodes spread around their lab. We observed some
missing data values for various nodes at different time
epochs, and interpolated them with the average of the values
during the previous and subsequent epochs at the same
node. In the simulations, we select the complete data set of
temperature and voltage over a one-week period (February
29th to March 6th, 2004). A node close to the center of the
area is assumed to be the sink in each experiment.

5.1.2 Synthetic Data

To evaluate the algorithms in larger networks and with
larger data sets, we also generated synthetic networks and
synthetic data. The size of the synthetic networks ranges
from 100 to 2,000 nodes and the size of data dimensionality
ranges from 2 to 5. We place the nodes in a uniformly random
distribution. On average each node has six neighboring
nodes within its radio range. Data values on each dimension
at every node i is modeled as xit ¼ �ixit�1 þ et where et �
Nð0; 0:1Þ (hereNð�; �Þ represents a Gaussian distribution) and
�i � Nð1:0; 0:5Þ. For each node, 240 data values were
generated (120 values for training and the rest for testing).
Every node is initialized with xi0 � Uð0; 1Þ.

5.2 Alternative Techniques

5.2.1 Centralized Exact

In TinyDB [26], all sensor values are always reported to
the sink. This technique offers an error-free propagation
of data.

5.2.2 FILA

Two variants of FILA [34] are used as a benchmark for our
comparative study. Since FILA focuses on snapshot query
instead of history query, and on 1D data, the sink generates
a query function F for each user request with weights (wj).
The node receives the query function, calculates the value
for each function it receives, and then sorts the data points
to find top-k results sent to the sink. This method is
hereafter referred to as “FILA snapshot.” An alternative
method, called “FILA history,” uses top-k results over the
period of query time only instead of each time tick.
Compared with “FILA snapshot,” this method can reduce
communication cost.

5.2.3 Basic Scheme without Diffusion

To evaluate the effectiveness of diffusion, we also present
the results when the sink does not diffuse RSsink or FLsink.

5.2.4 Optimal Results

For comparison, we calculate the optimal results of top-k
extraction (labeled as “Optimal” in Fig. 5) if the global
information is given for sensors. In this case, individual
sensors have the global knowledge of all sensor data of the
network (note that it is impossible in practice). That is, they
are able to calculate exact top-k results and only send those
sensor readings in the top-k results back to the sink.

5.3 Evaluation Results

We evaluate the algorithms’ performance in terms of total
number of transmitted packets by all sensor nodes. For a
fair comparison, we assume that each packet contains a

1676 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

single double-precision floating-point number (8 bytes).

Accordingly, a 2D data point takes three packets to

transmit: two for di:x1, di:x2 and one for the timestamp

di:t and ID di:id. Besides, we set the minimal sliding

windows size to be 1 hour. Obviously, the sink is able to

deal with the query with an s-hour (s � 1) window size

since the sink maintains top-k results all the time.

5.3.1 Comparison Using the Intel Lab Data

Fig. 5a shows the total number of transmitted packets, using

the Intel Berkeley Lab Data on the first day, as a function of

k. First, when the number of users is large (say 10 in Fig. 5a),

the traffic using FILA is even higher than that using a

centralized algorithm where all data are sent back to the
sink. Intuitively, the performance gets worse with an
increased number of users using FILA, since it is designed
for 1D data set without considering user preference across
dimensions. Second, all the three algorithms, namely the
basic scheme without diffusion, the basic scheme with
diffusion, and the enhanced scheme, achieve improved
performance, thanks to the use of dominant graph which is
suitable for high dimensional data. Third, compared with
the basic scheme, the results show an improvement of about
20-40 percent by the enhanced scheme for a small k (e.g.,
less than 8). Fourth, when k is large, for example more than
10, the basic scheme without diffusion outperforms the
basic scheme with diffusion. The reason is that, as indicated
by Claim 2 in Section 4.1, with the basic scheme, the sink
periodically diffuses RSsink whose cardinality can be large
when k is large (a top-6 query often results in 40-50 results).
Fifth, the enhanced scheme’s cost is always lower than that
of the basic scheme with diffusion and is close to the results
of the basic scheme without diffusion when k is large, since
with the enhanced scheme the sink adaptively (not
periodically) diffuses its filter FLsink. As a result, it avoids
frequently updating the filter at the nodes. Finally,
compared with optimal results, our algorithms lead to
more traffic cost. For example, the cost of “Optimal” is
around 30 percent of the enhanced scheme. The reason is
that in the case of “Optimal,” individual sensors have the
global knowledge of all sensor data of the network as
we mentioned in Section 5.2.4. In contrast, in practice, the
individual nodes have to make decision locally with
reliance on the data of their own readings and received
from the descendants.

We also fix k and study the stability of our algorithms
over time. Fig. 5b depicts the communication cost of
answering top-6 queries over 1-week period on the Intel
data with different algorithms. Again, our algorithms
outperform previous ones including the centralized
algorithm and FILA. Specifically, the enhanced algorithm,
compared with centralized algorithm where all nodes
continuously send back their data, achieves much better
performance with only 10-20 percent as much commu-
nication cost. Again, the cost of “Optimal” is around 20-
30 percent compared to the enhanced scheme.

5.3.2 Comparison Using the Synthetic Data Set

Fig. 6 compares the different algorithms with the synthetic
data. First we set the number of sensor nodes to be 1,000 for
the 2D data set. Since we set 10 users in Fig. 5, a total of 200

JIANG ET AL.: A GENERAL FRAMEWORK FOR EFFICIENT CONTINUOUS MULTIDIMENSIONAL TOP-k QUERY PROCESSING IN SENSOR... 1677

Fig. 5. Comparison using the Intel lab data. (a) With varying k values.
(b) Over a one-week period (k ¼ 6).

Fig. 6. Comparison using the synthetic data set.

users are set in Fig. 6 according to the network size for a fair
comparison. Fig. 6a depicts the communication cost of
answering top-k query with different k values. We find that
the results are similar to those shown in Fig. 5a. Our
algorithms, again, show superior performance with less that
10 percent of the communication cost caused by the
centralized algorithm and FILA. Fig. 6b presents the results
of answering top-6 queries for the 2D data set with a range
of network sizes. Obviously, the communication costs using
our algorithms only increases linearly with the number of
sensor nodes, as we discussed in Section 4.1. In contrast, the
cost increases at noticeably higher rates with other
algorithms. As the network grows in size, our algorithms
show very marginal increase in communication cost (for
example, less than 10 percent for 2,000 nodes) compared
with centralized algorithms. Fig. 6c presents the scalability
results of answering top-1 query for 1,000 nodes with data
dimensionality varying from 2 to 5. Again, our algorithms
produce less traffic compared with others. With higher data
dimensionality, all the algorithms have seen a higher
communication cost due to the increased packet size
(containing high-dimensional data).

5.3.3 Impact of Radio Models

Fig. 7 shows the results for answering top-6 queries under a
different radio model: quasi-UDG radio model with
parameter 0 � � < 1. In this model, a link exists between
two nodes i and j with probability 1 when distði; jÞ �
R � ð1� �Þ where R is the radio range and distð�; �Þ is the
distance between two nodes. The link exists with prob-
ability 0 < p < 1 when R � ð1� �Þ < distði; jÞ < R � ð1þ �Þ
and the link does not exist when distði; jÞ > R � ð1þ �Þ. We
vary � and adjust p so that the average node degree in our
tested networks remains nearly the same. Our framework
works well with the increase of �, still outperforming
others. Besides, we find a slight decrease of traffic cost for
all algorithms with an increased �. The reason is that with
the node degree fixed, increasing � leads to a decrease of
average path length from nodes to the sink (from around
3.7 hops to 2.2 hops in this case). As such, the traffic cost is
slightly reduced as shown in Fig. 7.

5.3.4 Efficacy of Optional Modules

We finally evaluate the efficacy of our optional modules.
Fig. 8a depicts the communication cost with data aging as a
function of k under the assumption that the aging half-life is
6 hours as we mentioned in Section 4.2. We observe that the

results are similar to Fig. 5a: our proposed algorithms
outperform others and the communication cost is increased
with larger k values. Besides, Fig. 8a shows data aging leads
to overall degraded performance except for centralized
scheme. The possible reasons include: 1) some diffused data
from the sink, due to data aging, can be useless for data
suppression. 2) the recent data are more likely to account
for the top-k results and prone to being transmitted. Fig. 8b
presents the communication cost, with approximate
queries, as a function of accuracy. We observe that with
lower accuracy in approximate query, both the basic
scheme and the enhanced scheme achieve significant
communication reductions. For instance, the communica-
tion cost for top-6 query with 20 percent accuracy is only 30-
40 percent of that with full accuracy. Another observation is
that the communication cost decrease is not linearly
proportional to the reduction of predefined accuracy. This
is because the sink will periodically ask nodes to transmit
data with full accuracy.

6 RELATED WORK

Many studies [4], [9], [16], [17], [18], [23], [31], [32] have
explored various data aggregation techniques for query
processing in sensor networks in order to reduce commu-
nication cost and energy consumption. Some studies strive to
design energy-efficient processing methods for top-kqueries.
Silberstein et al. [30] proposed to use the samples of past
sensor readings for query optimization and developed a
series of top-k query planning algorithms with linear
programming. Zeinalipour et al. [38] proposed to use
nonuniform thresholds on the queried attribute in order to

1678 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

Fig. 7. Comparison under the quasi-UDG radio model.

Fig. 8. Results with optional modules using Intel lab data. (a) Data aging.
(b) Approximate queries (k ¼ 6).

minimize the number of tuples transferred toward the
querying node. Similarly, Wu et al. [34] proposed to use a
filter at sensor nodes to suppress unnecessary sensor read-
ings. Aiming at continuous top-k monitoring, Zeinalipour-
Yazti et al. proposed MINT [36], a framework that maintains
the complete results of a query and calculate the upper
bounds, so as to reduce the cost of future queries by pruning
phase. Instead of using a shortest-path tree for routing, XP
[24] employs the cluster tree as the routing infrastructure, in
order to aggregate many data points locally before further
transmissions. Chen et al. [7] strived to return k highest data
points generated within a specified time interval.

All these studies unfortunately have focused on 1D data
set. Our distributed, multidimensional, and historical query
processing framework is motivated by some previous works
[3], [29], [39] in the database community. Babcock and Olston
[3] worked on the 1D and error-tolerant top-k monitoring
over distributed nodes by setting up the local parameterized
constrains which are calculated by the centralized node. Cao
and Wang [6] proposed a uniform threshold algorithm
(TPUT) to reduce the remote accesses. Besides exact
algorithms, Yu et al. proposed TPAT [35], exploiting
statistics to further suppress the readings of TPUT. Michel
et al. [27] considered approximate top-k queries in distrib-
uted environments where at each node the approximation
consists of an histogram on the local scores along with a
bloom filter. Thus, it is applicable for approximate and on-
demand queries. Further, UBK/UBLB-K algorithms [37]
addressed exact answers. Mouratidis et al. [29] studied
centralized continuous monitoring of top-k queries over a
fixed-size sliding window via partially precomputing the
future changes. In [39], a dominant graph-based algorithm
was introduced for centralized, multidimensional, and
snapshot query processing. In sensor networks, however,
energy is of crucial importance which requires more special
treatment.

7 CONCLUSION

This paper presents the first work on continuous multi-
dimensional top-k query processing in wireless sensor
networks. We have developed a framework which effec-
tively monitors user queries and in-network process. More
importantly, it incorporates a special data structure, the
dominant graph, to maintain top-k query results. The
dominant information can facilitate identifying the potential
top-k query results for any given preference function and
filtering out nontop-k results. The framework is general
enough such that optional modules such as approximate
query processing, data aging, etc., can be handled. We
prove that our algorithms are scalable as the message
complexity is proportional to the total number of sensor
nodes. The simulation shows that our algorithms reduce the
communication cost by up to 90 percent as compared to the
centralized scheme and a straightforward extension from
previous top-k algorithm on 1D sensor data.

We are interested in several directions in future work.
First, we will seek more efficient algorithms to reduce the
traffic overhead of our proposed framework. Second,
evaluation of our framework on larger scale networks will

be carried out. Finally, besides simulations in this paper, a
testbed evaluation will be performed.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grant 60803115, Grant
60873127, Grant 61073147, and Grant 61173120; by the
National Natural Science Foundation of China and
Microsoft Research Asia under Grant 60933012; by the
Fundamental Research Funds for the Central Universities
under Grant 2011QN014; by the National Natural Science
Foundation of Hubei Province under Grant 2011CDB044;
by the CHUTIAN Scholar Project of Hubei Province; by
the Youth Chenguang Project of Wuhan City under Grant
201050231080; by the Scientific Research Foundation for
the Returned Overseas Chinese Scholars (State Education
Ministry); and by the Program for New Century Excellent
Talents in University under Grant NCET-10-408 (State
Education Ministry). Dan Wang’s work is supported by
grant Hong Kong PolyU/G-YG78, A-PJ19, 1-ZV5W, and
RGC/GRF PolyU 5305/08E. An earlier version of this
work appeared as [15].

REFERENCES

[1] http://db.lcs.mit.edu/labdata/labdata.html, 2012.
[2] P. Andreou, D. Zeinalipour-Yazti, M. Andreou, P.K. Chrysanthis,

and G. Samaras, “Kspot: Effectively Monitoring the k Most
Important Events in a Wireless Sensor Network,” Proc. IEEE 25th
Int’l Conf. Data Eng. (ICDE), 2009.

[3] B. Babcock and C. Olston, “Distributed Top-k Monitoring,” Proc.
ACM SIGMOD Int’l Conf. Management of Data (SIGMOD ’03), 2003.

[4] M. Bhardwaj and A.P. Chandrakasan, “Bounding the Lifetime of
Sensor Networks via Optimal Role Assignments,” Proc. IEEE
INFOCOM, 2002.

[5] S. Borzsonyi, D. Kossmann, and K. Stocker, “The Skyline
Operator,” Proc. 17th Int’l Conf. Data Eng., 2001.

[6] P. Cao and Z. Wang, “Efficient Top-k Query Calculation in
Distributed Networks,” Proc. 23rd Ann. ACM Symp. Principles of
Distributed Computing (PODC ’04), 2004.

[7] B. Chen, W. Liang, and J.X. Yu, “Online Time Interval Top-k
Queries in Wireless Sensor Networks,” Proc. Int’l Conf. Mobile Data
Management (MDM), 2010.

[8] W. Chen, J. Hou, and L. Sha, “Dynamic Clustering for Acoustic
Target Tracking in Wireless Sensor Networks,” IEEE Trans. Mobile
Computing, vol. 3, no. 3, pp. 258-271, July-Aug. 2004.

[9] J. Cheng, H. Jiang, J. Liu, W. Liu, and C. Wang, “On Efficient
Processing of Continuous Historical Top-k Queries in Wireless
Sensor Networks,” IEEE Trans. Vehicular Technology, vol. 60, no. 5,
pp. 2363-2367, June 2011.

[10] R. Cohen and D. Peleg, “Convergence of Autonomous Mobile
Robots with Inaccurate Sensors and Movement,” SIAM
J. Computing, vol. 38, pp. 276-302, 2008.

[11] T.H. Corment, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduc-
tion to Algorithm. The MIT Press, 2001.

[12] S. De, C. Qiao, and H. Wu, “Meshed Multipath Routing: An
Efficient Strategy in Wireless Sensor Networks,” Computer Net-
works, vol. 43, pp. 481-497, 2003.

[13] R. Fagin, A. Lotem, and M. Naor, “Optimal Aggregation
Algorithms for Middleware,” Proc. 20th ACM SIGMOD-SIGACT-
SIGART Symp. Principles of Database Systems (PODS ’01), 2001.

[14] W. Ge, J. Zhang, and G. Xue, “Joint Clustering and Optimal
Cooperative Routing in Wireless Sensor Networks,” Proc. IEEE
Int’l Conf. Comm., 2008.

[15] H. Jiang, J. Cheng, D. Wang, C. Wang, and G. Tan, “Continuous
Multi-Dimensional Top-k Query Processing in Sensor Networks,”
Proc. IEEE INFOCOM, 2011.

[16] H. Jiang, S. Jin, and C. Wang, “Parameter-Based Data Aggregation
for Statistical Information Extraction in Wireless Sensor Net-
works,” IEEE Trans. Vehicular Technology, vol. 59, no. 8, pp. 3992-
4001, Oct. 2010.

JIANG ET AL.: A GENERAL FRAMEWORK FOR EFFICIENT CONTINUOUS MULTIDIMENSIONAL TOP-k QUERY PROCESSING IN SENSOR... 1679

[17] H. Jiang, S. Jin, and C. Wang, “Prediction or Not? an Energy-
Efficient Framework for Clustering-Based Data Collection in
Wireless Sensor Networks,” IEEE Trans. Parallel and Distributed
Systems, vol. 22, no. 6, pp. 1064-1071, June 2011.

[18] A. Kamra, V. Misra, and D. Rubenstein, “Counttorrent: Ubiqui-
tous Access to Query Aggregates in Dynamic and Mobile Sensor
Networks,” Proc. Fifth Int’l Conf. Embedded Networked Sensor
Systems (Sensys ’07), 2007.

[19] M. Li and Y. Liu, “Underground Structure Monitoring with
Wireless Sensor Networks,” Proc. Sixth Int’l Conf. Information
Processing in Sensor Networks (IPSN ’07), 2007.

[20] C. Liu and G. Cao, “Minimizing the Cost of Mine Selection via
Sensor Networks,” Proc. IEEE INFOCOM, 2009.

[21] H. Liu, X. Jia, P. Wan, C. Yi, S. Makki, and N. Pissinou,
“Maximizing Lifetime of Sensor Surveillance Systems,” IEEE/
ACM Trans. Networking, vol. 15, no. 2, pp. 334-345, Apr. 2007.

[22] L. Liu, X. Zhang, and H. Ma, “Dynamic Node Collaboration for
Mobile Target Tracking in Wireless Camera Sensor Networks,”
Proc. IEEE INFOCOM, 2009.

[23] W. Liu, Y. Zhang, W. Lou, and Y. Fang, “A Robust and Energy-
Efficient Data Dissemination Framework for Wireless Sensor
Networks,” Wireless Networks, vol. 12, pp. 465-479, 2006.

[24] X. Liu, J. Xu, and W.-C. Lee, “A Cross Pruning Framework for
Top-k Data Collection in Wireless Sensor Networks,” Proc. Int’l
Conf. Mobile Data Management, 2010.

[25] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong, “TAG:
A Tiny Aggregation Service for Ad Hoc Sensor Networks,” Proc.
Fifth Symp. Operating Systems Design and Implementation (OSDI ’02),
2002.

[26] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong,
“Tinydb: An Acquisitional Query Processing System for Sensor
Networks,” ACM Trans. Database Systems, vol. 30, no. 1, pp. 122-
173, 2005.

[27] S. Michel, P. Triantafillou, and G. Weikum, “Klee: A Framework
for Distributed Top-k Query Algorithms,” Proc. 31st Int’l Conf.
Very Large Data Bases (VLDB ’05), 2005.

[28] S. Misra, G. Xue, and D. Yang, “Polynomial Time Approximations
for Multi-Path Routing with Bandwidth and Delay Constraints,”
Proc. IEEE INFOCOM, 2009.

[29] K. Mouratidis, S. Bakiras, and D. Papadias, “Continous Monitor-
ing of Top-k Query over Sliding Windows,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’06), 2006.

[30] A. Silberstein, R. Braynard, C. Ellis, K. Munagala, and J. Yang, “A
Sampling-Based Approach to Optimizing Top-k Queries in Sensor
Networks,” Proc. 22nd Int’l Conf. Data Eng. (ICDE ’06), 2006.

[31] X. Tang and J. Xu, “Extending Network Lifetime for Precision-
constrained Data Aggregation in Wireless Sensor Networks,” Proc.
IEEE INFOCOM, 2006.

[32] D. Wang, J. Xu, J. Liu, and F. Wang, “Mobile Filtering for Error
Bounded Data Collection in Sensor Networks,” Proc. 28th Int’l
Conf. Distributed Computing Systems (ICDCS ’08), 2008.

[33] J. Widmer and J.-Y.L. Boudec, “Network Coding for Efficient
Communication in Extreme Networks,” Proc. ACM SIGCOMM
Workshops Delay-Tolerant Networking (WDTN ’05), 2005.

[34] M. Wu, J. Xu, X. Tang, and W.-C. Lee, “Top-k Monitoring in
Wireless Sensor Networks,” IEEE Trans. Knowledge and Data Eng.,
vol. 19, no. 7, pp. 962-976, July 2007.

[35] H. Yu, H. Li, P. Wu, D. Agrawal, and A.E. Abbadi, “Efficient
Processing of Distributed Top-k Queries,” Proc. DEXA, 2005.

[36] D. Zeinalipour-Yazti, P. Andreou, P.K. Chrysanthis, and G.
Samaras, “Mint Views: Materialized in-Network Top-k Views in
Sensor Networks,” Proc. Int’l Conf. Mobile Data Management, 2007.

[37] D. Zeinalipour-Yazti, S. Lin, and D. Gunopulos, “Distributed
Spatio-Temporal Similarity Search,” Proc. ACM 15th Conf. Informa-
tion and Knowledge Management, 2006.

[38] D. Zeinalipour-Yazti, Z. Vagena, D. Gunopulos, V. Kalogeraki, V.
Tsotras, M. Vlachos, N. Koudas, and D. Srivastava, “The Thresh-
old Join Algorithm for Top-k Queries in Distributed Sensor
Networks,” Proc. Workshop Data Management for Sensor Networks
(DMSN), 2005.

[39] L. Zou and L. Chen, “Dominant Graph: An Efficient Indexing
Structure to Answer Top-k Queries,” Proc. IEEE 24th Int’l Conf.
Data Eng. (ICDE ’08), 2008.

Hongbo Jiang received the BS and MS degrees
from Huazhong University of Science and
Technology, China. He received the PhD degree
from Case Western Reserve University in 2008.
After that he joined the faculty of Huazhong
University of Science and Technology as an
associate professor. His research interests
include computer networking, especially algo-
rithms and architectures for high-performance
networks and wireless networks. He is a

member of the IEEE.

Jie Cheng received the BS and MS degrees
from National University of Defense Technology,
China. He is currently working toward the PhD
degree in Huazhong University of Science and
Technology since 2006. His research interests
include wireless networking, especially algo-
rithms and architectures for sensor networks.

Dan Wang (S’05-M’07) received the BSc degree
from Peking University, Beijing, China, in 2000,
the MSc degree from Case Western Reserve
University, Cleveland, Ohio, in 2004, and the
PhD degree from Simon Fraser University,
Burnaby, B.C., Canada, in 2007; all in computer
science. He is currently an assistant professor at
the Department of Computing, The Hong Kong
Polytechnic University. His research interests
include wireless sensor networks, Internet rout-

ing, and peer-to-peer networks. He is a member of the IEEE.

Chonggang Wang received the PhD degree in
computer science from Beijing University of
Posts and Telecommunications. He has con-
ducted research with NEC Laboratories Amer-
ica, AT&T Labs Research, and University of
Arkansas, and Hong Kong University of Science
and Technology. His research interests include
future Internet, machine-to-machine (M2M)
communications, and cognitive and wireless
networks. He has published more than 80

journal/conference articles and book chapters. He is on the editorial
board for IEEE Communications Magazine, IEEE Networks Magazine,
IEEE Technology News, ACM/Springer Wireless Networks Journal, and
Wiley Wireless Communications and Mobile Computing Journal, Wiley
Security and Communication Networks Journal. He is a senior member
of the IEEE.

Guang Tan received the BS degree from the
Chongqing University of Posts and Telecom-
munications, China, in 1999, the MS degree
from the Huazhong University of Science and
Technology, China, in 2002, and the PhD
degree in computer science from the University
of Warwick, United Kingdom, in 2007. He is
currently an associate researcher at Shenzhen
Institute of Advanced Technology (SIAT),
Chinese Academy of Sciences, China, where

he works in the area of distributed systems and networks. From 2007
to 2010, he was a postdoctoral researcher at INRIA-Rennes, France.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1680 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 9, SEPTEMBER 2012

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

