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Abstract. We explore techniques for efficient Quality of Service Rout-
ing in the presence of multiple constraints. We first present a polynomial
time approximation algorithm for the unicast case. We then explore the
use of optimization techniques in devising heuristics for QoS routing both
in the unicast and multicast settings using algorithmic techniques as well
as techniques from optimization theory. We present test results showing
that our techniques perform very well in the unicast case. For multicast
with multiple constraints, we present the first results that we know of
where one can quickly obtain near-optimal, feasible trees.

1 Introduction

As diverse applications such as online conferences, video broadcast, online auc-
tions appear in the Internet, the demands by the application owners regarding
the delivery of data have become more extensive and varied. Currently the de-
livery of such data primarily focuses on minimizing the path length, or obeying
a given policy. However, the needs of the applications involve other issues such
as latency, packet loss, jitter avoidance, etc. Such requirements of the applica-
tions from the network can be formally expressed in terms of Quality of Service
(QoS) constraints. The satisfaction of these constraints comes at a cost of using
valuable network resources such as buffer space, bandwidth, etc. The focus of
QoS routing is to select the routes by taking into account the requirements of
the applications while being efficient in terms of link costs.

Most QoS constraints are additive, such as delay, packet loss etc, i.e., they
accumulate along the path. Given such constraints, in this paper, we explore
QoS routing in unicast and multicast settings. Unicast QoS routing involves
finding a min-cost path from a source to a destination node satisfying a set of
constraints generally given as upper bounds that the path must respect. These
problems are NP-complete when the number of constraints is one or higher[5].
In multicast QoS routing, given a source node and a set of multicast nodes, we
seek to find a min-cost tree such that the constraints are satisfied along the path
from the source to each multicast node. Even without constraints, this problem
is NP-complete [10].
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The prohibitive hardness of these problems, and the requirements of a high-
traffic network makes it necessary to develop techniques that efficiently generate
near-optimal solutions. In this paper we investigate provably good, as well as
practically feasible schemes. First, we present an ε-approximation algorithm for
unicast routing with K constraints that runs in polynomial time for small K. We
then develop heuristics for unicast and multicast QoS routing using algorithmic
and optimization techniques with the goal of finding good solutions efficiently
regardless of the number of constraints. We give out two heuristics for the uni-
cast case, one of which is flexible with respect to optimality or feasibility. This
is desirable since finding a feasible path is NP-complete if we have more than
one constraint. Our algorithm explores the trade-off between cost and feasibil-
ity. As shown through our simulation results, our algorithms are very fast and
obtain over 92% success rate for the unicast case. We also show with multicast
multiconstraint routing, which is far more difficult than unicast routing, how to
obtain a feasible solution with a high success rate.

1.1 Previous Work

Since this field is quite mature, we give a sample of the related work. Samples
of abundant recent work can be found in [11, 2, 6, 3, 9], and their references.
Recently several related work have appeared that use optimization techniques.
In [11] a simple application of the technique is used for multiconstraint unicast
routing and in [9] the technique is discussed for one constraint unicast problems.
Our approximation algorithm builds on top of several work; for a full description
of the algorithm see [14] and [4].

The Steiner Tree Problem is the simplest form of multicast routing and is
well-studied [12, 8]. The heuristic KMB that we use as a building block is given
in [12], and performs always within a factor 2 and usually within 10% of the
optimal [15]. There are several results on single constraint QoS multicast routing,
examples are in [13, 15], and their references.

2 The Multivariate QoS Routing Problem

We model our network as an undirected graph G = (V, E), where V is the set of
nodes, and E is the set of links; we assume |V | = n, and |E| = m throughout.
Each link e is associated with a cost c(e) and K different QoS parameters,
denoted w1(e) . . . wK(e) representing end-to-end restrictions on the routes such
as delay, packet loss, etc. Nodes s and t refer to the source and destination; for
multicast the set Vt = {t1, t2, . . . , tL} refers to the set of multicast destinations.
We denote by P (s, t) the set of s → t paths in G and by T (s, Vt) the set of
multicast trees rooted at s with destinations Vt in G.

A constraint is an upper bound on the value of a QoS parameter for each
destination1: Wij refers to constraint i for destination tj . When there is a single

1 We use the terms “constraint” and “upper bound” interchangeably.
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destination (unicast), we simplify constraint i as Wi. A path or a tree that
satisfies all of the K constraints is said to be feasible; the least cost feasible
path/tree is called optimal.

Unicast QoS Routing. Given source and destination nodes s, t, we aim to find
the minimum s→ t path p such that the sum of parameter wi along p is upper
bounded by Wi (for all i = 1, . . . , k). The above can be formulated as follows.

min
p∈P (s,t)

∑

e∈p

c(e)

s.t.
∑

e∈P

wi(e) ≤Wi where i ∈ 1 · · ·K

Multicast QoS Routing. Given a source node s and a set of destinations Vt =
{t1, · · · tL}, we aim to find the min-cost multicast tree T rooted at s such that
the sum of parameter wi along path s → tj is upper bounded by Wij for each
i, j. Formally, multicast QoS routing problem is as follows.

min
t∈T (s,Vt)

∑

e∈t

c(e)

s.t.
∑

e∈Pt(s,tj)

wi(e) ≤Wij for i ∈ 1 · · ·K, j ∈ 1 · · ·L

3 An ε-Approximation Algorithm for Unicast

In this section we give a polynomial time approximation algorithm that solves
unicast QoS routing with K constraints. When K = 1, the problem is called
Restricted Shortest Path (RSP), for which there are ε-approximation algorithms
(see [14], [4] for the latest results).

Our algorithm has the following specifications. If a feasible path exists and
the cost of the optimal feasible path is OPT , the algorithm is guaranteed to
return a path p of cost ≤ (1+ ε)OPT such that (i) the total value for parameter
w1 on p is at most W1, and (ii) for i = 2 . . .K, the total value for QoS parameter
wi across p is at most (1 + ε)Wi. Note that a slight violation of all constraints
except w1 is allowed.

We construct an approximation algorithm for K = 2; the technique gen-
eralizes easily to any K. We express the problem as a dynamic program. For
node v, let V (cc, d, v) denote the minimum value of parameter w2 along an
s-v path with total cost ≤ cc and total value of parameter w1 at most d.
Then, V (cc, d, v) = mine=(v′,v)∈E{V (cc − c(e), d − w1(e), v′) + w2(e′)}.2 The
base cases are that ∀ d, cc, V (cc, d, s) = 0 (s-s path is trivial), ∀ cc, v �= s,
V (cc, 0, v) =∞ (parameters are positive), and ∀ d, v �= s, V (0, d, v) =∞ (costs
are positive). To solve the problem, we need to compute the smallest cost cc

2 We assume all parameters are integers.
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where V (cc, W1, t) ≤W2; the actual path is implicit in the formulation and can
be obtained from the steps leading to this particular value.

Our approximation algorithm generalizes [7] by first approximately testing
whether a feasible solution for a fixed budget V exists and using this test to
search for the optimal solution. We proceed below by scaling down costs and w2,
and running the dynamic program on the scaled parameters.

procedure TestMult(V, ε)
Step 1 ∀d, ∀cc, V (cc, d, s) = 0; ∀d, ∀v �= s, V (0, d, v) =∞;

∀cc, ∀v �= s, V (cc, 0, v) =∞;
Step 2 ∀e ∈ E, c′(e) = � c(e)n

εV �; w′
2(e) = �w2(e)n

εW2
�.

Step 3 for cc = 1 . . . n/ε
V (cc, d, v) = mine=(v′,v)∈E{V (cc− c′(e), d− w1(e), v′) + w′

2(e
′)}.

Step 4 if V (cc, W1, t) ≤W2 return “SMALLER”
else return “GREATER”.

We now show that TestMult is efficient and effective.

Lemma 1. If TestMult (V, ε) returns “SMALLER” there is a path of cost ≤
V (1 + ε), total value of w1 ≤ W1, and total w2 ≤ W2(1 + ε). If it returns
“GREATER”, then there is no path of cost at most V where parameter w1 is at
most W1 and w2 at most W2. The running time of TestMult is O(mn2/ε2).

Proof. If the procedure returns “SMALLER”, then it must have found a path
whose scaled total cost and scaled w2 are ≤ n/ε and sum of w1 is ≤ W1. That
W1 is satisfied follows from the dynamic program. The scaled cost and w2 values
can be restored in the end by multiplying the values on the output path by
εV/n and εW2/n respectively. This way, on a path implicitly found feasible by
TestMult, the cost is underestimated by at most εV/n per link and the sum of
the w2 values are underestimated by at most εW2/n. Since a path can have at
most n links, the actual cost can be at most (n/ε) · (εV/n)+n(εV/n) = V (1+ ε).
A similar argument can be made for w2. Now consider cases where TestMult
returns “GREATER”. Since the inaccuracy caused by the scaling only results in
underestimation, clearly there cannot be a feasible solution with cost ≤ V . The
running time follows from the size of the table that one needs to keep for the
dynamic program.

Equipped with a test, we can now search for the optimal cost with a multi-
plicative binary search. For this, we establish upper and lower bounds UB and
LB for the cost, and search between them for the smallest cost that will make
the test return a positive (“SMALLER”) answer.

procedure ApproxMult(ε)
Step 1 Determine UB, LB
Step 2 while UB/LB > 2

V =
√

UB × LB.
if TestMult(V, ε)= “GREATER” LB = V else UB = V (1 + ε)

Step 3 Run a modified TestMult(LB, ε) with the loop in Step going up to 2n
ε ,

return path with smallest cc where V (cc, n
ε , t) ≤W1
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Next we show that this is an ε-approximation algorithm3.

Theorem 1. ApproxMult is an ε-approximation algorithm for QoS routing with
two parameters which returns a path P that satisfies the following. The sum of
w1 along P is at most W1, the sum of w2 along P is at most W2(1 + ε), and the
total cost is at most OPT (1 + ε), where OPT is the cost of the cheapest path.
ApproxMult runs in time in time O(mn2 log log(UB/LB)/ε2).

A trivial initial value for LB is 1; one for UB is nC where C is the highest
link cost in the network G. If one is willing to do some extra work, one can
establish tighter lower and upper bounds. In fact, a generalization of the upper-
bounding technique in [14] helps reduce the overall running time. The technique
proceeds as follows. Initially we run Restricted Shortest Path on the network,
trying to find a path that minimizes the sum of parameter w2 such that the
parameter w1 adds up to W1. (Recall that Restricted Shortest Path is the one
constraint QoS routing problem and can be approximated in time O(mn/ε)[4].)
If the total value of w2 on the path returned exceeds W2, we conclude that there
is no feasible solution and stop.

Otherwise we sort all links based on their costs. After that, we start removing
links from the graph in order of their cost, starting from the one with the highest
cost. After each link is removed, we run RSP as above, minimizing total w1 and
bounding the sum of w2. At some point, it will become impossible to find a path
whose total w1 is under W1. This means that the last link removed, say e, is a
bottleneck link. We now make the following observation regarding the upper and
the lower bounds with respect to the bottleneck link.

Lemma 2. Let e be the bottleneck link. (1) There exists an s-t path P such that
the sum of w1 across P is at most W1, the sum of w2 is at most (1 + ε)W2 and
the total cost of P is at most nc(e). (2) There exists no path of cost less than
c(e) that satisfies both constraints W1, W2 exactly.

Proof. (1) By definition, RSP must have returned a path of total w1 value at
most W1 and total w2 at most (1 + ε)W2. In addition, since the cost of the
most expensive link in the graph where P was found was c(e) the overall cost of
the path was at most nc(e). (2) RSP could not find a solution after link e was
removed, and could find one before. Thus, e must be part of the solution, and
thus, the total cost of the solution must be at least c(e).

One can easily see that, by setting LB = c(e) and UB = nc(e) as above,
we guarantee that a feasible solution (where, as described in the specification of
the approximation algorithm, W1 is satisfied and W2 is not exceeded by more
than an ε fraction) is known to exist for all costs above UB and an exactly
feasible path does not exist with a total cost under LB. This initial step involves
running at most m RSP executions, which are dominated by the other terms in
the running time, giving the following running time.

Corollary 1. ApproxMult has running time O(mn2/ε2) log log n.
3 The proof of the following theorem can be found in the full version of this paper[16].
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One can easily generalize this result to K parameters, by scaling down
the costs and K − 1 the parameters w2, . . . , wK , obtaining a running time of
O(mnK/εK) log log n.

4 Optimization Techniques for QoS Routing

Since the intrinsic difficulty of QoS routing is due to the constraints, we consider
heuristics whose performance are independent of constraints in this section.

4.1 Optimization Techniques for Unicast QoS Routing

QoS routing problems are instances of integer programming, which are in general
NP-complete to solve, with efficient solutions only under certain restrictions.
Our goal thus is to transform unicast QoS routing into one or multiple integer
programming problem/s which can be solved in polynomial time, while ensuring
that the answer that we obtain is good enough for the original problem.

For efficiency, we will make sure that our integer programs are free of any
“difficult” constraints, by using new cost functions which incorporate “penalties”
for violating the (now omitted) constraints. The choice of the set of constraints
to be relaxed into the objective function is made by the assumption that after
relaxing them, the problem becomes easy. First there is a hidden constraint in
the integer programming described in the above section, i.e. the solution for the
problem must be a path. Therefore, instead of using e, our unicast problem can
also be formalized as follows:

P : min c(p) s.t. wi(p) ≤Wi, i ∈ 1 . . .K

where c(p) is the total cost, and wi(p) is the sum of constraint i along path p.
To solve this problem, we give out two heuristics.

Algorithm LRA. We relax all the constraints and construct a new problem
as follows:

P ′ : maxλ L(λ) = min c(p) +
∑K

i=1 λi(wi(p)−Wi)

Intuitively, λi determines how much we penalize the violation of ith constraint.
A simple observation is that L(λ) is a lower bound for P for λ ≥ 0 since∑K

i=1 λi(wi(p)−Wi) ≤ 0. Clearly, finding a suitable λ to maximize the above
expression will bring us closer to the optimal solution.

First, to ensure that the links we choose indeed form a path, we run Dijkstra’s
shortest path algorithm as the basic building block of our algorithm. Second,
for quick convergence on an iterative search for the best λ, we need a good
starting value. For this, we would like a quick upper bound on the cost, which,
unfortunately, is usually as computationally difficult to solve as the original
problem. As a solution, we use a two-phase approach.

In Phase 1 we inject a feasible path q into the input such that c(q) =∞. (q
is an upper bound for the solution.) The algorithm then efficiently improves q
to use it as the initial state in Phase 2.
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In Phase 2, the artificial path is removed, and the parameters are reset.
Using the output of Phase 1 as the initial state, it is now possible to process the
parameters in a fine-grained manner, to converge to a good solution quickly.

procedure LRA
Step 1 Find the min-cost path pc using Dijkstra. if pc is feasible, return pc.
Step 2 for each parameter wi find the minimum weight path pwi w.r.t. wi using

Dijkstra. if total weight for pwi > Wi, return “no solution”.
Step 3 Find a feasible path as a starting point.

if failed return “no solution”.
Step 4 Set the combined cost cλ(e) = c(e) +

∑K
i=1 λk+1

i wi(e). Find the min cost
path by Dijkstra using cλ.
Adjust λk and repeat Step 4.

Step 3 corresponds to Phase 1. It starts off by establishing (for > 1 constraint)
an artificial feasible path. This result is then refined by running a shorter instance
of Phase 2 (Only step 4 is performed), resulting in a nested repetition of Phase
2 with different parameters. In Step 4 we adjust λ iteratively as λk+1 = λk +
θk(w(p) −W ) where the step size is θk = L(λk+1)−L(λk)

‖wi(p∗)−Wi‖2 .4

Algorithm SRA. In the above algorithm we relax all the constraints into the
object function. Even though the solutions are often quite satisfactory, the prob-
lem tends to become oversimplified. For example, given a reasonable amount of
running time, LRA can not guarantee to return a solution. For applications
which may require a high chance of finding a solution, a trade-off between low
cost and feasibility is preferred. Motivated by the above, we develop a variant of
LSA which relaxes all the constraints into one single constraint. Our reasoning
is that for one-constraint QoS routing, finding a feasible path is easy, whereas
for two or more constraints, this task is NP-complete. Therefore, reducing the
number of constraints to one (and not to any higher value) makes the feasibility
aspect of the problem easier to handle. In addition, research on one-constraint
QoS routing is mature enough that we are given a choice of several approxi-
mation algorithms and heuristics. Our approach involves using a solution for
one-constraint QoS routing as a building block in our algorithm to solve the
multi-constraint case.

Again consider our problem formulation P as shown in the previous subsec-
tion. We can derive a new problem P ′(λ) : min c(p) s.t.

∑K
i=1 λi(wi(p)−Wi) ≤ 0

where λ = (λ1, λ2, · · · , λK) is a vector of norm 1 with all λi > 0. Intuitively λ rep-
resents the weight of different constraints. In contrast to LRA, we start with an
initial (normalized) weight vector λ which gives equal weight to each constraint
since we do not know how each parameter behaves. Instead of using Dijkstra, we
use QOSONE(λ) as a building block which returns an optimal path p for problem
P ′(λ), i.e. the algorithm that solves the one-constraint, min-cost problem. Notice
that in practice QOSONE can not return a real optimal solution. In our simu-
lation, we test different QOSONE, focusing on feasibility or optimality or both.

4 The derivation of this parameter is in the full version of this paper[16].
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procedure SRA
Step 1. λ← ( 1√

K
, 1√

K
, . . . , 1√

K
)

Step 2. Combine the constraints by λ, find a min cost path by QOSONE.
if p == NULL return “No Solution”
if p satisfies all the constraints then return p

Step 3. Adjust λ and repeat Step 2.

4.2 Optimization Techniques for Multicast QoS Routing

Algorithm LRATree. For multicast QoS routing, we simplify the integer pro-
gram (which is similar to that for unicast except with K constraints/multicast
node) and build a cost function which encompasses penalties for QoS constraint
violations. In addition, we can think that each destination is an additional con-
straint to the integer problem and we also associate the penalties to these “con-
straints”. Our algorithm requires that we solve a minimum-Steiner tree problem.
Since the problem is NP-complete, instead we use a heuristic KMB [12]. Our mul-
ticast algorithm also uses the two phases approach as described in the unicast
case. Here we point out a few notable differences5. To obtain an initial feasible
tree, we use our unicast algorithm to find a feasible path to each destination and
then combine these paths to obtain a tree. If this results in a cycle, we insert
an artificial feasible tree into the graph, and then improve this tree to obtain a
feasible tree that exists in the original graph. When updating λ, we take into ac-
count how many paths share a given link. This makes sure that, if a particularly
“bad” link was being shared by many paths in the tree obtained in the previous
iteration, the new tree will likely not include this link, or some of the branches
which do not satisfy the constraint upper bounds will avoid using this link.

5 Observations and Analysis

Efficiency of the Heuristics. As seen in Figure 3, a constant number of
iterations yields high accuracy, since the improvement reduces exponentially at
each iteration. As a result, we show below that our algorithms scale well in terms
of both the number of constraints and the network size.

Theorem 2. Let K be the number of constraints. The running time of LRA is
O(K+Dijkstra). The running time of LRATree is O(LK + KMB), where L is
the number of multicast nodes. The running time of SRA is O(QOSONE).

Quality of the Heuristics. We now argue about the quality of our algorithms.
First notice that for unicast and multicast routing with a single constraint, LRA
and LRATree are guaranteed to return a feasible path or tree if one exists.

We next try to obtain an intuition about why our technique is expected
to work well. For the next lemma, assume that all costs and weights (we will
call them delays) are uniformly chosen from the same range (if the ranges are
different, they can be normalized). It shows that “better” paths will be favored.
5 Pseudocode for LRATree can be found in the full version of the paper [16].
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Lemma 3. For single constraint unicast routing, let the minimum cost path p0

have cost C0 and delay d0. Let p1 and p2 be two paths, with costs C1 < C2 and
total delay d1 < d0 and d2 < d0. Assume that d0 > W , thus, the minimum cost
path is not feasible. Let λ be the step size. Then, for λ = 1, if one of p1 and p2

is returned at the next step (if both are feasible), the probability that p1 will be
returned rather than p2 is at least 75%. In addition, there exists a λ > 0 which
will cause p1 to be picked over p2 with probability 1.

Proof. After adjusting λ, the new costs for p1 and p2 will be C′
1 = C1 + λd1

and C′
2 = C2 + λd2 respectively. Since the delays are uniformly chosen, with

probability 0.5, d2 > d1, which trivially satisfies C′
1 < C′

2. If d2 ≤ d1 (with
probability 0.5), however, we must have C1 +λd1 < C′

2 = C2 +λd2, i.e., we need
C2−C1
d1−d2

> 1. Since the delays and the costs were uniformly picked from the same
range, by symmetry the likelihood of this is at least 0.5. Thus, the probability
that C′

1 < C′
2 is at most 0.5 + 0.25 = 0.75. Note that C′

1 < C′
2 can always be

satisfied if λ < C2−C1
d1−d2

.

This simplified analysis seems to support small λ. However, note that C0 <
C1 < C2, and d0 > W . Thus, if λ < C1−C0

d0−d1
, then under the new cost function,

p0 will have cost C′
0, less than C′

1, thus, p0 will seem better than both p2 and
p1, even though it is not feasible. Also note that the likelihood of this scenario
depends on C0 − C1, thus the need to adjust λ depending on how close to the
solution we are. This analysis generalizes to any number of paths. For example, if
there are 3 paths with C0 < C1 < C2 < C3 one can show that the probability p1,
p2, and p3 will be preferred to the other paths after the adjustment is 11

18 , 5
18 , 2

18
respectively. This tells us that the likelihood that one of the least costly paths
will be chosen is high. Our simulations reaffirm this property.

Theorem 3. If QOSONE returns an exact solution to P ′, every time a feasible
solution is found by SRA, it must also be optimal.

Proof. Assume a feasible path p is found and p is not optimal. Let opt denote
the optimal path. Then c(opt) ≤ c(p), p and opt satisfy all the upper bounds. By
design, our algorithm will next find a positive λ. Since opt is feasible for P ′′, i.e.
∀i, wi(opt) −Wi ≤ 0, summing up, we have

∑K
i=1 λi(wi(opt)−Wi) ≤ 0. Thus

opt is also a feasible path for the one-constraint QoS routing, P ′(λ). Since p is
the optimal path for P ′(λ), then c(p) ≤ c(opt). Thus p = opt.

Corollary 2. If the output of SRA is a feasible path, the corresponding path
from QOSONE is a non-optimal feasible path.

The above theorem and corollary clearly show that our algorithm can control
the performance of QoS routing by the choice of QOSONE. If QOSONE is more
likely to find an optimal path, SRA is more likely to find an optimal solution.
This gives us a chance of improving multi-constraint QoS routing by focusing
on improving single-constraint QoS routing. On the other hand, if QOSONE is
focusing on finding a feasible path, the probability of finding a feasible path in
a certain amount of time for multi- constraint problem is also improved.
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Multicast. For multi-constraint multicast routing, the number of the desti-
nations has a significant effect on the accuracy. This is because early in the
algorithm we need to find feasible paths for each destination. As the number
of destinations increases, the likelihood that LRA will succeed on all of these
destinations drops exponentially, thus increasing the probability that LRATree
will fail. Instead we notice from the above analysis that SRA can obtain high
feasibility by choosing QOSONE as an algorithm focusing on feasibility. There-
fore in the first phase of our algorithm where the goal is to find a feasible tree
as a starting point for further minimization, we use SRA in our experiments.

6 Simulation Results

Simulation Environment. To test our technique, extensive simulations have
been carried out. We used two different methods to generate the network topol-
ogy. First we used ANSNET [3], shown in Figure 1. The cost of each link was
set uniformly in the range [1, 1000]. The delays (constraints) of each link were
set uniformly in the range [0, 100]. The delay upper bounds were set to a ran-
dom number uniformly in range [100, 200], [100, 300], . . . [100, 500] for different
simulations. Next we used the widely adopted Waxman Model [17] to generate
random networks. The network consisted of 40 to 90 nodes where the two pa-
rameters α and β were set to 0.3 and 0.2 respectively, and the grid was 30 × 30.
The cost on each link was generated by the model itself as the Euclidean dis-
tance. The delays and delay upper bounds on each link were chosen the same as
ANSNET model. Each data point obtained in our figures represents the average
of 150 runs on different random networks.

For SRA we chose different algorithms for single constraint problem as a
building block for our algorithm. The sample building blocks represent the trade-
off between accuracy and efficiency, and are as follows. 1) SRA-Dijkstra: we find
the shortest path based on the single combined constraint. 2) SRA-LARAC:
a relaxation heuristic algorithm for one constraint unicast QoS routing [9]. 3)
SRA-Exact: we use dynamic programming to obtain an exact solution to one
constraint unicast QoS routing. Here, Dijkstra and Exact are two extremes in
that Dijkstra has no claim to optimality, but is efficient, whereas Exact always
returns the optimal solution for QOSONE, but runs in super-polynomial time.
We use Exact just to show how our algorithm perform. In practice, people can
use approximation algorithm, e.g. [4] to achieve similar result instead or use
LARAC which is an in-between algorithm.

We compare our algorithm with the optimal solution both for unicast and
multicast routing. However, obtaining an optimal solution for multivariate mul-
ticast routing in a large network has proven to be an unconquerable task, as
mentioned in [15]. For a 10-node graph, the computation for every single point
in our figures took many hours. To overcome this problem, for large multicast
problems we insert a random feasible tree into the network and test our algo-
rithm based on the modified network.
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Interpreting the Results. The outcome of the algorithm will fall within one of
the following cases. (S) Optimal answer found, or no feasible solution exists.
(F1) Feasible but not optimal answer found. (F2) Feasible answer exists, but
not found. Note that by design the algorithm never returns a non-feasible path.
We evaluate our algorithms with respect to the following criteria: (i)Full suc-
cess = S/(S+F1+F2), the ratio of fully correct answers. (ii) Partial success =
(S+F1)/(S+F1+F2), the ratio of fully correct and feasible answers. (iii) Excess,
the percentage excess (over optimal) cost of a returned solution.

Fig. 1. ANSNET Network. Fig. 2. ANSNET model.

6.1 Unicast Routing Simulations

LRA. In our simulations, we observed that partial or full success rates were very
much independent of the number of parameters and above (usually, well above)
92% and 90% respectively. Increasing the range for the constraints led to a small
(around 2-5%) drop in the full success rate, which we attribute to the increase
in the number of feasible paths in the network. This can be seen in Figure 2.
Figure 3 shows that increasing the number of the iterations yielded diminishing
returns due to the exponentially decreasing step size with no gain beyond 16
iterations. We also explored the effects of the correlation (Figure 4) between the
QoS parameters with two (as well as four, grouped into two) random, positively
correlated (with a small random difference between the values), and negatively
correlated (two parameters adding up to a constant plus a small random num-
ber). Even though our partial success rates was high throughout, correlation
affected the total success rate (over 97%, 96%, 90% for positive, random, nega-
tive correlation). Finally, in Figure 5, we observed that the percentage value of
the excess as a measure of the effectiveness of our partial successes compared to
the full successes, and found average excess rates are extremely low.

SRA. We then investigated the effects of using different one-constraint QoS
routing algorithms. In Figure 6, we observe the full success ratio. This indicates
how well the algorithm performs in achieving optimality. As expected, SRA-
Exact outperformed all other QOSONEs in terms of full success rates, followed
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Fig. 3. Waxman model, 90 Nodes, 3 con-
straints.

Fig. 4. Waxman model, 2 constraints.

Fig. 5. Waxman model, 3 constraints.

by SRA-LARAC. LRA (Lagrange) was a very close third, and SRA-Dijkstra
performed the worst. With the partial success rate (Figure 7), SRA-Dijkstra was
the best with a near-perfect performance in finding a feasible path. SRA-LARAC
was the second and LRA the third. As we expected, SRA-Exact performed the
worst. We can conclude that SRA maintains the properties of the one-constraint
algorithm; therefore one can choose different one constraint unicast algorithm
based on their requirements.

6.2 Multicast Routing Simulations

Our experiments for multivariate multicast routing were similar to those with
unicast routing. Due to the prohibitive running time of finding the optimal so-
lution we tested our algorithms on small graphs. The number of iterations was
set to be 8 for the main program, and 8 for finding an upper bound.

In general, while the running times remained fast, the accuracy dropped
when we wanted to satisfy all of the constraints for all of the nodes. Part of this
was due to cases where the KMB algorithm failed. In addition, as argued before,
with more destinations a fully feasible multicast tree is difficult to find. We thus
used SRA in some experiments. Test results are given in Figures 8-11.
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Fig. 6. Upper bounds [100, 400], 2 con-
straints, full success ratio.

Fig. 7. Upper bounds [100, 400], 2 con-
straints, partial success ratio.

Fig. 8. Waxman, 2 constraints. Fig. 9. Waxman, 10 nodes 6 destinations.

Fig. 10. Waxman model, 10 nodes. Fig. 11. ANSNET, SRA with Dijkstra.

Even though our success rates were lower than those for unicast, our results
remained desirable: one must consider the enormous difficulty of solving this
problem exactly, our extremely low running times, as well as the absence of
known efficient algorithms for this problem. The figures show that network size,
the number of multicast nodes, and the number of constrains all lead to a fairly
small drop in accuracy. The excess cost is upper bounded by 17%, higher for
increased number of multicast nodes.
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We also tested our algorithm on ANSNET. Since we could not obtain the
optimal solution, we focused on feasibility. To maximize feasibility we chose
SRA for each destination and for SRA we chose Dijkstra for QOSONE which
had shown a nearly perfect feasibility ratio previously, i.e. 100% ratio for up to
90 nodes. We see that in Figure 11, we had a high success to reach a feasible
tree.
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