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Abstract—The emerging federated optimization paradigm per-
forms data mining or artificial intelligence techniques locally on
the edge devices, enabling scientists and engineers to utilize the
blooming edge data with privacy protection. In such a paradigm,
since data cannot be shared or gathered, data heterogeneity
naturally emerges, which significantly degrades the performance
of federated optimization, ultimately leading to poor quality
of federated services. In this paper, we present the first work
on characterizing the data heterogeneity in the framework of
federated analytics, i.e., to collectively carry out analytics tasks
without raw data sharing, and use the information to create a
desirable data environment via intelligent client selection. Our
proposed Analytics-driven Client Selection framework, named
FedACS, tackles the data heterogeneity problem in three steps.
First, clients are in charge of generating insights about local data
without disclosure of sensitive information. Then, the server uses
these insights to infer the situation of clients’ data heterogeneity
based on the Hoeffding’s inequality. Finally, a dueling bandit
is formulated to intelligently select clients with slighter data
heterogeneity to form a desirable client pool. FedACS can be
universally applied to all kinds of federated optimization tasks,
and gains benefits including privacy protection, infrastructure
reuse, and client load reduction. To test its efficiency, we further
customize it to assist federated learning, a popular scenario of
federated optimization. According to experiment results, FedACS
reduces the accuracy degrading by up to 65.6%, and speeds up
the convergence for up to 2.4 times.

Index Terms—federated analytics, data heterogeneity, feder-
ated learning, dueling bandit

I. INTRODUCTION

As we step into the era of data explosion, an exponential

amount of data are being generated by smartphones and

IoT devices. In 2020, 5.3 billion people were networked via

cellular service, generating 1.2 trillion digital photographs

via smartphones, and 8.7 billion networked IoT devices were

deployed in the world [1], [2]. These big data play an impor-

tant role in driving the data science and artificial intelligence

algorithms from labs to real world applications. However, with

the increasing awareness of data privacy, laws and regulations,

such as EU General Data Protection Regulation (GDPR) [3],
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are established worldwide to protect raw data from being

collected into one centralized place and conducting further

intelligence extraction processes.

The increasing regulations on data privacy and the growing

computing capability at the edge side thus motivate the wide

study of federated optimization techniques, represented by

federated learning (FL), in recent years [4]. Under the orches-

tration of a centralized server, researchers train a deep learning

model (neural network) across multiple decentralized edge

devices holding local data samples. Without having access to

these raw data directly, the distilled updates, usually weight

information, are uploaded from the edge devices to the server

for an immediate aggregation process.

While FL has been proved to be effective in multiple areas,

it still focuses on the tasks and scenarios requiring complex

deep learning models, like natural language processing [5], [6]

or computer vision [7], [8] applications. Meanwhile, a wide

range of analytic applications that rely on data science meth-

ods, like heavy hitter discovery, outlier detection, histogram

construction, etc. are left without discussion. As can be seen, in

these applications, the studied questions are no longer simply

“how to collaboratively train a model to do the prediction or

classification task”, but rather “what is the most frequent word

used by users?”, “what is the underlying distribution of the

dataset?”, etc. These tasks usually do not need complicated

prediction models, rather they require data insights obtained

by analyzing the decentralized datasets, which becomes harder

due to the restrictions on accessing raw data.

In May 2020, Google presented the next evolution of fed-

erated optimizations: federated analytics (FA) [9]. In the new

FA framework, individual clients collectively carry out a non-

training analytic task, rather than training a neural network in

FL, and send derived insights, not just weight updates in FL, to

the servers. Though the newly introduced FA still follows the

federation paradigm as its predecessor, the central aggregation

part and local analytics part in FA are application-specific,

which calls for careful design to guarantee the privacy of raw

data and the accuracy of the extracted insights. For example,

in a federated frequent word analytic scenario [10], a prefix

tree is constructed as the FA model. Edge devices provide their

insights by adding a character as a leaf of the tree. The server

aggregates all trees to get an estimation of the most frequent

word used among devices.978-0-7381-3207-5/21/$31.00 ©2021 IEEE



For any federated system, because the raw data have to

be processed locally in a privacy-preserving way, diverse

situations at the client1 side (usually termed as data hetero-

geneity, device heterogeneity, etc.) greatly affect the efficiency

of the federated systems. For example, data heterogeneity

(non-IID2 datasets and imbalanced datasets) degrades FL with

longer convergence time and lower accuracy [11], [12]. Device

heterogeneity (varying availability and computation capability

of the edge devices) introduces significant uncertainty to the

system and affects the operation of the federated system [13],

[14]. Obviously, characterizing these heterogeneities with pri-

vacy preserved can help understand the underlying federated

system and improve its quality of services.

In this paper, we present the first work on characteriz-

ing the class distribution heterogeneity in federated systems

and use this insight to create a desirable data environment

via intelligent client selection. Unlike learning an unknown

probability distribution from random samples [15] as studied

in previous differential privacy field or manually selecting

features to heuristically determine a client’s data heterogeneity,

we use the term skewness3 to describe the severity of the local

class distribution of a client skew from the global, virtually

centralized, one and aim at gaining a provable estimation on

it. The derived estimations about the skewness of the clients

are further used to select a group of low skewness clients,

creating an environment closed to the ideal IID environment,

desirable by a variety of federated tasks.

However, there are several significant challenges we have

to solve in order to achieve this. Since skewness measures

the divergence of class distribution in one client from the

global class distribution, we have to rely on aggregation of

insights from multiple clients to form the skewness measure

on one specific client. Specifically, first, for the clients, the

class distribution information of each client has to be both

representative and aggregatable. Second, for the central server,

the results based on aggregating these local insights have to

describe the skewness of each client in a mathematically prov-

able and practically effective way. Third, from the federation’s

perspective, the solution should not introduce any potential

privacy leakage when deriving insights from clients. Last, the

client selection algorithm has to be capable of reliably select-

ing low skewness clients even when the skewness information

derived in previous steps is stochastic or uncertain.

To this end, following the FA framework, we present a Fed-

erated Analtyics-driven Client Selection (FedACS) framework

to help federated optimization tasks collaboratively profile the

class distribution at the client side and intelligently select

low skewness clients. The cycle of FedACS is synchronous

to the host federated task. Each cycle of FedACS includes

three parts: the insight derivation part that provides indirect

insight about local data, the skewness estimation part that

1We use client and edge device interchangeable in this paper
2IID: independent and identically distributed
3Note that skewness has a different definition in statistics. In this paper,

we follow a similar definition to describe the label distribution skew as in [4]
and [11].
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Fig. 1. Class distributions of β-Dirichlet clients with different parameters.

aggregate all insights to infer about clients’ skewness, and the

client selection part that iteratively selects clients with a low

skewness level to participate in the federated tasks. FedACS

itself is a typical instance of FA, and can be universally

applied to all kinds of federated optimization tasks. To test

its efficiency, we further use FL as the representative host

federated task and use FedACS to assist it. The skewness

estimation part is further designed to reuse the infrastructure

of FL and the FA workloads can be minimized. With the

assistance of FedACS, the degrading effects of FL caused by

the non-IID environment are heavily reduced.

In summary, our contributions are

• We present the first work on federated skewness analytic

following the framework of FA.

• Based on the Hoeffding’s inequality, our approach quan-

tifies the class distribution heterogeneity in the federated

environment in a mathematical provable way.

• We formulate the client selection problem into a novel

dueling bandit problem to cater to the unique character-

istics of the client skewness estimation and solve it using

a Thompson Sampling based approach.

• Implementations under various non-IID environments

demonstrate that, with the assistance of FA, the host

FL task can reduce ∼ 65.6% of accuracy degrading

caused by data heterogeneity and speed up the model

convergence for ∼ 2.4×.

The rest of this paper is organized as follows: Section II

introduces the system model and the problem formulation of

FedACS. Section III provides detailed information of major

components of FedACS. Section IV presents the evaluation

results. Related work is surveyed in Section V, followed by

the conclusion in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we present the system models and formulate

the problem FedACS solves. Section II-A provides a modeling

of the non-IID environment. Section II-B presents an overview

of FedACS. Section II-C introduces its problem formulation.

A. Non-IID Environment Modelling

In this part, we model the non-IID environment with two

steps. We first model the class distribution at the client level,



and then model the heterogeneity of these distributions across

different clients at the population level.

The first step to model a non-IID distribution is to determine

the class distribution of each client. Dirichlet distribution

has been used to model non-IID environments at the client

side by various FL studies [16]–[18]. It generates a list of

random variables with an invariant sum, which can be naturally

converted to the proportion of data belonging to each class, and

is therefore an effective solution to model the client-level class

distribution. Based on this, we present the following definition

to describe the class distribution in one client:

Definition 1 (β-Dirichlet client). A β-Dirichlet client has

class distribution following the Dirichlet distribution, with

concentration parameter β.

In practice, the skewness of clients is not only different,

but also heavily diverges. For example, if an ordinary person

takes photos of everything, then pictures in his/her smartphone

will be close to the global distribution (or slightly skewed).

Meanwhile, if a photographer attends auto-shows everyday,

then his/her pictures would be heavily skewed ones.

Therefore, the next step of modeling the non-IID environ-

ment is to let the skewness levels of different clients diverge,

so that the aforementioned characteristics can be properly

modeled. We achieve this by having each client’s concentration

parameter β diverges. Since β has an uncertain but strong

influence on the skewness of clients, if the clients are assigned

with different values of β, the skewness of clients will diverge

at the population level. Based on this, we present the final

model of the non-IID environment:

Definition 2 (Dirichlet skewness environment). In a Dirichlet

skewness environment, all clients are β-Dirichlet clients. Half

of the client has β values following continuous uniform

distribution in range (0, xmed], and those of the rest clients

are uniformly distributed in range (xmed, xmax].

In the Dirichlet skewness environment, the values of β
follow a layered uniform distribution, whose median and

maximum are predefined, rather than an ordinary uniform

distribution. The reason is that the change of skewness is not

proportional to the change of β, e.g. if we change β from 0.2

to 0.1, the change of client skewness is much more violent than

when changing β from 1.0 to 0.9. By layering β, we guarantee

that client skewness is evenly distributed to different levels.

We visualize the Dirichlet skewness environment for a better

understanding. We choose two representative values of β, 0.1

and 2.0, and generate the class distributions of ten clients for

each value of β. The results are shown in Fig. 1, where each

row describes the class distribution in one client, and colors

in each row represent raw data from different classes. As can

be seen from the figure, the skewness of clients with β = 0.1
is much higher than those with β = 2.0.

B. System Overview

FedACS aims at profiling the class distribution heterogene-

ity in federated systems following the federated analytics

Step IV: skewness estimation

Step I: model distribution

Step II: local training and 

insight derivation

Step III(a): insight upload

Step V: client selection

Step III(b): model upload 

and aggregation

FL server

FedACS server

Client

Fig. 2. An overview of FedACS assisted FL. The insight derivation part and
the skewness estimation part are demonstrated in Section III-A together with
Section III-B. The client selection part is demonstrated in Section III-C.

framework and uses the derived insights to create a near

IID environment via intelligent client selection. FedACS can

work on its own as a stand-alone analytic system or form a

symbiosis with other federated tasks to help improve these

host tasks’ quality of service. To fully demonstrate the power

of FedACS, we choose the latter form and use FL as the host

task in this paper. The overall structure of FedACS and the

assisted FL are presented in Fig.2.

The whole system has a set of clients C represented by

index {1, 2, 3, ...N}, and executes two task cycles. In the FL

task cycle, each client is in charge of performing the local

training phase in FL. In each round, κ clients are selected by

the server to participate in FL. The focused updates are sent

to the server for model aggregation. The clients have different

intrinsic data skewness. Therefore, the benefit provided by

each client varies. To maximize the overall benefit, FedACS

introduces a new FA task cycle synchronous to the host

FL cycle. This FA cycle helps the server discover the low

skewness client and select those clients to join the FL training

process in each round. Specifically, the FA cycle consists of

three modules: insight derivation, skewness estimation, and

client selection.

In the insight derivation part, each participating client gen-

erates insight, which will be utilized by the server to infer its

skewness. The design of insight is of a high degree of freedom,

but should not expose direct information about raw data. In

this paper, the insight is in the form of the gradient to cater

to the host task. Such a design reuses the infrastructure of FL

and reserves the privacy protection level as the FL.

In the skewness estimation part, the server transforms the

insights derived by clients into estimations of client skewness.

The Hoeffding’s inequality is applied to bridge the connection

between the uploaded insights and the client skewness. For

each participating client i, a reward value Ri is simultaneously

derived as an inverse reflection of its skewness, i.e., a client

with a lower skewness obtains a higher Ri.

In the client selection part, FedACS receives the reward

information, i.e., inversed skewness estimations, from the pre-

vious part, and selects clients with low skewness to participate



in federated tasks. Since FedACS carries out an exploration-

exploitation tradeoff under the challenge of stochastic and

uncertain reward, it formulates this problem into a multi-

dueling bandit problem. FedACS also takes into account the

tradeoff between the reward maximization and the limited

sample size to guarantee the performance of its host task.

C. FedACS: A Dueling Bandit Formulation

We next formulate the federated skewness analytics problem

and client selection problem in FedACS into a dueling bandit

problem. Dueling bandit problems consider a different sce-

nario than the conventional stochastic bandit problems. Being

firstly introduced in [19], a dueling bandit selects two arms to

perform one comparison (dueling) in each round and receives

the noisy comparison result of these two arms. For each pair

of arms i and j, the probability for i to be stronger than j is

represented by,

P(i ≻ j) = φ(i, j) +
1

2
, (1)

where φ(i, j) denotes the dueling preference between i and

j. The goal of the conventional dueling bandit is to find

the Condorcet winner, which beats all other arms with a

probability not lower than 0.5. Multi-dueling bandit [20]

extends the original dueling bandit, allowing simultaneous

dueling between multiple arms and targeting at identifying

multiple optimal arms.

Since we need to select multiple clients in each round to

help the host task and the derived skewness estimations are

uncertain over time, multi-dueling bandit naturally suits our

scenario. We let participating clients in each round “duel” with

each other using their Ri values, and update the bandit with

the dueling results. The objective eventually is to select a set

of clients that can beat others, i.e., with low skewness.

Therefore, we present the formal formulation of our problem

as follows. Recall that the set of clients is denoted as C.

For each client i ∈ C, ψi indicates the quantified intrinsic

skewness of client i. For each pair of clients i and j, if they

are both participating clients and given rewards (Ri and Rj)

in the same round, and then the quantitative comparison of Ri

and Rj has a noisy negative correlation with ψi and ψj , i.e.,

P(Ri > Rj) > 0.5 ⇐⇒ ψi < ψj . (2)

Similar to (1), we donate the stochastic preference between

client a and b as φ(a, b),

φ(i, j) = P(Ri > Rj)− 0.5. (3)

FedACS aims at

argmin
S′

{

T
∑

t=1

∑

i∈S′

φ(i(∗), i)

}

, (4)

where S′ is a fix-size set of desirable clients, T is the total

number of communication rounds, and i(∗) is the client with

the lowest skewness.

We aim at finding the clients with the lowest skewness so

that the regret defined in the objective function in (4) can

be minimized. As can be seen in (4), our problem can be

decomposed into two sub-problems.

• We need to determine the dueling results φ(i, j) in (3)

based on skewness analytics.

• We need to select a set of clients to minimize the objective

value in (4).

III. SKEWNESS ANALYTICS AND CLIENT SELECTION

In this section, technological details about skewness analyt-

ics and client selection algorithm to solve the previous two

subproblems are present. In Section III-A, we show how the

Hoeffding’s inequality is employed in FedACS to estimate

the client skewness. In Section III-B, we conclude a practical

estimation of the client skewness, which will be used as the

reward for the bandit. In Section III-C, detailed client selection

algorithm in FedACS is demonstrated.

A. Connection between the Hoeffding’s Inequality and the

Client Skewness

In this part, we show the procedure of inferring about the

client skewness based on the Hoeffding’s inequality. We first

apply Hoeffding’s inequality to the results of gradient descent.

After that, we bridge the derived value to the client skewness

by converting it to the possibility of accepting a hypothesis,

assuming data in the client is IID.

The Hoeffding’s inequality is a statistical tool first intro-

duced in [21]. It estimates the deviation of the average of

independent random variables from its exception and provides

a probabilistic bound given the deviation of X from its

exception [22], [23]. As the cornerstone for federated skewness

analytics, we formally present this theorem as follows.

Theorem 1 (Hoeffding’s inequality). Supposed X1, ..., Xn are

independent variables, Xi ∈ [ai, bi], X is the average of Xi,

there’s

P(|X − E(X)|) ≥ ǫ) ≤ 2exp

(

−
2ǫ2n2

∑n

i=1(bi − ai)
2

)

. (5)

Next, we demonstrate how the Hoeffding’s inequality is

applied in skewness estimation. Since the insight we used is

in the form of a gradient (weight change) from the neural

network, we first demonstrate how the gradient is derived, and

then show how the Hoeffding’s inequality is linked to it.

In the system, there are N clients in total. Donate di,m
as the m-th datum in the i-th client. M is the number of

datum in each client. The procedure of calculating gradient

in a neural network is called backward propagation. First, the

client calculates a loss function Loss(d) for each datum d
indicating how the prediction of one datum d is closed to

the truth. Then, the client averages the loss function of all

data it owns to form a cost function Costi. Finally, the client

calculates the weight change (gradient) of the neural network.

Donate the dimension index of weight as k, the weight change

are derived by the backward propagation that

∆w
(k)
i = γ ×

∂Costi
∂w(k)

, (6)



where ∆wk
i is the weight change of client i in dimension k,

and γ is a preset learning rate. In FL, client i upload ∆wi,

with K dimensions, to the server.

Above is the full procedure of generating gradients in a

neural network. Then we link the final result ∆wi to the

Hoeffding’s inequality.

Donate z
(k)
i,m as the k-th dimension of gradient derived from

the m-th datum in the i-th client, times the learning rate γ.

z
(k)
i,m = γ ×

∂Loss(di,m)

∂w(k)
(7)

Donate z
(k)
i as the average of z

(k)
i,m, consider the calculation

of the weight change in deep learning in (6),

z
(k)
i =

1

M

M
∑

m=1

γ
∂Loss(di,m)

∂w(k)

= γ
∂ 1

M

∑M

m=1 Loss(di,m)

∂w(k)

= γ
∂Costi
∂w(k)

= ∆w
(k)
i . (8)

z
(k)
i,m are derived from different independent samples, so they

are also independent random variables, while the uploaded

weight change ∆w
(k)
i is the average value of z

(k)
i,m. We apply

the Hoeffding’s Inequality in (5) to z
(k)
i,m, and get pki ,the

probability that k-dimension of weight change from client i
diverges from its exception for a fixed value ǫ. Namely,

pki = P(|∆w
(k)
i − E(∆w

(k)
i )|) ≥ ǫ)

≤ 2exp

(

−
2ǫ2M2

∑M

j=1(b
(k) − a(k))2

)

= 2exp

(

−
2ǫ2M

(b(k) − a(k))2

)

. (9)

b(k) and a(k) are the upper and lower bounds of z
(k)
i,m. To make

our estimation comparable for different client (i) and datum

(j), we use the same bounds b(k) and a(k) instead of b
(k)
i,m and

a
(k)
i,m. We are safe to do this because the Hoeffding’s inequality

in (5) does not require a tight bound.

Recall that z
(k)
i,m are gradient derived by one datum. Al-

though the server does not have knowledge about the datum

di,m, we can estimate its skewness by the skewness of z
(k)
i,m,

which is a mapping of di,m. Furthermore, in FL, values of

z
(k)
i,m is also private. Therefore, FedACS use the Hoeffding’s

inequality to estimate skewness of z
(k)
i,m based on ∆w

(k)
i .

In order to link pki to the client skewness, we start with a

hypothesis H:

H: Data in client i is IID distributed.

We utilize H via a generalized reduction to absurdity: we

first accept H anyway, so that we can calculate pki with (9).

Since the value in (9) is a possibility bound, it represents how

rare the situation of accepting H is. A rarer situation indicates

that we are less likely to accept H in the first place, which

means that data distribution is distant from the assumption

made by H , indicating a higher skewness.
Following the aforementioned rationale, we first link the

possibility of accepting H to the value of pki derived by

Hoeffding’s inequality, as presented in Lemma 1.

Lemma 1. pki has a positive correlation to the likelihood of

accepting H .

Proof. See Appendix A

The likelihood of accepting H can be naturally linked to

client skewness: if we have a high confidence to claim that

client i is IID, client i will be more likely to have a low

skewness. From the insight above, we can build the connection

between client skewness and pki , that high pki indicates low

skewness of client i.
Also, when the assumption is made that data in client i is

IID, the expectation of z
(k)
i should be equal to the global one

z(k). Based on that, a new expression of pki is derived as a

side product from Lemma 1, i.e.,

pki = P(|∆w
(k)
i − E(z(k))|) ≥ ǫ)

≤ 2exp

(

−
2ǫ2M

(b(k) − a(k))2

)

. (10)

B. Derivation of the Rewards

In this part, we transform the skewness estimation in (10)

into a more practical representation Ri, which will be used by

the bandit in the next component of FedACS. We first solve a

challenge by providing an estimation for a variable to be used,

whose exact value is impossible to obtain. Next, we combine

multiple dimensions of the gradient to a single value Ri, so

that the credibility of our estimation is increased.
According to (10), the calculation of pki requires the value

of the expectation of z(k), which is used in deriving ǫ. The

exact value of E(z(k)) is the average of z
(k)
i,m of all data in

all clients (∀i,m). However, not all clients participate in each

round. Therefore, the exact value is impossible to obtain. To

tackle this challenge, we used the average of all data in all

participating clients instead, as a reliable estimation.
The rationale of estimating E(z(k)) is concluded into the

following theorem:

Theorem 2. The expectation of z(k) can be estimated by

the average of uploaded weight changes of all participating

clients. Namely,

E(z(k)) ≈ ∆w
(k)
, (11)

where ∆w
(k)

indicates the average uploaded weight changes

of all participating clients at dimension k.

Proof. See Appendix B

As the estimation of E(z(k)) has been given, we are able

to propose a more practical estimation of client skewness.

Rewrite (10), we have,

P k
i = 2exp

(

−
2(ǫ(k))2M

(b(k) − a(k))2

)

(12)



where,

ǫ(k) = |∆w
(k)
i −∆w

(k)
|. (13)

Eq. (12) provides an estimation about the skewness of all

clients. However, it only utilizes one dimension of weight

changes. It will be more accurate and robust when considering

estimations for all dimensions.

Since the combination is not mathematically purposeful, we

choose to multiply Rk
i among all dimensions. The rationale

of choosing multiplication and the detailed procedure of

combining all dimensions can be found in appendix C. A final

result of combination Ri is derived:

Ri = −||∆wi −∆w||2 (14)

where ∆wi indicates the uploaded gradient from client i, and

∆w indicates the average of uploaded gradients among all par-

ticipating clients. The values of Ri have a negative correlation

to clients’ skewness, i.e., a higher Ri value indicates a lower

client skewness, which is desired by the bandit.

C. Client Selection: A Thompson Sampling Approach

In this part, the detailed algorithm of the multi-dueling

bandit is present. FedACS builds a multi-dueling bandit based

on INDSELFSPARRING, an effective multi-dueling bandit al-

gorithm [20]. It borrows the power of Thompson sampling to

handle the dueling results in the way of stochastic bandits.

Compared to the original INDSELFSPARRING algorithm,

the client selection scheme of FedACS takes an extra tradeoff

into consideration in order to guarantee its effectiveness in

assisting FL, that the balance of data number to be utilized.

If we decrease the utilized data, FedACS can select the most

perfect clients with low skewness, but the neural network will

lack raw samples for training; if the utilized data increases,

the neural network will be trained with sufficient samples, but

the overall skewness of participating client will be higher. To

tackle the challenge, we introduce a meta parameter λ, which

describes our tolerance to client skewness: a higher λ indicates

we tolerant more heavily skewed clients to participate in FL,

in order to feed the neural network with more raw samples.

With the introduction of λ, the procedure of client selection

is modified. In each round, the bandit first provides a client

pool consisting of λN desirable clients. Then, we randomly

select κ clients from the client pool as the participating clients.

Finally, duels are performed by the participating clients, and

the bandit is updated with the dueling results.

When λ takes its minimum, κ/N , it becomes a vanilla

multi-dueling bandit, which always tries to use top κ clients

with the lowest skewness. On the contrary, when λ = 1, it

falls back to randomly selecting clients (the default policy in

the existing FL protocol). By wisely selecting the parameter

λ, we can both restrict participating clients to be with low

skewness, and provide the neural network with sufficient raw

sample by extending the client pool.

The detailed algorithm for selecting clients and updating the

key parameters with rewards are presented in Algorithms 1 and

2, respectively. In Algorithm 1, the bandit requires all clients

to sample from their own beta distributions, and repeatedly

chooses clients with the highest sampling result. Compared to

the original INDSELFSPARRING, we add a new feature that

the bandit first forms a desirable client pool S′ with size λN ,

and then randomly select κ participant from S′ to form the

actual selected client set S.

In Algorithm 2, the parameters of each client Ai and Bi

are modified based on its dueling results, which shape its

beta distribution. If a client is more likely to defeat others in

duels, its beta distribution will be more likely to return high

sampling results. Unlike traditional dueling bandits where the

dueling results are naturally given, in FedACS, participating

clients in the same round have to generate the dueling results

beforehand, by comparing their Ri values with each other.

Algorithm 1 Process of client selection

Input: Parameters for beta distribution: A,B; Number of

clients: N , Set of all clients: C; Number of clients to be

selected in each round: κ; Skewness tolerance parameter:

λ.

Output: Set of selected clients: S.

1: S′ ← empty set ⊲ the desirable client pool

2: P ← N · λ ⊲ size of the desirable client pool

3: for t = 1, 2, ..., P do ⊲ repeat Thompson sampling

4: for i ∈ C do

5: sample θi by Beta(Ai + 1, Bi + 1)
6: end for

7: g ← argmaxiθi ⊲ a desirable client

8: append g to S′

9: remove g from C
10: end for

11: S ← randomly draw κ clients from S′

12: return S

Algorithm 2 Key parameters update

Input: Parameters for beta distribution: A,B; Set of partic-

ipating clients: S; Rewards of participating clients: R;

Learning rate: η.

Output: Updated parameters for beta distribution: A′, B′.

1: A′ ← A
2: B′ ← B
3: for i← clients in S do

4: for j ← clients in S do

5: if Ri > Rj then ⊲ dueling between participants

6: A′
i ← A′

i + η
7: B′

j ← B′
j + η

8: end if

9: end for

10: end for

11: return A′, B′
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Fig. 3. Test accuracy v.s. communication rounds on different heterogeneity
settings.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

Settings: We evaluate FedACS assisted FL on a popular

dataset, CIFAR-10 [24]. Raw data are distributed to 200 clients

with the Dirichlet skewness environment defined according to

Definition 2. In this paper, we provides two practical settings

on the Dirichlet skewness environment: low heterogeneity,

where xmed = 0.2, xmax = 3, and high heterogeneity, where

xmed = 0.1, xmax = 5, referred as low and high, respectively.

Each client holds M = 2000 samples. We use the same CNN

model as described in [25]. Local epoch and local batch size

are set to E = 5, B = 400. Learning rate and learning rate

decay per local epoch are set to γ = 0.1, γd = 0.9993. The

FL model is trained for five repeat trials, and the medians

are recorded. In Algorithm 2, the learning rate of the dueling

bandit η is set to be 1.0. The skewness tolerance parameter λ
equals 0.4 if not mentioned otherwise.

Baseline and benchmark: The baseline in our experiments

is the settings of vanilla FL, where participating clients are

randomly selected. In addition, the performance of FL in the

IID environment is measured as a reference, which represents

a theoretical upper bound of FedACS. One state-of-the-art

solution, named CMFL [26], designed for improving FL

performance under the non-IID environment is further imple-

mented as the benchmark. CMFL calculates the similarity of

clients’ gradient and global gradient based on the sign count

of all dimensions, and removes “diverging” gradients in the

model aggregation to accelerate convergence.

Metrics: We introduce two sets of metrics to evaluate the

performance of FedACS. The first set is terminal accuracy,

which is defined as the average test accuracy in the last 50

rounds, and relative improvement, which is defined as the

improvement of terminal accuracy, compared to the degrading

effect of the non-IID environment. Another set of metrics is

convergence speed, which is represented by the number of

rounds taken for each method to reach the target accuracy

65%; and speedup of methods, compared to the baseline.

B. Results and Analysis

Overall performance: To provide an overview of the

performance of FedACS and other approaches, we plot their

TABLE I
SUMMARY OF TERMINAL ACCURACY AND RELATIVE IMPROVEMENT

Environment Method Accuracy (%) Improvement (%)

Low

IID 74.0 100

baseline 69.7 0

CMFL 64.8 −112.2

FedACS 72.5 65.6

High

IID 74.0 100

baseline 68.4 0

CMFL 62.9 −96.7

FedACS 72.1 65.5

TABLE II
SUMMARY OF ROUNDS TO TARGET AND RELATIVE SPEEDUP

Environment Method Rounds to target Speedup

Low

IID 85 3.2x
baseline 270 1.0x
CMFL 620 0.4x

FedACS 130 2.1x

High

IID 85 4.3x
baseline 365 1.0x
CMFL 915 0.4x

FedACS 155 2.4x

round-accuracy curves in Fig. 3. As can be seen from the

figure, first, both non-IID environment settings degrade the

performance of FL with slower convergence and lower test

accuracy. Second, FedACS greatly reduces the degrading

effect in both settings. Last, unfortunately, the performance

of CMFL turns out to be even worse than the baseline. The

reason is that sign count, a manually selected feature, is not

an effective indicator for client skewness in our heterogeneous

data environment. It may mistakenly remove some of the

uploaded gradients and thus degrades the overall performance.

Specifically, we summarize the performances of FedACS

and other methods in Table I and II. FedACS increases the

terminal accuracy for ∼ 3.7%, compared to the baseline, and

reduces the terminal accuracy degrading of non-IID environ-

ment for ∼ 65.6%. FedACS takes much fewer rounds to

reach the target accuracy than the baseline and the benchmark,

speeding up for ∼ 2.4×.

Parameter sensitivity analysis: Skewness tolerance λ is

a critical parameter for the performance of FedACS. To

investigate its influence, we test FedACS with different values

of λ in the low heterogeneity environment. Experiment results

are concluded in Fig. 4. When λ takes its minimum, 0.05,

although the harm of skewness is minimized, the performance

of the host task turns out to be even lower than the baseline,

due to the severe lacking of raw samples. The performance

of the host task increases when λ increases from 0.05 to

0.4. Furthermore, when λ is set to 0.4, the host task has the

best performance regarding terminal accuracy and convergence

speed. The performance degrades when λ becomes 0.6. This is

because the overall skewness of participating clients increases.

Therefore, a good choice of λ should be neither too high,

which connives skewed clients, nor too low, which limits the

number of utilized samples.



0 200 400 600 800 1000
# Communication Round

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0
Te

st
 A

cc
ur

ac
y 

(%
)

IID
Baseline (  = 1.0)
 = 0.05
 = 0.2
 = 0.4
 = 0.6

Fig. 4. Performance of FL with different values of λ.

0 200 400 600 800 1000
# Communication Round

2.5

2.0

1.5

1.0

0.5

Av
er

ag
e 

Re
wa

rd

Low,  Baseline
Low,  FedACS
High, Baseline
High, FedACS

Fig. 5. Average Ri of participating clients in each round.

Performance of the bandit: The most direct objective of

the bandit in FedACS is to select the clients with high Ri

values (derived in (14)). To test whether the bandit takes effect,

we record the average Ri values of the selected participating

clients in each round, and compare them with the baseline. Fig.

5 shows the experiment results. Compared to the baseline, the

bandit in FedACS fulfills its job of selecting clients with higher

potential Ri, which indicates a lower level of client skewness.

In addition, both Ri values of the baseline and FedACS are not

stationary and decrease over communication rounds. It shows

the uncertainty of the derived reward, which reinforces the

necessity of our employed multi-dueling bandit formulation.

V. RELATED WORK

A. Federated Analytics

As a newly introduced concept, we acknowledge that there

are still a few works in the field of FA. Unlike traditional geo-

distributed data analytics [27], [28], FA focuses on the close

collaboration of the clients. Currently, FA can be categorized

into two types: interactive FA, where the insight derivation

procedure requires a global model, and non-interactive FA,

where clients do not need any information from the server

to perform insight derivation [29]. Interactive FA has been

applied in heavy hitter discovery [10], model evaluation [9],

and song recognition [9], while the example of non-interactive

FA can be found in privacy-preserved data uploading scenario

[30]. Our proposed FedACS has the flexibility of being either

interactive or non-interactive depending on its relationship

with the host task. In this paper, since FedACS reuses the

global model of FL to derive insight in (7), it falls into the

interactive FA. On the other hand, FedACS also enables users

to design other forms of z
(k)
i,m in (7) that does not rely on the

global model, where FedACS will become non-interactive.

B. Application of the Hoeffding’s inequality

The Hoeffding’s inequality has been widely applied in the

field of distributed systems [31]–[33]. In Oort, the Hoeffd-

ing’s inequality estimates the number of clients required to

test the performance of the FL model [31]. In [32], the

Hoeffding’s inequality for Markov chains is employed for

optimizing caching systems in small-cell networks. In [33], the

Hoeffding’s inequality derives a lower bound of detection rate

of the wormhole attack detection algorithm. These applications

show the distinctive advantage of the Hoeffding’s inequality

in providing theoretical bound for various stochastic events.

C. FL in non-IID environment

The non-IID environment is a major challenge for FL,

and has attracted worldwide interest from both industry and

academia. Various methods have been proposed to reduce the

negative effect of the non-IID environment in FL [11], [34]. In

[11], the server shares some reserved IID raw data to clients,

in order to reduce client skewness. In [34], reinforcement

learning helps find clients with higher potential benefit for

FL. Personalized Federated Learning, as an emerging variation

of traditional FL, breaks the limit that there can be only

one global model, and is therefore considered as an effective

solution to the non-IID environment [35], [36].

VI. CONCLUSION

Data heterogeneity is a critical challenge for federated

optimization tasks and greatly affects their quality of services.

In this paper, we follow the framework of federated analytics

to present the first work on federated skewness analytic and

client selection, referred to as FedACS. FedACS first uses

local-derived insights to infer about clients’ data heterogeneity

with privacy protected based on the Hoeffding’s inequality.

After that, it intelligently selects low skewness clients to form

an IID environment based on a Thompson sampling based

approach. Our proposed FedACS could serve as a standalone

federated analytic tool for the distribution characterization

purpose or symbiose with other host federated tasks to improve

their quality of services. Extensive experiments demonstrate

that, when assisting federated learning, FedACS reduces the

accuracy degrading by ∼ 65.6%, and accelerates the FL’ s

convergence for ∼ 2.4×.
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APPENDIX A

PROOF OF LEMMA 1

Donate the distribution of data in client i as D(di), and

the global distribution in all clients as D(d). Similarly, we

donate the distribution of z
(k)
i,m in each clients and the global

distribution as D(z
(k)
i ) and D(z(k)), respectively.

Suppose that we have accepted H , then the distribution of

di,m in client i is identical to the distribution of sum-up data

in all clients,

D(di) = D(d). (15)

As a mapping of di,m, distribution of z
(k)
i,m is also identical

to the overall distribution,

D(z
(k)
i,m) = D(z(k)). (16)

First, the exception of zki is equal to the exception of zki,m,

since the former is simply arithmetic average of M samples

of latter, i.e.,

E(∆w
(k)
i ) = E(z

(k)
i ) = E(z

(k)
i,m). (17)

Eq. (16) gives that distribution of zki,m is identical to z(k)

for all i,m, their exception is also equal:

E(z
(k)
i,m) = E(z(k)). (18)

Given these insights, we can rewrite (9) as:

pki = P(|∆w
(k)
i − E(∆w

(k)
i )|) ≥ ǫ)

= P(|∆w
(k)
i − E(z(k))|) ≥ ǫ)

≤ 2exp

(

−
2ǫ2M

(b(k) − a(k))2

)

. (19)



pki gives the probabilistic relationship between uploaded

weight change and the exception of z(k). When difference ǫ
is obtained, we can use pki to define how rare the situation is.

In other words, when pki is small, the case here is rare, and

we have little confidence to accept H , which is a premise at

the beginning.

Supposed the likelihood of accepting client i being IID is

low, we can then conclude that the skewness of client i is high.

APPENDIX B

PROOF OF THEOREM 2

We cannot claim that the expectation of zk is equal to

the average of all participating clients, because they are not

guaranteed to fully characterize the global data. Instead, we

bound the error between E(z(k)) and ∆w
(k)

, showing that

∆w
(k)

is practically effective as an estimation of E(z(k)).
Donate the clients participated in round t as St. Consider

(7) and (8), we have:

E(z(k)) =
1

∑N

i=1M

N
∑

i=1

M
∑

j=1

z
(k)
i,m

≈
1

∑

i∈St

M

∑

i∈St

M
∑

j=1

z
(k)
i,m

=
1

∑

i∈St

M

∑

i∈St

M∆w
(k)
i

= ∆w
(k)
. (20)

From (20), we conclude that the estimation of E(z(k)) is

given by the weighted average of uploaded weight changes,

weighted by their numbers of data.

Credibility of ∆w
(k)

as an estimation of E(z(k)) can be

analyzed via the Hoeffding’s inequality. Recall (20), ∆w
(k)

is

the average of z
(k)
i,m in all clients in St. Eq. (5) yields,

P(|∆w
(k)
− E(∆w

(k)
)| ≥ ǫ)

= P(|∆w
(k)
− E(z(k))| ≥ ǫ)

≤ 2exp

(

−
2ǫ2M

(b(k) − a(k))2

)

, (21)

It may seem illogical that the estimation of E(z(k)), which

will be used to give a probabilistic bound by the Hoeffding’s

inequality in (19), is also bounded by the Hoeffding’s inequal-

ity in (21). However, it is numerically reasonable, because the

latter bound is much tighter than the former. When (19) and

(21) are given the same confidence level, the bound of ǫ in

the latter estimation will be κ times tighter than the former,

where κ indicates the number of participating clients in each

APPENDIX C

DERIVATION OF Ri

The combination of estimation from different dimensions is

not mathematically purposeful, but consider that the nature of

round. Therefore, in (19), the uncertainty given by estimating

E(z(k)) is comparatively negligible.

P k
i is a probability. Multiply P k

i among all dimensions seems

plausible, as it can be understood as the logical operator “and”.

As a result, a skewness estimation of client i based on all

dimensions are given by

Pi =
K
∏

k=1

2exp

(

−
2(ǫ(k))2M

(b(k) − a(k))2

)

(22)

Recall that higher P k
i indicates lower skewness, and the

range of P k
i is [0, 1]. Therefore, a higher Pi also indicates a

lower skewness.

b(k) and a(k) are the upper and lower bounds of zki,m.

A normal method is to request the minimum and maximum

from all participating clients and to derive the tightest bound.

However, it increases the communication overhead by 2×, and

breaks the strict privacy restriction of FL. Therefore, we used a

looser bound, which is equal for all dimensions. Donate them

as bmax and amin, i.e.,

bmax = max
∀i,m,k

(

z
(k)
i,m

)

, amin = min
∀i,m,k

(

z
(k)
i,m

)

. (23)

Since (5) only requires a and b as bounds, without re-

quirement of tightness. We are able to use bmax and amin

to take place of b(k) and a(k) in all dimensions, without loss

of mathematical correctness. Rewrite (22),

Pi =
K
∏

k=1

2exp

(

−
2(ǫ(k))2M

(bmax − amin)2

)

. (24)

Take the logarithm on both sides, and simplify the form,

(K ln 2− Pi)(bmax − amin)
2

2M
=

K
∑

k=1

(

(ǫ(k))2
)

(25)

Recall (13), we can find that the sum of (ǫ(k))2 among all

dimensions is the sequre of L2 norm between ∆wi and ∆w,

and derive the resulted form as Qi:

Qi =

√

(K ln 2− Pi)(bmax − amin)2

2M
= ||∆wi −∆w||2 (26)

where,

∆w =
1

N

∑

i∈St

∆wi (27)

Eq. (26) shows that Qi is an inverse transformation of Pi,

where lower Qi indicates lower skewness. However, a MAB

is pursuing arms with higher rewards, so we should assign a

higher reward to the clients with lower skewness. As a result,

we used the inverse of Qi as the reward Ri, i.e.,

Ri = −Qi = −||∆wi −∆w||2 (28)


