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Abstract— Wireless sensor networks have been widely used
for surveillance in harsh environments. In many such appli-
cations, the environmental data are continuously sensed, and
data collection by a server is only performed occasionally.
Hence, the sensor nodes have to temporarily store the data,
and provide easy and on-hand access for the most updated data
when the server approaches. Given the expensive server-to-sensor
communications, the large amount of sensors and the limited
storage space at each tiny sensor, continuous data collection
becomes a challenging problem.

In this paper, we present partial network coding(PNC) as
a generic tool for the above applications. PNC generalizes the
existing network coding(NC) paradigm, an elegant solution for
ubiquitous data distribution and collection. Yet, PNC enables
efficient storage replacement for continuous data, which isa
major deficiency of the conventional NC. We prove that the
performance of PNC is quite close to NC, except for a sub-
linear overhead on storage and communications. We then address
a set of practical concerns toward PNC-based continuous data
collection in sensor networks. Its feasibility and superiority are
further demonstrated through simulation results.

I. I NTRODUCTION

A wireless sensor network consists of a large collection
of sensor nodes, which are often deployed in an open area
with no traditional wired or wireless network support. Being
a complement to conventional networks, a sensor network has
its unique features and hence challenges. They are not only
short of battery power, but also restrained by memory storage.
As a result, one sensor can store only a small amount of data
collected from its surroundings, and a large quantity of sensors
have to work collaboratively for data gathering, storing, and
replicating. To collect the data from sensors, an agent or base
station (referred to as aserver in this paper) functions as an
intermediate gateway between a sensor network and the remote
world.

Many recent studies are interested in data collection from
harsh and extreme environments [6][26]. In these environ-
ments, the communications between sensors and the server
can be expensive and scarce, and the data are collected
occasionally. In each data collection, a fast data retrieval
is usually desired [6]. Typical examples include the habitat
monitoring system in Great Duck Island [20]; some birds
are notoriously sensitive to human intervention, and thus,

data collection are done occasionally. In each collection,the
presence of human being should be minimized and, hopefully,
far away from the habitat center. Applications of monitoring
systems in chemical plants also share similar properties, where
technicians occasionally approach the sensing area to collect
data and each data collection should be performed quickly for
safety purposes.

In the current popular data collection techniques, the server
sends out a query to a root sensor and the root sensor spread
the query to the sensor network. The data are then routed
from the source sensors to the root sensor. This collection
technique, however, is not suitable for applications described
above. First, this technique can introduce a long delay in each
data collection due to data searching and aggregation [13][24].
Second, this technique is beneficial if data can be aggregated
so that the payload will be reduced in the intermediate nodes.
If raw data are required, then the root sensor will be burdened
by uploading all data from the sensor network to the server.
A random selection technique is thus suggested in [6]. In this
scenario, data are redundantly stored in the sensor networkand
server randomly access a few sensor nodes to retrieve data.
This server accessing (also known asblind access) is easy to
implement. If the data can be retrieved accurately, the scheme
is also much faster. In addition, it inherently distributesthe
communication cost from the root sensor to multiple sensor
nodes, which balances the load.

Unfortunately, as illustrated in Fig. 1, this straight forward
approach may introduce large replication.

Redundancy management have been studied in many known
coding algorithms, e.g., different types of erasure codes [3].
Most of these codes, however, are generated at a central entity
and then distributed to different storage locations. This is not
realistic in our application, because no sensor is capable to
store all the data, let alone to perform complicated encoding
operations. A potential solution rises fromnetwork coding
[6][26], which distributively manipulates the data in eachnode.
Such operations combine all (say,N ) data segments, making
the coded data segments being equivalent to each other in
decodeability. Thus, each sensor can store a small number of
data segments and the server can decode all the original data
as long asN combined data segments are collected. A fast
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(a) (b)

Fig. 1. An illustrative example of blind access. There are 4 different data segments distributed in the network. Each sensor (represented by a small circle)
can store only one data segment (represented by the texture). (a) Server is absent. (b) Server access. The server randomly contacts several sensors to upload
data. In this example, the server contacts 4 sensors, and unfortunately obtains only 3 different data segments.

and load-balanced data collection is then realized.
A key deficiency of the conventional network coding is the

lack of support for removing obsolete data. In harsh environ-
ments, where the server may only approach occasionally, the
sensor network has to temporarily store the data. The sensors
may have to remove obsolete data segments to accommodate
newly collected ones. To achieve this, conventional network
coding has to first decode and then re-encode the combined
data, which is time- and resource-consuming [10]. Even worse,
given that a sensor can only store a partial set of the combined
data, it is generally impossible to carry out decoding opera-
tions in each individual sensor.

In this paper, we presentPartial Network Coding(PNC),
which effectively solves the above problems. PNC inherits the
blind access capability of NC, and yet achieves the following
salient features: 1) It enables a higher degree of freedom
in coded data management, in particular, decoding-free data
removal; 2) Its computation overhead for encoding and de-
coding is almost identical to the conventional network coding;
and 3) We proved that its performance is quite close to the
conventional network coding as well, except for a sub-linear
overhead on storage and communications. We also address a
set of practical concerns toward building and maintaining a
PNC-based sensor network for continuous data collection and
replacement. The feasibility and superiority of PNC are further
demonstrated through simulation results.

The remainder of this paper is organized as follows. In
section II, we present the related work. We introduce the
system model and motivations in section III. The theoretical
foundations for PNC are established in section IV. In section V,
we discuss the practical concerns toward using PNC in sensor
networks. The performance of PNC is evaluated in section VI.
Finally, we conclude the paper and discuss future directions
in section VII.

II. RELATED WORK

Wireless sensor networks have been studied in various
aspects and recent surveys can be found in [2][7]. In many
applications, a sensor network is query based [19], where a
server queries the sensors, and the latter cooperatively response

as a single entity. For such queries as Maximum, Minimum,
Average, and Sum [24], a popular scheme is to construct a
tree among the sensor nodes with the root being responsible
for collecting data. This scheme works well if the data can
be aggregated in the intermediate sensors [12][14]. In our
application, we are interested in blindly collecting the up-
to-date raw data from the sensor network, which calls for
different solutions.

Coding is a powerful tool for randomized data storage and
collection. A typical coding scheme iserasure code[3][16],
where a centralized server gathers allN data segments and
builds C coded segments,C ≥ N . If any N out of C

coded segments are collected, the original data segments can
be decoded [8][18]. A practical investigation of these codes
can be found in [22]. As mentioned before, these centralized
operations are not suitable for our application environment
that involves a large quantity of tiny sensors. An alternative is
linear network coding [1][28], which distributes the encoding
operations to multiple nodes. Network coding was first intro-
duced to improve the throughput of a network [1], and was
later suggested for efficient data storage and distribution[5].
Using network coding for data distribution is further theoreti-
cally studied in [21] (referred to asrandom linear coding),
and a practical system for random file access is presented
in [10]. Recently, network coding and its extensions have
been introduced in wireless sensor networks for ubiquitous
data collection [6][26]. In these studies, the data segments to
be collected are static and fixed. We on the contrary focus
on continuous data, where obsolete data have to be evicted
from a limited buffer. The proposed partial network coding
complements the previous studies by demonstrating a fully
localized algorithm that enables the removal of obsolete data.

Our application scenario is also closely related to the ex-
treme network architecture. A popular example is the ZebraNet
in Africa [15], where researchers have to travel to the sensor
network in person to collect data. Other recent examples
can be found in [6][25][26]. One important feature of these
networks is that the connection between the server and the
sensor network is intermittent, and each node needs to store
data temporarily and submits data when needed; but, again,



TABLE I

SUCCESS RATIO OF THE NAIVE SCHEME(W = N, B = 1)

N Success Ratio N Success Ratio

2 0.5 6 0.0154321
3 0.222222 7 0.0061199
4 0.09375 8 0.00240326
5 0.0384 9 0.000936657

they generally assume that the data are never obsolete, which
is different from our focus.

III. PRELIMINARIES

A. Model and Notations

We now give the formal description of the system. We
assume that the total number of up-to-date events to be
recorded in the whole system isN . Each event is represented
by one data segment, denoted bycj , andcj′ is fresher thancj

if j′ > j. Similar to existing studies on linear network coding,
we use

∑N−1

j=0
βj × cj to generate a coded data segmentfi,

whereβ = (β0, β1, · · · , βN−1) is a co-efficient vector, each
item of which is randomly generated from a finite fieldFq.
Since the coding can be viewed as a combination process,
fi is also referred to as acombineddata segment, andcj as
an original data segment. Notice that after the combination
process, the size offi remains equal tocj . We define the
cardinality of fi to be the number of original data segments it
contains, and thefull cardinality of the system is the highest
possible number, i.e.,N .

The total number of sensors in the network isM , and each
has a buffer of sizeB(< N) for storing the data segments.
For each server access,W sensors are to be contacted and,
without loss of generality, each sensor will upload one data
segment from its buffer.

Clearly, to obtain all theN original data segments, we must
haveW ≥ N , and even so, not all the segments are necessarily
obtained in one access. Consider a naive data storage and
collection scheme without coding. Assume that allN up-to-
date original segments are stored uniformly in each sensor’s
buffer. Then the success ratio for this naive scheme is given
by

∏N−1

i=0

N−i
N

. Here, the success ratio serves as the major
evaluation criterion in our study, and is defined as follows:

Definition 1: (Success Ratio) Thesuccess ratiois the prob-
ability that a scheme successfully collects all theN original
data segments. The default settings ofW andB areW = N

andB = 1, which are their lower bounds for valid schemes.
For the naive scheme, its success ratio is a decreasing

function of N . As shown in Table I, even forN = 2, the
probability is barely 50%, and the performance is extremely
poor for largerN .

B. Network Coding based Data Collection: Superiority and
Problems

We now show that network coding can significantly increase
the success ratio. With network coding, all data segments
are stored in a combined fashion, and theN original data

TABLE II

PROBABILITY OF L INEAR INDEPENDENCY AS AFUNCTION OF FINITE

FIELD SIZE (q).

q Probability q Probability q Probability

21 0.288788 25 0.967773 29 0.998043
22 0.688538 26 0.984131 210 0.999022
23 0.859406 27 0.992126 211 0.999511
24 0.933595 28 0.996078 212 0.999756

f
0 = [c3, c2, c1, c0]

f
1 = [c3, c2, c1]

f
2 = [c3, c2]

f
3 = [c3]

Fig. 2. The coding base of PNC forN = 4. We omit the coefficient vectors.

segments can be decoded by solving a set of linear equations
after collecting anyN combined data segments. A necessary
condition here is that the coefficient vectors must be linearly
independent. This is generally true if the coefficient vector is
randomly generated from a large enough fieldFq [21]. As
shown in Table II, the probability of linear independency is
over 99.6% forq = 28, and this is almost independent of
N . As such, for the network coding based data storage and
collection scheme, the success ratio withW = N andB = 1
is close to 100%.

In network coding, it is easy to combine new data segments
to existing data segments, which increases the cardinality.
The reverse operation is difficult, however. Specifically, to
remove a data segment, we have to first decode the combined
data segments, remove the obsolete data and re-encode the
remaining ones to new data segments. This is time- and
resource-consuming for power limited sensors. Even worse,
it is often impossible for sensors whereB < N , as decoding
requiresN combined data segments. On the other hand, for
continuously arrived data, if we keep obsolete data segments
in the system, the cardinality will only increase and eventually,
the system crashes and no data can be decoded. This becomes
a key deficiency for applying network coding in continuous
data collection.

IV. PARTIAL NETWORK CODING BASED DATA STORAGE

AND REPLACEMENT

In this section, we show a new coding scheme that con-
veniently solve the problem of data removal, thus facilitating
continuous data management. Our coding scheme enables the
combination of only part of the original data segments, and
we refer to it asPartial Network Coding (PNC), cf. network
coding (NC) and no network coding at all(Non-NC).

A. Overview of Partial Network Coding

In PNC, instead of having full cardinality of each combined
data segment, we have varied cardinalities from 1 toN .



s0 : {c3, c1}, s1 : {c1, c0}
s2 : {c3, c0}, s3 : {c3, c1}
s4 : {c3, c2}, s5 : {c2, c0}

(a) Non-NC

s0 : {f0 = 5c3 + 2c2 + 3c1 + 4c0, f1 = 7c3 + 2c2 + 3c1 + 4c0}
s1 : {f0 = 3c3 + 2c2 + 10c1 + c0, f1 = 10c3 + 2c2 + 5c1 + c0}
s2 : {f0 = 2c3 + 5c2 + 2c1 + 4c0, f1 = c3 + 15c2 + 6c1 + 3c0}
s3 : {f0 = c3 + 18c2 + 9c1 + 4c0, f1 = c3 + 8c2 + 9c1 + 14c0}
s4 : {f0 = 5c3 + 2c2 + 3c1 + 4c0, f1 = 2c3 + 6c2 + 3c1 + 4c0}
s5 : {f0 = 7c3 + 7c2 + 9c1 + 5c0, f1 = 8c3 + 8c2 + 8c1 + 4c0}

(b) NC

s0 : {f0 = [c3, c2, c1, c0], f1 = [c3, c2]}
s1 : {f0 = [c3, c2, c1], f1 = [c3]}
s2 : {f0 = [c3, c2, c1], f1 = [c3, c2]}
s3 : {f0 = [c3, c2], f1 = [c3]}
s4 : {f0 = [c3, c2, c1, c0], f1 = [c3]}
s5 : {f0 = [c3, c2, c1], f1 = [c3, c2]}

(c) PNC

Fig. 3. Data distribution in 6 sensors (s0 throughs5) each with two storage
units. (a) Non-NC, only original data segments are stored, (b) NC, combined
data segments are stored where the cardinality of each segment is N (=4), (c)
PNC, data are stored in a combined fashion where the cardinality are arbitrary.
We omit the coefficients for each combined data segment in PNC.

Formally, for original data segmentsc0, c1, . . . , cN−1, we
have a coding baseB = {fk|fk =

∑N−1

j=k βj × cj , k ∈
[0, . . . , N − 1], βj ∈ Fq}. We omit βj in our paper and use
fk = [cN−1, cN−2, . . . , ck] for ease of exposition. Notice that
if k̂ denote the cardinality of a combined data segment, then
the cardinality offk can be calculated bŷk = N − k. The
coding base forN = 4 is illustrated in Fig. 2. We may further
drop the superscriptk if the cardinality of the combined data
segment is clear in its context.

In our application scenario, each sensor stores only a subset
of these combined data segments given buffer sizeB < N .
The storage for each sensor isS = {fk

i |fk
i ∈ B, 0 ≤ i ≤

B− 1}. We may usefi provided thatk is clear in the context
to represent theith combined data segment in this sensor. An
illustrative example is shown in Fig. 3, which also includesthe
corresponding NC and Non-NC. From 3(c), we can see that,
when a newc4 is generated andc0 becomes obsolete, sensors
s0 and s4 can simply drop the longest combined dataf0 in
their respective buffers. The buffers ofs0 ands4 then become
{f0 = [c4, c3, c2], f1 = [c4]} and {f0 = [c4, c3], f1 = [c4]},
respectively. This simple example demonstrates the salient
feature of PNC, that is, removing the obsolete data without
decoding.

B. Data Storage and Replacement in PNC

It is worth noting that the decoding capability of PNC
closely depends on the available cardinalities of the collected
data. Therefore, we need to avoid an abrupt cardinality loss
when the system is to remove an obsolete data segment. As the
server access is occasional and unpredictable, and the sensors

for each access are randomly selected, a uniform cardinality
distribution for the combined data segments in the sensor
network is desirable, i.e., for each collected data segment, the
probability of encountering any cardinality should be1

N
.1

In the sensor point of view, however, it can not have data
segments of all different cardinalities in its limited buffer.
More importantly, it is impossible for the sensors to know
exactly what other sensors store. As such, maintaining the
uniformity of cardinalities in the entire system becomes a great
challenge for PNC.

We solve this problem by aData Replacementalgorithm
locally executed at each sensor (Fig. 4). It translates the
uniformity maintenance problem to a uniform configuration
for the initial distribution; the latter is much easier to achieve.

Algorithm Data Replacement(cn)
cn: new original data segment

for i = 1 . . . B

randomly generateβn from Fq

if cardinality(fi) < N ,
fi = βncn + fi

else
fi = βncn

Fig. 4. Data Replacement Algorithm.

Theorem 1:If the cardinality is uniformly distributed, then
after executing the Data Replacement algorithm (Fig. 4), the
distribution of the cardinality remains uniform.

Proof: If the distribution of the cardinality is uniform,
then the probability that a combined data has cardinalityk̂ is
1

N
for all k̂ = 1 . . .N . After executing Data Replacement, the

probability that a combined data segment has cardinalityk̂

is equal to the probability that this segment previously has
cardinality k̂ − 1 , k̂ = 1 . . .N − 1, and the probability
for a combined data segment has cardinality 1 is equal to
the probability it previously has cardinalityN . Hence, the
probability is still 1

N
, and the distribution remains uniform.

The above theorem suggests that the uniformity is inherently
maintained in data replacement, and the algorithm is fully
distributed and localized. Therefore, before network deploy-
ment, we can uniformly assign the cardinalities to the sensors.
AssumeB = 1; after the deployment, the sensor assigned with
cardinalityk̂ can wait forN−k̂ events and record and combine
the k̂ following events only. The initial cardinality distribution
of the combined data in the sensors is then uniform. The above
configuration can be easily generalized to larger buffer sizes.

C. Performance Analysis of PNC and Enhancements

We now analyze the performance of PNC. We also present
two effective enhancements to improve its performance.

Theorem 2:The success ratio of PNC based data collection
is no worse than the naive collection (Non-NC).

Proof: The only possibility for Non-NC to collect all the
N original data segments is to collect each of them exactly

1This condition will be further explained in the next subsection.



once. On the contrary, for PNC, if we can collectN combined
data segments with every cardinality presents, then we can
decode all the original data segments. Since the probability of
collecting a specific data segment and that of encountering a
cardinality are both1

N
, the expected success ratio of PNC is no

worse than Non-NC. Note that, some combinations without all
the cardinalities can be decodable as well; hence, PNC could
achieve a higher success ratio.

It is also worth noting that, when the buffer size of a sensor
increases, it can upload a data segment of higher cardinality
when queried. The success ratio of PNC will thus be improved.
On the contrary, for Non-NC, since each sensor can only
randomly picks the data segment from its buffer for uploading,
its performance remains unchanged.

We go on to compare PNC and NC. We know that, by ig-
noring the linear dependency of coefficients and data removal,
NC achieves 100% success ratio whenW = N combined data
segments are collected. An interesting question is thus whether
PNC can achieve the same performance, or, if not, what is the
overhead. To give some intuition, we see that in PNC, the
chances for encounteringcN−1 and c0 are not identical: the
most up-to-date data segmentcN−1 is easier to collect because
every combined data segment containscN−1; on the contrary,
the oldest data segmentc0 (but not obsolete) exists in the
combined data segment with cardinality ofN only. As such,
the decoding ratio with PNC after blindly accessing a subset
of sensors could be lower than that with NC.

To address the above problem, we make two enhancements
to the original PNC scheme. First, we extend the full cardi-
nality of the system fromN to N +

√
N ; that is, in addition

to N required data segments, we store another
√

N obsolete
data segments in the system. These obsolete data segments
makes the originally oldest data segment relatively “younger”
and therefore more likely to be collected (see an illustration
in Fig. 5.); Second, we expand the buffer size of a sensor to
B =

√
N + 1, which facilitates the first enhancement. With

these two modifications, the following lemma shows that there
is a scheme such that each sensor can upload a data segment
with cardinality at leastN when queried.

Lemma 3:By extending the full cardinality of the system
to N +

√
N and the buffer size to

√
N + 1, each sensor can

have a combined data segment with cardinality at leastN in
its buffer.

Proof: Consider the following storage scheme for each
sensor: A sensor picks a random numberk ∈ [−

√
N, 0]

(negative indices denote obsolete data segments) and stores
combined data segmentsf0 = [cN−1, . . . , ck], f1 =
[cN−1, . . . , ck+

√
N

], f2 = [cN−1, . . . , ck+2
√

N
], . . . , f√

N
=

[cN−1, . . . , cN−
√

N−k]. The difference of the cardinality be-
tween fi and fi+1 is

√
N for all 0 ≤ i ≤ (B − 1). The

buffer requirement of this scheme is
√

N + 1, and for anyk
the sensor chooses, the cardinality off0 is greater thanN . In
addition, after executing the Data Replacement algorithm,the
cardinality off0 remains greater thanN until it is discarded
upon the arrivals of

√
N new data segments. After that, the

cardinality of f1 will be greater thanN , and the iteration

Fig. 5. On the left hand side, the inner grey triangle denotesthe original
PNC with no extension. After extension, PNC-ext becomes theouter white
triangle, with cardinalityN +

√
N . Given buffer size

√
N +1 for each sensor,

one data segment is picked in every
√

N interval as shown by the lines.

f0 = [cN−1, . . . , c
N−

√

N−1
, . . . , c

2
√

N−1
, . . . , c0, . . . , c

−

√

N
]

f1 = [cN−1, . . . , c
N−

√

N−1
, . . . , c

2
√

N−1
, . . . , c0]

f2 = [cN−1, . . . , c
N−

√

N−1
, . . . , c

2
√

N−1
]

. . .

f√
N

= [cN−1, . . . , c
N−

√

N−1
]

Fig. 6. A snapshot of the buffer at a sensor. We can see thatf0 has a
cardinality ofN +

√
N (with

√
N obsolete data segments combined). When

a new cN is generated, according to Data Replacement algorithm, it will
be combined to allfi, and f0 will be discarded.f1 however will have a
cardinality ofN + 1 (combined with one obsolete data segmentc0). We can
guarantee that, at any given time, each sensor will have a data segment of
cardinality at leastN .

continues.
A concrete example is shown in Fig. 6, where we denote

the
√

N obsolete data with negative indices. We then have the
following observation on the performance of PNC as compared
to NC.

Theorem 4:The success ratio of PNC withB =
√

N + 1
andW = N +

√
N is 100% (neglecting linear dependency of

the coefficients).
Proof: From Lemma 3, the server can collect

√
N +

N combined data segments with cardinality at leastN . For
decoding, we are trying to solve a set of linear equations, of
which the coefficients form a(N +

√
N)× (N +

√
N) matrix.

Since the cardinality of each coefficient vector is at leastN ,
then the rank of this matrix is at leastN . Therefore, we can
solve the firstN variables (which contributes to the rank).

Corollary 5: The success ratio of PNC withB =
√

N + 1
and W = N +

√
N is identical to the success ratio of NC

with B = 1 andW = N .
In other words, after sacrificing a sublinear buffer overhead

(
√

N) at each sensor and a sub-linear communication overhead
(
√

N), the PNC is guaranteed to decode all theN original data
segments in a blind access as NC does.

V. PROTOCOL DESIGN AND PRACTICAL ISSUES

In this section, we address some major practical concerns,
and present a collaborative and distributed protocol for con-
tinuous data collection with PNC.



A. Computation and Communication Overheads

As the sensors are small and power constrained entities,
the PNC operations must be light-weighted. It is known that
the computational overhead for network coding lies mainly
in the decoding process. This is however, performed in the
powerful servers. Each sensor just needs to randomly generate
a set of coefficients, combine newly arrived data with those
in the buffer, or drop an obsolete combined data segment.
All of these operations are relatively simple with low costs.
Another overhead is the transmission cost. For network coding
based application, besides the combined data, the coefficient
vectors have to be uploaded for decoding. Such overheads are
generally much lower than the data volume, and our simulation
results have shown that the benefits of PNC dominate these
overheads.

B. Multiple Data Pattern

In many applications, the sensor network is required to
collect multiple data ranges or patterns. For example, the
sensor network may need to track the temperature of multiple
critical levels. Therefore, the sensors need to be invoked at
different times to record different data sets. The problem
here is whether to use a mixed storage with each sensor
splitting its buffer to store different temperature levels, or
just assign different subset of sensors to record different
levels. The tradeoff is obvious: the former might record certain
temperature levels incompletely if the buffer is too small,i.e.,
smaller thanN ; the latter, while fully recording certain levels
of temperature, will risk the incapability of decoding an entire
level.

The aboveall or nothing effect is also considered in [4].
Yet, for PNC based collection, we can see that a larger buffer
might provide data with higher cardinalities, and it is easy
to add an importance parameter in our system. That is, for
important data patterns, we can use more sensors to maintain
them, and thus have higher probability to successfully collect
them. We will further investigate the impact of the importance
parameter in the next section through simulations.

C. Collaborative and Distributed Implementation

To guarantee success, our PNC suffers only a sublinear
overhead (

√
N ) in buffer storage and communication cost. In

practice, ifN is too big, even a buffer of size
√

N+1 might not
be available at a tiny sensor. In addition, the buffer sizes of the
sensors might not be identical. To overcome these problems,
the sensors can work collaboratively to provide combined data
segments when queried. Specifically, they can form clusters
in advance, where the members of a cluster maintain different
cardinalities. A cluster can then upload one highest cardinality
data segment upon accessing.

We thus suggest the following collaborative and distributed
implementation. We assume that the server is interested inm

data patterns and, for each pattern,Ni recent data segments,
1 ≤ i ≤ m. After deployment, each sensor will send a probe
message to its surrounding area to form a cluster, where the
number of sensors in this cluster,n, is greater than

∑m

i=1
Ni.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

10 20 30 40 50 60 70 80 90

E
ne

rg
y

Number of Required Data (N)

Non NC
PNC (no cluster)

PNC (2 hops)
PNC (3 hops)

Fig. 7. Energy consumption as a function ofN for different cluster radiuses.

Presumably, the sensors in one cluster can reside in 1 or 2
hops from each other. Ifn is too large, a two tier structure
can be built, where each cluster in the first tier stores the data
for a single pattern. A cluster head is then selected for each
cluster, which distributes a storage schedule to the sensors
in its cluster. When a sensor receives a server query, it first
forwards this message to the cluster head; the cluster head
checks whether this query is to search a data pattern associated
with its own cluster. If so, the head will notify the sensor
that currently has the combined data segment of the highest
cardinality to upload the data; otherwise, it will forward the
query to an appropriate head that is associated with the pattern
for further processing.

VI. PERFORMANCEEVALUATION

A. Simulation Settings

In this section, we present our simulation results for PNC-
based sensor data collection. We deploy 1000 sensors ran-
domly into a field of 10m× 10m. The distance between the
server and the sensor nodes is much larger than the distance
between the sensors, and, as suggested in [17], we assume that
there is a 10-fold difference. The server can thus access the
data without necessarily entering deep into the sensor field,
which is useful for data collection from a dangerous area. The
default number of data segments that the server collects is the
most recent 50 data segments (N = 50) and the default buffer
sizeB is 1. We examine other possible values in our simulation
as well. The linear equations in network coding are solved
using the Gaussian Elimination [9], and the coefficient field
is q = 28, which can be efficiently implemented in a 8-bit or
more advanced microprocessor [26]. To mitigate randomness,
each data point in a figure is an average of 1000 independent
experiments.

B. Comparison of Energy Consumption

Since NC does not have the capability of data removal, it
will eventually lead to a crash of the system in continuous
data collection. Therefore, in our simulations, we only study
the performance of PNC and compare PNC with Non-NC.
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We first compare the energy consumption of PNC with Non-
NC. We use an energy consumption model ofE = d4 [27],
where d is the transmission range. The field will generate
events which are of interest in an hourly basis and the sensors
will record these events. Server will randomly and occasionally
approach with an expected interval of 20 hours. The server
is interested in the most recentN = 50 data pieces. It will
first randomly collect 50 data segments and if some original
data segments are missing (for Non-NC) or the combined data
segments can not be decoded (for PNC), then the server will
send additional requests one by one, until all 50 data segments
are obtained. The results are shown in Fig. 7.

It is clear that PNC performs better than Non-NC for
different N . It can be seen that the energy consumptions are
linear with respect to the number of required data (N ), but
the slope for PNC is much smaller. As a result, whenN is
greater than 50, the energy consumption with Non-NC is 3 to
4 times higher than that with PNC. The energy consumption
with PNC is further reduced when clusters are employed (the
cluster radius is set to 2 or 3 hops, respectively), because data
segments with higher cardinalities could be uploaded from a
larger aggregated buffer.

C. Performance of PNC

In our applications, when server approaches, a fast data
collection is always desired. Therefore, it is better for the
server to estimate the number of sensors it should query and
send the query simultaneously, instead of in an incrementally
fashion as previous section. Success ratio is thus a good
indicator of how many sensors should be queried at once.
Therefore, we use success ratio to evaluate the performance
of PNC starting from this section.

1) PNC vs Non-NC:We revisit the performance of PNC
and Non-NC using success ratio. Fig. 8 shows the success
ratio as a function of the number of data segments collected
(W ). Not surprisingly, the success ratio increases whenW

increases for both PNC and Non-NC, but the improvement
PNC is more substantial. For example, if 100 data segments
are collected, the success ratio is about 80% for PNC; for

0

0.2

0.4

0.6

0.8

1

50 60 70 80 90 100 110 120

S
uc

ce
ss

 R
at

io

Number of Data Collections(W)

B = 1
B = 2
B = 3

Fig. 9. Success ratio as a function ofW with different buffer size.

Non-NC, after collecting 200 data segments, the success ratio
is still 40% only.

2) Effect of Buffer Size:We then increase the buffer size
from B = 1 to 2 and 3 to investigate its impact. We require the
sensors to upload the data segment of the highest cardinality
for each server access. The results are shown in Fig. 9, where
a buffer increase from1 to 2 has a notice improvement in
success ratio, and a buffer of 3 segments delivers almost
optimal performance. This is not surprising because there is a
higher degree of freedom for storing and uploading data in a
larger buffer space.

In our analysis, we show that givenW = N +
√

N , and
B =

√
N + 1 the system guaranteed to decodeN original

data segments (ignoring linear dependency). In this case, the
server has to decodeN +

√
N data segments, among which√

N are obsolete. An interesting question is thus:Can we
reduce the overhead forW but still guarantee an optimal
success ratio?Unfortunately, from Fig. 10, we can see that
this unlikely happens. Among the 1000 experiments, only in 4
experiments the server successfully decodes before collecting
all theN +

√
N data segments. We conjecture that

√
N could

be a lower bound of the overhead, though it has yet to be
proved.

The above two sets of results suggest that PNC works quite
well for a reasonable buffer size even without extension to
include obsolete data segments. Therefore, unless a guaran-
tee is desired, the straightforward PNC is enough for most
applications.

3) Impact ofN : We then explore the impact of the cardi-
nality N . In Fig. 11, we depict the decoding ratio for different
number of original data segments (N=20, 50, and 100). The
x-axis denotes the ratio between the number of data collected
and the cardinality, i.e.λ = W

N
. We can see from Fig. 11 that

their differences are insignificant, and general reduce when W

increases. Recall that, the performance of Non-NC decreases
sharply whenN increases, as shown in Table I, while NC is
marginally affected byN only. These simulation results thus
reaffirm that PNC inherits the good scalability of NC.
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D. Effect of Clustering

As discussed in section V, to surpass the limited buffer size,
the sensors can form clusters to achieve a larger aggregated
buffer space. In Fig. 12, we show the success ratios for a buffer
limited sensor network with different cluster radiuses, i.e., the
number of hops to reach the farthest sensors, ranging from 0
to 3. When the radius is 0, there is basically no cluster and
a contacted sensor has to respond to the server immediately
using data from its local buffer. We can see that the success
ratio significantly increase when the clustering algorithmis
enabled. For a cluster radius of 2, it is already quite close to
100%.

E. Impact of Multiple Pattern

We next investigate the impact of requiring the sensor
network to maintain multiple data patterns, e.g., to recordmore
than one event of interest. Fig. 13 shows the success ratio
for a 4-pattern scenario. To differentiate the importance of the
patterns, we have assigned different number of sensors to each
pattern (in this example, 12.5%, 12.5%, 25%, and 50% of the
total number of sensors).

Not surprisingly, the success ratio favors data pattern with
more sensors assigned. An interesting observation is that the
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improvement is not uniform for all the four patterns, either.
It favors first for the data pattern with the largest number
of assigned sensors (50%), then the pattern with the second
largest number of assigned sensors (25%), and so forth. This
is clearly desirable given that we want to differentiate the
patterns.

VII. C ONCLUSIONS ANDFUTURE WORK

In this paper, we introduced a novel coding scheme, Partial
Network Coding (PNC), which effectively solves the problem
of removing obsolete information in coded data segments. The
problem is a major deficiency of the conventional network
coding. We proved that the success ratio of PNC in data
collection is generally better than a non-coding scheme and
is close to the conventional network coding, except for a
sub-linear overhead on storage and communication. We then
addressed several practical concerns toward implementing
PNC in resource-constrained sensors, and demonstrated a
collaborative and fully distributed protocol for continuous data
collection in large sensor networks.

In network coding research, it is known that the higher
the cardinality is, the more the benefits we could expect.
Therefore, many existing schemes have focused on achiev-
ing a full cardinality in data combination; For example, the



proposals in [5][6][10][21] generally increase the cardinality
by combining as much data as possible in intermediate nodes
and then forward to others. Our work on partial network
coding, however, shows that the opposite direction is worth
consideration as well.

Nevertheless, there are still many unsolved issues for PNC.
Beyond the practical issues toward implementing a real PNC-
based sensor network, we are interested in the following two
questions: First, based on our simulations, we observe thatthe
performance of PNC is very close to NC. We therefore suspect
whether the overhead of

√
N reaches the potential limit of

PNC? Second, our PNC is currently used for data collection
only. We expect that an enhancement could facilitate more
complicated queries. Given its flexibility in data management,
we believe that PNC can be applied in many other applications,
and the solutions to the practical and theoretical issues inPNC
is thus urged, especially considering the recent flourish ofdata
streaming in numerous fields.
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