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Abstract— Wireless sensor networks have been widely used data collection are done occasionally. In each collectiba,
for surveillance in harsh environments. In many such appli- presence of human being should be minimized and, hopefully,
cations, the environmental data are continuously sensed,nd far away from the habitat center. Applications of monitgrin

data collection by a server is only performed occasionally. . . o .
Hence, the sensor nodes have to temporarily store the data, systems in chemical plants also share similar propertibsrev

and provide easy and on-hand access for the most updated datatéchnicians occasionally approach the sensing area tectoll
when the server approaches. Given the expensive server$ensor data and each data collection should be performed quickly fo
communications, the large amount of sensors and the limited safety purposes.
storage space at each tiny sensor, continuous data collemi In the current popular data collection techniques, theeserv
becomes a challenging problem.

In this paper, we present partial network coding(PNC) as sends out a query to a root sensor and the root sensor spread
a generic tool for the above applications. PNC generalizeshe the query to the sensor network. The data are then routed
existing network coding(NC) paradigm, an elegant solution for from the source sensors to the root sensor. This collection
ubiquitous data distribution and collection. Yet, PNC enalles technique, however, is not suitable for applications dbsdr
efficient storage replacement for continuous data, which isa  gpgye. First, this technique can introduce a long delay ahea

major deficiency of the conventional NC. We prove that the . . .
performance of PNC is quite close to NC, except for a sub- data collection due to data searching and aggregationd4B][

linear overhead on storage and communications. We then adess S€cond, this techniqu.e is beneficial.if data.\ can be .aggrdegate
a set of practical concerns toward PNC-based continuous dat SO that the payload will be reduced in the intermediate nodes

collection in sensor networks. Its feasibility and superidty are  |f raw data are required, then the root sensor will be burdene
further demonstrated through simulation results. by uploading all data from the sensor network to the server.
A random selection technique is thus suggested in [6]. I& thi
scenario, data are redundantly stored in the sensor neamalk
A wireless sensor network consists of a large collectigerver randomly access a few sensor nodes to retrieve data.
of sensor nodes, which are often deployed in an open afBas server accessing (also knownldimd accespis easy to
with no traditional wired or wireless network support. Bginimplement. If the data can be retrieved accurately, theraehe
a complement to conventional networks, a sensor network hasalso much faster. In addition, it inherently distributeg
its unique features and hence challenges. They are not ooéynmunication cost from the root sensor to multiple sensor
short of battery power, but also restrained by memory staragodes, which balances the load.
As a result, one sensor can store only a small amount of datdnfortunately, as illustrated in Fig. 1, this straight famad
collected from its surroundings, and a large quantity obses1 approach may introduce large replication.
have to work collaboratively for data gathering, storingda Redundancy management have been studied in many known
replicating. To collect the data from sensors, an agent se baoding algorithms, e.g., different types of erasure co®s [
station (referred to as serverin this paper) functions as anMost of these codes, however, are generated at a centrgl enti
intermediate gateway between a sensor network and theeenaid then distributed to different storage locations. Thisot
world. realistic in our application, because no sensor is capable t
Many recent studies are interested in data collection frostore all the data, let alone to perform complicated enapdin
harsh and extreme environments [6][26]. In these envirooperations. A potential solution rises frometwork coding
ments, the communications between sensors and the sef@{f26], which distributively manipulates the data in eadide.
can be expensive and scarce, and the data are collecdeth operations combine all (say)) data segments, making
occasionally. In each data collection, a fast data retriewhe coded data segments being equivalent to each other in
is usually desired [6]. Typical examples include the hadbitdecodeability. Thus, each sensor can store a small number of
monitoring system in Great Duck Island [20]; some birddata segments and the server can decode all the original data
are notoriously sensitive to human intervention, and thuzs long asN combined data segments are collected. A fast
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Fig. 1. An illustrative example of blind access. There ardfferent data segments distributed in the network. Eacls@e(represented by a small circle)

can store only one data segment (represented by the textayeJerver is absent. (b) Server access. The server rapdmmiacts several sensors to upload
data. In this example, the server contacts 4 sensors, awdtwmdtely obtains only 3 different data segments.

and load-balanced data collection is then realized. as a single entity. For such queries as Maximum, Minimum,
A key deficiency of the conventional network coding is thédverage, and Sum [24], a popular scheme is to construct a
lack of support for removing obsolete data. In harsh envirotree among the sensor nodes with the root being responsible
ments, where the server may only approach occasionally, foe collecting data. This scheme works well if the data can
sensor network has to temporarily store the data. The sendme aggregated in the intermediate sensors [12][14]. In our
may have to remove obsolete data segments to accommodgelication, we are interested in blindly collecting the- up
newly collected ones. To achieve this, conventional ndtwoto-date raw data from the sensor network, which calls for
coding has to first decode and then re-encode the combirtiifierent solutions.
data, which is time- and resource-consuming [10]. Even&ors Coding is a powerful tool for randomized data storage and
given that a sensor can only store a partial set of the cordbirmllection. A typical coding scheme &rasure codg3][16],
data, it is generally impossible to carry out decoding operavhere a centralized server gathers Alldata segments and
tions in each individual sensor. builds C' coded segments > N. If any N out of C
In this paper, we preserRartial Network Coding(PNC), coded segments are collected, the original data segmemts ca
which effectively solves the above problems. PNC inhehits t be decoded [8][18]. A practical investigation of these cde
blind access capability of NC, and yet achieves the follgwincan be found in [22]. As mentioned before, these centralized
salient features: 1) It enables a higher degree of freedaperations are not suitable for our application environimen
in coded data management, in particular, decoding-frea d#tat involves a large quantity of tiny sensors. An alten@ais
removal; 2) Its computation overhead for encoding and dinear network coding [1][28], which distributes the enougl
coding is almost identical to the conventional network oodli operations to multiple nodes. Network coding was first intro
and 3) We proved that its performance is quite close to tloiced to improve the throughput of a network [1], and was
conventional network coding as well, except for a sub-linetater suggested for efficient data storage and distributdn
overhead on storage and communications. We also addreddsing network coding for data distribution is further thetr
set of practical concerns toward building and maintaining lly studied in [21] (referred to asandom linear codiny
PNC-based sensor network for continuous data collectioh aand a practical system for random file access is presented
replacement. The feasibility and superiority of PNC aréifer in [10]. Recently, network coding and its extensions have
demonstrated through simulation results. been introduced in wireless sensor networks for ubiquitous
The remainder of this paper is organized as follows. ldata collection [6][26]. In these studies, the data segmtmt
section I, we present the related work. We introduce th®e collected are static and fixed. We on the contrary focus
system model and motivations in section Ill. The theorétican continuous data, where obsolete data have to be evicted
foundations for PNC are established in section IV. In sectio from a limited buffer. The proposed partial network coding
we discuss the practical concerns toward using PNC in sensomplements the previous studies by demonstrating a fully
networks. The performance of PNC is evaluated in section Mbcalized algorithm that enables the removal of obsoleta.da
Finally, we conclude the paper and discuss future direstion Our application scenario is also closely related to the ex-
in section VII. treme network architecture. A popular example is the ZebtaN
in Africa [15], where researchers have to travel to the senso
network in person to collect data. Other recent examples
Wireless sensor networks have been studied in variotesn be found in [6][25][26]. One important feature of these
aspects and recent surveys can be found in [2][7]. In mangtworks is that the connection between the server and the
applications, a sensor network is query based [19], wheresansor network is intermittent, and each node needs to store
server queries the sensors, and the latter cooperativsgipnse data temporarily and submits data when needed; but, again,

Il. RELATED WORK



TABLE | TABLE I
SUCCESS RATIO OF THE NAIVE SCHEMEW = N, B = 1) PROBABILITY OF LINEAR INDEPENDENCY AS AFUNCTION OF FINITE
FIELD SIZE (q).

[[ N [ Success Ratig] N | Success Ratiq]|
2 105 6 | 0.0154321 [[ ¢ [ Probability ] ¢ [ Probability [ ¢ | Probability ]|
3 | 0.222222 7| 0.0061199 2T | 0.288788 || 2° | 0.967773 || 2° | 0.098043
;‘ 8-82215 g 8-883322227 27 [ 0.688538 || 20 | 0.984131 || 210 | 0.999022
' ' 2% [ 0.859406 || 27 | 0.992126 || 2'T | 0.999511

2% 1 0.933595 28 | 0.996078 21271°0.999756

they generally assume that the data are never obsoleteh whic

(=)

A. Model and Notations

We now give the formal description of the system. We
assume that the total number of up-to-date events to be
recorded in the whole system 8. Each event is representedrig. 2. The coding base of PNC fov = 4. We omit the coefficient vectors.
by one data segment, denoteddyy andc;: is fresher thamn;
if 7/ > j. Similar to existing studies on linear network coding, _ _ _
we usezj_\f:—ol B, x ¢; to generate a coded data segmgnt S€gments can be decoded _by solving a set of linear equations
where 3 = (6o, 1, --,Bn_1) is a co-efficient vector, each after _c_ollectmg _anyN comblned_ qlata segments. A necessary
item of which is randomly generated from a finite fiefgj. ~condition here is that the coefficient vectors must be lilyear
Since the coding can be viewed as a combination proceif$lependent. This is generally true if the coefficient veeso
/i is also referred to as eombineddata segment, and, as fandomly generated from a large enough figld [21]. As
an original data segment. Notice that after the combinatiofOWn in Table II, the probability of linear independency is
process, the size of; remains equal ta:;. We define the Over 99.6% forq = 2°, and this is almost independent of
cardinality of f; to be the number of original data segments #- As such, for the network coding based data storage and
contains, and théull cardinality of the system is the highestcollection scheme, the success ratio with= N and B = 1
possible number, i.ely. is close to 100%.

The total number of sensors in the networkli& and each  In network coding, it is easy to combine new data segments
has a buffer of sizeB(< N) for storing the data segments© existing data segments, which increases the cardinality
For each server accesH/ sensors are to be contacted and,he reverse operation is difficult, however. Specifically, t
without loss of generality, each sensor will upload one dai§move a data segment, we have to first decode the combined
segment from its buffer. data segments, remove the obsolete data and re-encode the

Clearly, to obtain all theV original data segments, we musfemaining ones to new data segments. This is time- and
havelV > N, and even so, not all the segments are necessalmmurce-consuming for power limited sensors. Even worse,
obtained in one access. Consider a naive data storage Arig often impossible for sensors whefe< N, as decoding
collection scheme without coding. Assume that Allup-to- requiresN combined data segments. On the other hand, for
date original segments are stored uniformly in each semsdiontinuously arrived data, if we keep obsolete data segsnent

buffer. Then the success ratio for this naive scheme is givéhthe system, the cardinality will only increase and evafiy
by T[IV." 2=, Here, the success ratio serves as the majie system crashes and no data can be decoded. This becomes

evaluation criterion in our study, and is defined as follows: & key deficiency for applying network coding in continuous
Definition 1: (Success Ratio) Theuccess ratids the prob- data collection.
ability that a scheme successfully collects all tNeoriginal
data segments. The default settingsiéfand B areW = N
and B = 1, which are their lower bounds for valid schemes.
For the naive scheme, its success ratio is a decreasingn this section, we show a new coding scheme that con-
function of N. As shown in Table I, even foiV = 2, the Vveniently solve the problem of data removal, thus faciliigt
probability is barely 50%, and the performance is extremeg@ntinuous data management. Our coding scheme enables the
poor for largerN. combination of only part of the original data segments, and
we refer to it asPartial Network Coding (PNG)cf. network
B. Network Coding based Data Collection: Superiority angoding(NC) and no network coding at a{Non-NC)
Problems
We now show that network coding can significantly increadts Overview of Partial Network Coding
the success ratio. With network coding, all data segmentsin PNC, instead of having full cardinality of each combined
are stored in a combined fashion, and tNeoriginal data data segment, we have varied cardinalities from 1MNo

w

is different from our focus. f [c3, c2, c1, co]
ff = e, e,
Ill. PRELIMINARIES 9 [ ]
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f
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IV. PARTIAL NETWORK CODING BASED DATA STORAGE
AND REPLACEMENT



for each access are randomly selected, a uniform cardinalit
distribution for the combined data segments in the sensor
network is desirable, i.e., for each collected data segntieat
probability of encountering any cardinality should Be*

so :{es,c1}, s1:{ci,co}
s2:{es,co}, s3:{cs,c1}
sq :{es,ca}, s5:{c2,co}

() Non-NC In the sensor point of view, however, it can not have data
50 : {fo = 5c3 + 2¢c2 + 3c1 +4co,  f1 = Teg + 2c2 + 31 + 4o} segments of all different cardinalities in its limited bestf
s1: {fo=3c3 +2ca +10c1 +co, f1 =10c3 +2¢c2 +5c1 +co} More importantly, it is impossible for the sensors to know
s2 : {fo = 2¢c3 + 52 +2c1 +4co, f1 =3+ 15c2 +6c1 +3co} exactly what other sensors store. As such, maintaining the
s3: {fo=c34+18c2 +9c1 +4co, f1 =c3+8ca+9c1 + ldco} uniformity of cardinalities in the entire system becomeseag
sa: {fo =5c3+2c2 +3c1 +4co, f1 =2c3+6c2 + 3c1 +4co} challenge for PNC.
s5: {fo=Tcsz +Tca +9c1 4 5¢co,  f1 = 8cz +8c2 +8c1 + 4o} We solve this problem by ®ata Replacemenalgorithm

(b) NC locally executed at each sensor (Fig. 4). It translates the

uniformity maintenance problem to a uniform configuration

so = Afo=les ea er, 00l f1 = les, eal} for the initial distribution; the latter is much easier tchave.

s1 + {fo=le3,c2,c1], f1 = [e3]}

sz Afo=les ezl 1 =les, eal} Algorithm Data Replacementy)

s3 i Afo=les 2, i =lesl} c,,: new original data segment

sa : {fo=les,c2,c1,c0], f1=[cs]} fori—=1...B

s+ Afo=lese2e1], i =les,co]d randomly generatg,, from F,

(c) PNC if cardinality(f;) < N,
Fig. 3. Data distribution in 6 sensorsy(throughss) each with two storage Ji = Bnen + fi
units. (a) Non-NC, only original data segments are storleiNC, combined else
data segments are stored where the cardinality of each segn¥ (=4), (c) fi = Bnen
PNC, data are stored in a combined fashion where the caitglina¢ arbitrary.
We omit the coefficients for each combined data segment in.PNC Fig. 4. Data Replacement Algorithm.
o Theorem 1:If the cardinality is uniformly distributed, then

Formally, for original data :e%ment&,ﬁa,l. --,CN—1, W& after executing the Data Replacement algorithm (Fig. 4, th
have a coding bas& = {f*f* = >.;_" 0; X ¢;;k € distribution of the cardinality remains uniform.
[Oka .o, N = 1], 8; € Fy}. We omit3; in our paper and Use  Proof: If the distribution of the cardinality is uniform,
f¥ =len-1,en—2,...,c;] for ease of exposition. Notice thatthen the probability that a combined data has cardinality

if & denote the cardinality of a combined data segment, thenfor all k = 1... N. After executing Data Replacement, the

the cardinality off* can be calculated by = N — k. The propapility that a combined data segment has cardinality
coding base forV' = 4 is illustrated in Fig. 2. We may further is equal to the probability that this segment previously has
drop the superscript if the cardinality of the combined datacardinalityl% — 1,k =1...N -1, and the probability
segment is clear in its context. for a combined data segment has cardinality 1 is equal to
In our apphcgtlon scenario, each sensor stores only a subgg probability it previously has cardinality’ . Hence, the
of these combined data segments given buffer #ize: N.  yropability is still 1, and the distribution remains unifornm
The storage for each sensords— {fzk|fik €B,0=<i< The above theorem suggests that the uniformity is inherentl
B —1}. We may usef; provided thatk is clear in the context maintained in data replacement, and the algorithm is fully
to represent théth combined data segment in this sensor. Agistributed and localized. Therefore, before network dgpl
illustrative gxample is shown in Fig. 3, which also includles ent we can uniformly assign the cardinalities to the senso
corresponding NC and Non-NC. From 3(c), we can see thalssymep = 1; after the deployment, the sensor assigned with
when a new, is generated and, becomes obsolete, sensorg,yinality/ can wait forN — i events and record and combine
so and s, can simply drop the longest combined d&iain  he j; following events only. The initial cardinality distribiot
their respective buffers. The buffers af ands, then become of the combined data in the sensors is then uniform. The above

{fo = [ea,c5,00], fi = [ea]} @and {fo = [ea, e3, f1 = [ea]}, configuration can be easily generalized to larger buffeessiz
respectively. This simple example demonstrates the galien

feature of PNC, that is, removing the obsolete data withofst Performance Analysis of PNC and Enhancements
decoding. We now analyze the performance of PNC. We also present
two effective enhancements to improve its performance.

B. Data Storage and Replacement in PNC . .
. g ) P ) B Theorem 2:The success ratio of PNC based data collection
It is worth noting that the decoding capability of PNGg 1,5 worse than the naive collection (Non-NC).

closely depends on the available cardinalities of the ctald Proof: The only possibility for Non-NC to collect all the

data. Therefore, we need to avoid an abrupt cardinality 1088 griginal data segments is to collect each of them exactly
when the system is to remove an obsolete data segment. As the

server access is occasional and unpredictable, and thersens This condition will be further explained in the next subgett



once. On the contrary, for PNC, if we can colléétcombined A/
data segments with every cardinality presents, then we Ar N
decode all the original data segments. Since the probabflit ¥V
collecting a specific data segment and that of encounteringxz
cardinality are both}v, the expected success ratio of PNC is ng;
worse than Non-NC. Note that, some combinations without T
the cardinalities can be decodable as well; hence, PNC coulc e
achieve a higher success ratio. [ ] w
It is also worth noting that, when the buffer size of a sensdr
increases, it can upload a data segment of higher carginalit

; ; ; ; 0. 5. On the left hand side, the inner grey triangle dentitesoriginal
when que“ed' The success ratio of PNC will thus be Improveﬁ\'lc with no extension. After extension, PNC-ext becomesatliter white

On the ContrarYr for Non-NC, since _eaCh Sensor can (_)rlhéngle, with cardinalityN ++/N. Given buffer sizey’N +1 for each sensor,
randomly picks the data segment from its buffer for uploggdinone data segment is picked in eveyfV interval as shown by the lines.

its performance remains unchanged.
We go on to compare PNC and NC. We know that, by ig-

- \/N +1

noring the linear dependency of coefficients and data remova oo = leN—tie s en YN CoyN a0 ey
NC achieves 100% success ratio wi&n= N combined data 1= levenney vRo1 o CoyR 1 00l
segments are collected. An interesting question is thushehe f2o= len—tren R CoyN -l

PNC can achieve the same performance, or, if not, what is the

overhead. To give some intuition, we see that in PNC, thdvw = lev-1-en ymol

chances for encounteringy_; and ¢y are not identical: the
most up-to-t;iate data segment, IS eE.iSIer to collect because ig. 6. A snapshot of the buffer at a sensor. We can see fihdias a
every combined data segment contatns. 1, on the contrary, cardinality of N ++/N (with /N obsolete data segments combined). When
the oldest data segmen§ (but not obsolete) exists in thea newcy is generated, according to Data Replacement algorithm,ilit w
combined data segment ith cardinaly af only. AS such, b ST o S el e dsries et bl e
the decoding ratio with PNC after blindly accessing a subSglarantee that, at any given time, each sensor will have a skgment of
of sensors could be lower than that with NC. cardinality at leastv.

To address the above problem, we make two enhancements
to the original PNC scheme. First, we extend the full cardi-
nality of the system fromV to N + /N; that is, in addition continues. u
to N required data segments, we store anotf@f obsolete A concrete example is shown in Fig. 6, where we denote
data segments in the system. These obsolete data segmiwts/N obsolete data with negative indices. We then have the
makes the originally oldest data segment relatively “yarirg following observation on the performance of PNC as compared
and therefore more likely to be collected (see an illustrati to NC.
in Fig. 5.); Second, we expand the buffer size of a sensor toTheorem 4:The success ratio of PNC witB = VN + 1
B = /N + 1, which facilitates the first enhancement. WitandW = N ++/N is 100% (neglecting linear dependency of
these two modifications, the following lemma shows thatehethe coefficients).
is a scheme such that each sensor can upload a data segmentProof: From Lemma 3, the server can collegfN +
with cardinality at leastV when queried. N combined data segments with cardinality at ledstFor

Lemma 3:By extending the full cardinality of the systemdecoding, we are trying to solve a set of linear equations, of
to N ++/N and the buffer size ta/N + 1, each sensor canwhich the coefficients form &V ++/N) x (N +v/N) matrix.
have a combined data segment with cardinality at Idash  Since the cardinality of each coefficient vector is at |lebist
its buffer. then the rank of this matrix is at least. Therefore, we can

Proof: Consider the following storage scheme for eacolve the firstV variables (which contributes to the rankiu

sensor: A sensor picks a random numlierc [—+v/N, 0] Corollary 5: The success ratio of PNC witB = /N + 1
(negative indices denote obsolete data segments) ands stared W = N + /N is identical to the success ratio of NC

combined data segment§y = [cn-1,...,¢k], f1i = withB=1andW =N.
[eN—1,- s Cppyml f2 = [en—1, s oum) - fum = In other words, after sacrificing a sublinear buffer ovethea
[en—1,-- '7CN7\/N7k]' The difference of the cardinality be-(\/N) at each sensor and a sub-linear communication overhead

tween f; and f;,1 is VN for all 0 < i < (B — 1). The (v/N), the PNC is guaranteed to decode all fi@riginal data
buffer requirement of this scheme 6N + 1, and for anyk Segments in a blind access as NC does.

the sensor chooses, the cardinalityfgfis greater thanv. In
addition, after executing the Data Replacement algoritine,
cardinality of fy remains greater thatv until it is discarded In this section, we address some major practical concerns,
upon the arrivals of/N new data segments. After that, theand present a collaborative and distributed protocol far-co
cardinality of f; will be greater than, and the iteration tinuous data collection with PNC.

V. PROTOCOLDESIGN AND PRACTICAL ISSUES



A. Computation and Communication Overheads 50000 ——

45000 NonNC ——
As the sensors are small and power constrained entities, PNC (2 hops) /
PNC (3 hops) —&—

40000
35000

the PNC operations must be light-weighted. It is known that
the computational overhead for network coding lies mainly

in the decoding process. This is however, performed in the 3 3009 .
powerful servers. Each sensor just needs to randomly genera L%’ 25000 .
a set of coefficients, combine newly arrived data with those 20000 .
in the buffer, or drop an obsolete combined data segment. 15000 .
All of these operations are relatively simple with low costs 10000 .
Another overhead is the transmission cost. For networknzpdi 5000 -
based application, besides the combined data, the coefficie 0 o 20 3 20 5 0 70 o o

vectors have to be uploaded for decoding. Such overheads are
generally much lower than the data volume, and our simuiatio
results have shown that the benefits of PNC dominate théde 7. Energy consumption as a functionffor different cluster radiuses.
overheads.

Number of Required Data (N)

B. Multiple Data Pattern Presumably, the sensors in one cluster can reside in 1 or 2
In many applications, the sensor network is required twps from each other. It is too large, a two tier structure
collect multiple data ranges or patterns. For example, tkan be built, where each cluster in the first tier stores tha da
sensor network may need to track the temperature of multigt a single pattern. A cluster head is then selected for each
critical levels. Therefore, the sensors need to be invoked custer, which distributes a storage schedule to the ssnsor
different times to record different data sets. The problein its cluster. When a sensor receives a server query, it first
here is whether to use a mixed storage with each sen$omwards this message to the cluster head; the cluster head
splitting its buffer to store different temperature leyvets checks whether this query is to search a data pattern asswbcia
just assign different subset of sensors to record differewith its own cluster. If so, the head will notify the sensor
levels. The tradeoff is obvious: the former might recordaier that currently has the combined data segment of the highest
temperature levels incompletely if the buffer is too smiadl,, cardinality to upload the data; otherwise, it will forwaruet
smaller thanN; the latter, while fully recording certain levelsquery to an appropriate head that is associated with therpatt
of temperature, will risk the incapability of decoding artien for further processing.
level.
The aboveall or nothing effect is also considered in [4]. VI. PERFORMANCEEVALUATION
Yet, for PNC based collection, we can see that a larger buffigr simulation Settings
might provide data with higher cardinalities, and it is easy i i ) ,
to add an importance parameter in our system. That is, forln this section, we prese_nt our simulation results for PNC-
important data patterns, we can use more sensors to mainfged Sensor data collection. We deploy 1000 sensors ran-

them, and thus have higher probability to successfullyecll 40MIY into a field of 10mx 10m. The distance between the
them. We will further investigate the impact of the impoxtan server and the sensor nodes is much Ia_rger than the distance
parameter in the next section through simulations. between the sensors, and, as suggested in [17], we assume tha

there is a 10-fold difference. The server can thus access the
C. Collaborative and Distributed Implementation data without necessarily entering deep into the sensor, field

To guarantee success, our PNC suffers only a subliné¥pich is useful for data collection from a dangerous are& Th
overhead {/N) in buffer storage and communication cost. |flefault number of data segments that the server colleckeis t
practice, if N is too big, even a buffer of siz¢ N+1 might not Most recent 50 data segmenié & 50) and the default buffer
be available at a tiny sensor. In addition, the buffer siZeb® size B is 1. We examine other possible values in our simulation
sensors might not be identical. To overcome these probler§, Well. The linear equations in network coding are solved
the sensors can work collaboratively to provide combinad d&/Sing the Gaussian Elimination [9], and the coefficient field
segments when queried. Specifically, they can form clustd$s? = 2°, which can be efficiently implemented in a 8-bit or
in advance, where the members of a cluster maintain differéRore advanced microprocessor [26]. To mitigate randomness
cardinalities. A cluster can then upload one highest catitjn ©ach data point in a figure is an average of 1000 independent
data segment upon accessing. experiments.

We thus suggest the following collaborative and distridute . ,
implementation. We assume that the server is interested in>: COmparison of Energy Consumption
data patterns and, for each patteivy, recent data segments, Since NC does not have the capability of data removal, it
1 < i < m. After deployment, each sensor will send a probeill eventually lead to a crash of the system in continuous
message to its surrounding area to form a cluster, where ttea collection. Therefore, in our simulations, we onlydstu
number of sensors in this cluster, is greater thary ;" | N;. the performance of PNC and compare PNC with Non-NC.
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Fig. 8. Success ratio as a function 8f for PNC and Non-NC. Fig. 9. Success ratio as a function bf with different buffer size.

We first compare the energy consumption of PNC with NorN
NC. We use an energy consumption model®t= d* [27], °
where d is the transmission range. The field will generat
events which are of interest in an hourly basis and the sensor2) Effect of Buffer SizeWe then increase the buffer size
will record these events. Server will randomly and occaslign from B = 1 to 2 and 3 to investigate its impact. We require the
approach with an expected interval of 20 hours. The serggnsors to upload the data segment of the highest carglinalit
is interested in the most recent = 50 data pieces. It will for each server access. The results are shown in Fig. 9, where
first randomly collect 50 data segments and if some originalbuffer increase fromi to 2 has a notice improvement in
data segments are missing (for Non-NC) or the combined daticcess ratio, and a buffer of 3 segments delivers almost
segments can not be decoded (for PNC), then the server wilitimal performance. This is not surprising because theee i
send additional requests one by one, until all 50 data segmdnigher degree of freedom for storing and uploading data in a
are obtained. The results are shown in Fig. 7. larger buffer space.

It is clear that PNC performs better than Non-NC for |n our analysis, we show that givél¥ = N + /N, and
different V. It can be seen that the energy consumptions ape = /N + 1 the system guaranteed to decoleoriginal
linear with respect to the number of required dat),(but data segments (ignoring linear dependency). In this chse, t
the slope for PNC is much smaller. As a result, wh€nis server has to decod® + /N data segments, among which
greater than 50, the energy consumption with Non-NC is 3 {6N are obsolete. An interesting question is th@an we
4 times higher than that with PNC. The energy consumptieaduce the overhead fol/ but still guarantee an optimal
with PNC is further reduced when clusters are employed (tB@ccess ratioUnfortunately, from Fig. 10, we can see that
cluster radius is set to 2 or 3 hops, respectively), becaat®e dchis unlikely happens. Among the 1000 experiments, only in 4
segments with higher cardinalities could be uploaded frome&periments the server successfully decodes before tintiec

n-NC, after collecting 200 data segments, the success rat
ies still 40% only.

larger aggregated buffer. all the N ++/N data segments. We conjecture thav could
be a lower bound of the overhead, though it has yet to be
C. Performance of PNC proved.

In our applications, when server approaches, a fast datal "€ above two sets of results suggest that PNC works quite
collection is always desired. Therefore, it is better foe thWell for a reasonable buffer size even without extension to
server to estimate the number of sensors it should query dRglude obsolete data segments. Therefore, unless a guaran
send the query simultaneously, instead of in an incremigntaie€ iS desired, the straightforward PNC is enough for most
fashion as previous section. Success ratio is thus a gddplications.
indicator of how many sensors should be queried at once3) Impact of N: We then explore the impact of the cardi-
Therefore, we use success ratio to evaluate the performangéity V. In Fig. 11, we depict the decoding ratio for different
of PNC starting from this section. number of original data segment& €20, 50, and 100). The

1) PNC vs Non-NC:We revisit the performance of PNCz-axis denotes the ratio between the number of data collected
and Non-NC using success ratio. Fig. 8 shows the succesel the cardinality, i.e\ = % We can see from Fig. 11 that
ratio as a function of the number of data segments collectitbir differences are insignificant, and general reducenvifie
(W). Not surprisingly, the success ratio increases wkén increases. Recall that, the performance of Non-NC decsease
increases for both PNC and Non-NC, but the improvemesharply whenN increases, as shown in Table I, while NC is
PNC is more substantial. For example, if 100 data segmemsrginally affected byV only. These simulation results thus
are collected, the success ratio is about 80% for PNC; faraffirm that PNC inherits the good scalability of NC.
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D. Effect of Clustering improvement is not uniform for all the four patterns, either

i . . o It favors first for the data pattern with the largest number
As discussed in section V, to surpass the limited buffer, sizgf assigned sensors (50%), then the pattern with the second
the sensors can form clusters to achieve a larger aggregaiggest number of assigned sensors (25%), and so forth. This

buffer space. In Fig. 12, we show the success ratios for @buffs clearly desirable given that we want to differentiate the
limited sensor network with different cluster radiuses, ithe patterns.

number of hops to reach the farthest sensors, ranging from 0
to 3. When the radius is 0, there is basically no cluster and VII. CONCLUSIONS ANDFUTURE WORK
a c_:ontacted sensor has to respond to the server immediately, this paper, we introduced a novel coding scheme, Partial
using data from its local buffer. We can see that the succe$snyork Coding (PNC), which effectively solves the problem
ratio significantly increase when the clustering algoritfn of removing obsolete information in coded data segments. Th
enabled. For a cluster radius of 2, it is already quite clase ﬁroblem is a major deficiency of the conventional network
100%. coding. We proved that the success ratio of PNC in data
collection is generally better than a non-coding scheme and
is close to the conventional network coding, except for a
We next investigate the impact of requiring the senssub-linear overhead on storage and communication. We then
network to maintain multiple data patterns, e.g., to recnode addressed several practical concerns toward implementing
than one event of interest. Fig. 13 shows the success ré®NC in resource-constrained sensors, and demonstrated a
for a 4-pattern scenario. To differentiate the importarfcéhe collaborative and fully distributed protocol for contirusodata
patterns, we have assigned different number of sensorsto eeollection in large sensor networks.
pattern (in this example, 12.5%, 12.5%, 25%, and 50% of theln network coding research, it is known that the higher
total number of sensors). the cardinality is, the more the benefits we could expect.
Not surprisingly, the success ratio favors data patterh wiTherefore, many existing schemes have focused on achiev-
more sensors assigned. An interesting observation is lieat ing a full cardinality in data combination; For example, the

E. Impact of Multiple Pattern



proposals in [5][6][10][21] generally increase the caality [12]
by combining as much data as possible in intermediate nodes
and then forward to others. Our work on partial network
coding, however, shows that the opposite direction is wortts]
consideration as well.

Nevertheless, there are still many unsolved issues for PNgy
Beyond the practical issues toward implementing a real PNC-
based sensor network, we are interested in the following tv[vl%]
guestions: First, based on our simulations, we observetibat
performance of PNC is very close to NC. We therefore suspect
whether the overhead of/ N reaches the potential limit of 16
PNC? Second, our PNC is currently used for data coIIectiJ)n]
only. We expect that an enhancement could facilitate mopg]
complicated queries. Given its flexibility in data managate
we believe that PNC can be applied in many other applicationps
and the solutions to the practical and theoretical issu€NG
is thus urged, especially considering the recent flouristiedéd
streaming in numerous fields.
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