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Abstract—In recent years, the core-net routing table, e.g.,
Forwarding Information Base (FIB), is growing at an alarming
speed and this has become a major concern for Internet Service
Providers. One effective solution for this routing scalability
problem, which requires only upgrades on individual routers,
is FIB aggregation. Intrinsically, IP prefixes with numerical
prefix matching and the same next hop can be aggregated. Very
commonly, all previous studies assume that each IP prefix has
one corresponding next hop, i.e., towards one optimal path.
In this paper, we argue that a packet can be delivered to its
destination through a path other than the one optimal path.
Based on this observation, we for the first time propose Nexthop-
Selectable FIB Aggregation that is fundamentally different from
all previous aggregation schemes. IP prefixes are aggregated if
they have numerical prefix matching and share one common next
hop. Consequently, IP prefixes that cannot be aggregated, due
to lack of the same next hop, are aggregated; and we achieve a
substantially higher aggregation ratio.

In this paper, we provide a systematic study on this Nexthop-
Selectable FIB Aggregation problem. We present several practical
choices to build the sets of selectable next hops for the IP prefixes.
To maximize the aggregation, we formulate the problem as an
optimization problem. We show that the problem can be solved by
dynamic programming. While the straightforward application of
dynamic programming has exponential complexity, we propose
a novel algorithm that is O(N). We then develop an optimal
online algorithm with constant running time. We evaluate our
algorithms through a comprehensive set of simulations with
BRITE with RIBs collected from RouteViews. Our evaluation
shows that we can reduce more than an order of the FIB size.

I. INTRODUCTION

The global Internet has experienced tremendous growth
over the last decade. The sheer growth of user population,
as well as such factors as multi-homing, traffic engineering,
policy routing, have driven the growth of Default Free Zone
(DFZ) routing table size at an alarming rate [1–3] (see the
routing table size from 1994 to 2010 in Fig. 1). The Internet
Service Providers (ISPs) are forced to upgrade routers in
an unanticipated pace. Instead of upgrading their routers, a
few ISPs have resorted to filtering out some small prefixes
(mostly /24s) which implies that parts of the Internet may not
have reachability to each other. This suggests that ISPs are
undergoing some pain to avoid the cost of router upgrades.

To handle this severe Internet routing scalability problem,
many solutions are proposed. One set of proposals is to get
rid of the IP-oriented infrastructure and design a fully scalable

The works of Q. Li, M. Xu and J. Yang are supported by grants of NSFC
61073166 (only for Q. Li and M. Xu), 973 Pro. 2009CB320502, 863 Pro.
2009AA01Z251, National Sci. & Tech. Pillar Pro. 2008BAH37B05 (only for
J. Yang). D. Wang’s work is supported by grants Hong Kong PolyU/G-YG78,
A-PJ19, 1-ZV5W, and RGC/GRF PolyU 5305/08E.

1994 96 98 00 02 04 06 08 10
0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

Time from 1994 to 2010

A
ct

iv
e 

B
G

P 
E

nt
ri

es
 (

FI
B

)

Fig. 1. The historical FIB size. Data obtained from bgp.potaroo.net [1].

addressing system. Example protocols and frameworks include
[4–6]. Another set of proposals is to protect the core-net router
tables by address encapsulation or translation. These proposals
[7–9] require a significant transition time, as what we have
learned from the deployment of IPv6.

A more immediate solution is Forwarding Information Base
(FIB) aggregation. FIB aggregation can reduce FIB size with
only local router upgrade and requires no protocol change.
In FIB aggregation, multiple prefixes can be aggregated into
one if two conditions hold: 1) the prefixes are numerically
aggregatable; 2) their next hops are the same. Some vendors
have already implemented simple FIB aggregation schemes
and many techniques [10, 11] are proposed in academia. In
[10], systematic analysis of FIB aggregation is presented.

All these previous studies focus on the first condition
of FIB aggregation, that is, how to find or construct the
numerical aggregatable prefixes. Very commonly, these algo-
rithms consider that each IP prefix has one corresponding
next hop. As a sharp contrast, in this paper, we make a
key observation that it is practically possible that there are
multiple selectable next hops for each IP prefix; and through
any one of these next hops, the packets can be delivered
to the destination. In practice, such schemes as equal-cost
multi-path routing (ECMP), loop-free alternative (LFA) [12]
naturally exist. There are also many multi-path routing (path
protection) schemes proposed in literature, making a selection
of multiple next hops possible. Consequently, we propose
a fundamentally different FIB aggregation approach, where
multiple IP prefixes can be aggregated into one if 1) they are
numerically aggregatable, and 2) one of their selectable next
hops is the same. We illustrate our idea with a simple example:

An Example: Consider two prefix entries, < 158/8, a >,
< 158.128/9, b >. They cannot be aggregated in any previous
FIB aggregation schemes, as they have different next hops.
Assume that both next hops a and b can deliver the packets



of 158/8 to the destination; and both b and c can deliver the
packets of 158.128/9 to the destination. Instead of allocating
a single next hop for each prefix, we propose to allocate
selectable next hops and the two prefix entries are as follows,
< 158/8, {a, b} >, < 158.128/9, {b, c} >. Thus, these two
entries can be aggregated into < 158/8, b >.

From this example, we can see that our assumption is that
for each prefix, there is a set of selectable next hops. Note,
however, that after aggregation, each IP prefix is still mapped
with one single next hop and no multi-path routing is needed.

In this paper, we for the first time provide a systematic
study on the aforementioned problems. Inspired by LFA, we
introduce two principles to construct the set of selectable
next hops. Through any of these next hops, the packets are
guaranteed to be delivered to the destination. We formulate
our Nexthop-Selectable FIB Aggregation problem as an opti-
mization problem and show that it can be solved by dynamic
programming. As a straightforward dynamic programming
has exponential complexity, we develop a novel algorithm of
O(N). We then develop an optimal online algorithm, with
constant complexity, to handle online routing updates.

We evaluate our algorithms through BRITE generated and
real world topologies, with the routing tables from Route-
Views. Our evaluation shows that we can achieve more than
an order of the FIB size reduction, reducing the FIB size to
that of 1998. As such, we believe our scheme, locally and
incrementally deployable, can reserve sufficient time for the
agreement of advanced infrastructure changes of the Internet.

II. NEXTHOP-SELECTABLE FIB AGGREGATION: THE
PROBLEM AND ALGORITHMS

To make our presentation focused, we delay the detailed
discussion on constructing the set of selectable next hops in
section III and focus on how to maximally aggregate the FIB
given a set of selectable next hops allocated to each prefix.
We comment that our work does not depends on specific
approaches of constructing the set of selectable next hops.
A. The Nexthop-Selectable FIB Aggregation Problem

Let a Nexthop-Selectable FIB (NS-FIB) be a set F = {<
pi,Api > |pi ∈ P, 0 ≤ i ≤ N} where P = {pi|0 ≤ i ≤ N}
is the set of IP prefixes and Api is the set of selectable next
hops for pi. A aggregation for F is a set Faggr = {< p, ap >
|p ∈ P ′ and ap ∈ Ap} where P ′ ⊆ P . Faggr is feasible
for F , if for any IP address and its longest matching entries
< p,Ap >∈ F and < p′, ap′ >∈ Faggr, we have ap′ ∈ Ap.
The Nexthop-Selectable FIB Aggregation Problem (NS-FIB
Aggregation) is: given a Nexthop-Selectable FIB F , find a
feasible aggregation Faggr for F with a minimized |Faggr|.

We illustrate our definitions with an example. A Nexthop-
Selectable FIB is shown in Fig. 2. Two corresponding feasible
aggregations are shown in Fig. 3, and Aggr. 1 is an optimal
aggregation for the NS-FIB.

<p0=/0,       {a, e}>   <p4=0011/4,{c,e}>  <p8=1010/4, {e, a}>

<p1=001/3, {b, a}>   <p5=01100/5, {c}> <p9=10111/5,   {d}>

<p2=011/3, {c, a}>   <p6=01101/5, {c}>  <p10=101011/6, {e}>

<p3=101/3, {d, a}>   <p7=01110/5, {c}> 

Fig. 2. An example of Nexthop-Selectable FIB.

Aggr. 1

Aggr. 2

<p0, a> <p2, c> <p3, d> <p4, c> <p8, e>

<p0, a>    <p4, c>    <p5, c>  <p10, e> 

<p6, c>    <p7, c>    <p9, d>

Fig. 3. Two feasible aggregations for the NS-FIB in Fig. 2.

B. A Dynamic Programming Solution

The routing table is generally organized as a radix tree.
We follow this convention. For the prefix set P of F , a
corresponding NS-FIB tree T (V, E) can be constructed as, V
corresponds to all the prefixes of F . By abusing notations, we
use p to denote a node of T ; and ∀p, p′ ∈ V , p is the immediate
parent of p′ if and only if p is the longest matching prefix of
p′ (other than p′) in T . For example, Fig. 4(a) shows the tree
corresponding to the NS-FIB in Fig. 2.

A subtree T of T is a tree that is a connected part or a
single node in T . Let RT denote the root of T . The indication
of a subtree is that the prefixes it represents are numerically
aggregatable. Thus, if all nodes of T have a common next hop,
they can be aggregated into RT . We define aggregation cell (or
cell for short) as a subtree in T and all the nodes in the subtree
have a common next hop. Intuitively, a cell corresponds to an
aggregated entry and our algorithm is to find a set of disjoint
cells to cover T . We define an x-selectable cell to be a cell
with the common selectable next hop x.
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Fig. 4. (a) Tree T (V, E) corresponding to the NS-FIB in Fig. 2. The p3-
rooted branch is Sp3 = (p3, p8, p9, p10). CT ′ = (p4, p2, p3) for T ′ =
(p0, p1). (b) Ua(p0), the set of p0-rooted a-selectable cells of T .

We first show that our problem has an optimal sub-structure.
As such, it can be solved by dynamic programming.

Let G(T ) denote the size of an optimal aggregation of
the NS-FIB T . Let Gx(T ) denote the size of an optimal
aggregation for the NS-FIB T where the root RT selects
x ∈ ART as its next hop. Clearly G(T ) ≤ Gx(T ) and

G(T ) = minx∈ART
Gx(T ) (1)

We will show that Gx(T ) can be linked to an optimal sub-
structure. We present a few more definitions.

A branch T of a tree T is a subtree consisting of a node and
all of its descendants in T . Let Sp be the p-rooted branch of
T (See Sp3 in Fig. 4). Let CT ′ denote the set of the immediate
children of a subtree T ′ in T (See CT ′ in Fig. 4). Let Ux(p)
denote the set of p-rooted x-selectable cells in T where x ∈
Ap (See Ua(p0) in Fig. 4).

The optimal sub-structure of Gx(T ) can be written as

Gx(T ) = 1 + minT ′∈Ux(RT )

∑
p∈CT ′

G(Sp) (2)

The intuition is that we want to divide a NS-FIB tree T
into one RT -rooted x-selectable cell T ′, and a set of branches
rooted at the children of T ′ (CT ′). As T ′ can be aggregated
into one entry, the size of the optimal aggregation based on



this division is 1 +
∑

p∈CT ′ G(Sp). Note that T ′ can be
of any form, as long as it is x-selectable and RT -rooted.
Therefore, Gx(T ) takes the minimum of all different forms
of T ′. For example, in Fig. 4, supposing x = a, one possible
division is T ′ = (p0, p1),Sp4 = (p4), Sp2 = (p2, p5, p6, p7)
and Sp3 = (p3, p8, p9, p10) (G(Sp3) = 2). Another possible
division is T ′ = (p0, p1, p2, p3, p8), Sp4 = (p4), Sp5 = (p5),
Sp6 = (p6), Sp7 = (p7), Sp9 = (p9) and Sp10 = (p10). We
can see that the size of the optimal aggregation, based on
the first division, is four (Aggr. 1 in Fig. 3); and the size
of the optimal aggregation, based on the second division, is
six (Aggr. 2 in Fig. 3). In fact, the first division achieves an
optimal aggregation with a selected as the next hop for RT .

We initialize G(T ) and Gx(T ) for special cases:
G(T ) = 1, if |T | = 1 (3)
Gx(T ) = ∞, if x /∈ ART (4)

Condition (3) says that an optimal aggregation of a single
node tree is one and condition (4) says that selecting an
unavailable next hop for the root of a tree is not allowed.

A dynamic programming algorithm can be derived based
on the above optimal sub-structure. |Ux(RT )| is exponential
(proved in [13]), making the complexity of the algorithm unac-
ceptable. In what follows, we develop a bottom-up algorithm
of polynomial time.

C. The Polynomial Time Algorithm
For a branch T of T , let T ∗

x be an optimal RT -
rooted x-selectable cell with the optimality of minimizing∑

p∈CT∗
x

G(Sp) (thus equal to Gx(T ) − 1). The crucial
challenge for calculating Gx(T ) and G(T ) is to efficiently
find T ∗

x ∈ Ux(RT ). We propose Algorithm OptimalCell() to
compute T ∗

x and Gx(T ). OptimalCell() will become a building
block of our main algorithm. The intuition of OptimalCell() is
that instead of searching for the entire Ux(RT ), it is enough
to only evaluate the children of RT , and combine the optimal
cells rooted at the children of RT if necessary. Therefore,
the complexity of OptimalCell() is Θ(|C(RT )|), which is only
related to the number of the children of the branch root.

We now prove that OptimalCell() finds an optimal RT -
rooted x-selectable cell T ∗

x and computes Gx(T ). We first
prove two lemmas. The first lemma says that the branches of
an optimal x-selectable cell are also optimal x-selectable cells.
This lemma is the foundation for the correctness of dynamic
programming. The second lemma says that any branch of an
optimal cell Tx can be exchanged with another optimal cell
without changing the optimality of Tx. This lemma is critical
as we will show that any optimal RT -rooted x-selectable cell
can be transformed to T ∗

x computed by OptimalCell().

Lemma 1. The branches of an optimal x-selectable cell are
also optimal x-selectable cells.1

Lemma 2. A branch (T ′) of an optimal x-selectable cell
Tx can be exchanged with any other optimal RT ′-rooted x-
selectable cell (T ′′), without changing the optimality of Tx.

1The proofs for all the lemmas and theories can be found in [13].

Theorem 3. OptimalCell() computes an optimal RT -rooted
x-selectable cell and Gx(T ).

Based on Algorithm OptimalCell(), we propose Algorithm
NS-FIB-Aggregation() to calculate G(T ) iteratively by dy-
namic programming. Given an NS-FIB tree T = T as the
input, NS-FIB-Aggregation() computes G(T ) by computing
the G value for all the branches of T according to Formula
(1) and (2). An optimal aggregation Faggr for F is generated
in the process of computing G(T ). Faggr is stored in the
original tree structure. The selected next hops for Faggr are
also set in the algorithm.

Algorithm 1 OptimalCell(x, T )
Require: x ∈ ART

1: T ′ ⇐ {RT }, G′ ⇐ 1;
2: for all p ∈ children of RT do
3: if x ∈ Ap and Gx(Sp) = G(Sp) then
4: G′ ⇐ G′ +G(Sp)− 1
5: T ′ ⇐ T ′ ∪ (Sp)∗x {(Sp)∗x is an optimal cell rooted at p}
6: else G′ ⇐ G′ +G(Sp)
7: end if
8: end for
9: T ∗

x ⇐ T ′, Gx(T ) ⇐ G′

Algorithm 2 NS-FIB-Aggregation(T )
1: for all p ∈ VT do {postorder}
2: G(Sp) ⇐ ∞
3: for all x ∈ Ap do
4: Compute (Sp)∗x and Gx(Sp) by OptimalCell(x, Sp)
5: if G(Sp) > Gx(Sp) then
6: Set G(Sp) as Gx(Sp)
7: Set the selected next hop of RSp as x
8: Set the aggr. children of p as C(Sp)∗x
9: end if

10: end for
11: end for

We show an example of Algorithm NS-FIB-Aggregation()
with the NS-FIB T in Fig. 4 as the input. In Fig. 5, ∀p ∈ T , a
tuple [Gp,x] is associated with p. Gp corresponds to G(Sp)
and x corresponds to the selected next hop for p by NS-
FIB-Aggregation(). A subtree with a dash circle is an optimal
cell. The figure shows the last round of NS-FIB-Aggregation()
to compute G(T ) and generate an optimal aggregation. The
black nodes and their selected next hops form an optimal
aggregation for T , which is the same as Aggr. 1 in Fig. 3.

Optimal cells 

[Gp, x]Gp is G value of the subtree x is the selected next hop

[2, d]
[1, c]

[2, b]

[1, e]

[1, c]

[2, d]
[1, c]

[1, e]

[1, c]

[5, a]

Fig. 5. The last round of NS-FIB-Aggregation() to generate an optimal
aggregation for the NS-FIB in Fig. 4.

Theorem 4. NS-FIB-Aggregation() computes an optimal so-
lution for the Nexthop-Selectable FIB Aggregation Problem.

Theorem 5. The complexity of NS-FIB-Aggregation() is
O(mN) where m is the maximum number of next hops for
any prefix. Since m is a constant, the complexity is O(N).



D. The Online Algorithm
In practice, the routing changes are online. The BGP route

changes may trigger route withdrawal, route update or route
insertion in the NS-FIB. We use UPDATE as an example. The
operations of handling a BGP update is 1) update the BGP
route in the RIB. Generally speaking, this operation involves
a search of the RIB entry for the updated prefix, 2) if the
optimal BGP route changes (e.g., the egress router is changed),
find the new next hop(s) for this prefix according to the intra-
domain routing table (i.e., generate a new FIB entry), and 3)
update the FIB change in the line card. The FIB aggregation
algorithms will fall between 2) and 3). The bottleneck of the
above operations is 1), which has complexity of O(logN).

We develop Algorithm NS-FIB-Online(). The idea is that
given an update < p,Anew > where p is a prefix and Anew is
the new set of next hops of p, NS-FIB-Online() recalculates
G, Gx values of the node p and all the upstream nodes of p
in T . We give the detailed description of the algorithm and
the analysis of constant complexity in [13].

III. CONSTRUCTION OF NEXTHOP-SELECTABLE FIB

In this section, we propose two practical methods to con-
struct the set of selectable next hops for each prefix. Our
schemes require only local information and no modification on
existing Internet infrastructure. The idea is inspired by loop-
free alternates (LFA) [12]. We use loop-free condition (LFC)
and downstream condition (DSC) to select next hops for each
prefix. In Fig. 6, we show an example of LFC and DSC.

LFC Nexthop-Selectable FIB Construction: Let Dt be the
destination for p in the AS (i.e., the egress router for p). For
a router Rt, a neighbor NGi of Rt meets LFC Condition for
Dt if and only if Rt is not on the optimal route(s) from NGi

to Dt. The optimal next hop(s) always meet(s) LFC condition.
Thus, given the RIB of Rt and the topology of the AS that Rt
belongs to, we can construct the set of selectable next hops
for a prefix according to LFC. Such computation only uses
information of the local router.

Lemma 6. Let Rt construct the set of selectable next hops
according to LFC condition. Assume all the other routers in
the AS still choose the optimal next hop for each prefix, then
no routing loop exists.

Note that LFC Nexthop-Selectable FIB construction is use-
ful if it is not widely deployed. For the ISPs that wants to
selectively deploy our scheme for their most aged routers, LFC
is suggested. We next present another construction scheme
which guarantees loop avoidance in all circumstances.

DSC Nexthop-Selectable FIB Construction: Given a
router Rt and a destination prefix Dt, a neighbor NGi of
Rt meets DSC Condition if and only if the optimal path from
NGi to Dt is shorter than the optimal path from Rt to Dt.
If NGi meets DSC condition, it also meets LFC condition
for Dt. Given the RIB of Rt and the topology of the AS Rt
belongs to, we can construct the set of selectable next hops
for a prefix according to DSC condition.

Lemma 7. If any Rt in the AS construct the selectable next
hops according to DSC condition, no forwarding loop exists.

R

11110/5

2

2

2

111/3

11111/5

1

N1

N3

N2An AS

2

LFC 

NS-FIB

DSC

NS-FIB

111/3        N1, N2
11110/5    N2, N1
11111/5    N3

111/3        N1, N2, N3
11110/5    N2, N1
11111/5    N3, N1

Fig. 6. An example of LFC and DSC Nexthop-Selectable FIBs. The costs of
the links are specified on the lines. For router R, N3 is choosen as an LFC
selectable next hop for 111/3 since R is not on the optimal route from N3

to N1. Similarly, N2, N3 are also LFC selectable next hops for 111/3.

IV. SIMULATION

To construct the NS-FIB, both the RIB and AS topology
are required. We generate topologies by BRITE. We use the
propagation delay as the cost of a link. The parameters for
BRITE are in Table I. We use the RIB of 16th May 2010 from
RouteViews, which has 328,076 entries and 37 next AS hops.
Note that this RIB only has next AS hops, but no next router
hops. We randomly select 37 routers from each AS as egress
routers and map the 37 BGP next AS hops to these routers.
The next router hops can thus be computed. This method has
been proven to be a good approximation.

TABLE I
PARAMETERS OF BRITE TOPOLOGIES

Mode Model HS LS Nodes Num
Router Only Waxman 1000 100 50-500

links/new node α / β NP Growth Type
2-15 0.15 / 0.2 Random Incremental

We use residual ratio as the main evaluation criterium. The
residual ratio is the ratio between the aggregated FIB size and
the original FIB size.

We first show the residual ratio with different topology sizes.
In Fig. 7(a), we see that Single-Nexthop FIB aggregation can
reduce the FIB sizes to 60%. Using NS-FIB Aggregation by
LFC, the aggregated FIB size is only 0.45%-2.88% of the
original FIB size. Even by DSC, our scheme still can achieve
a residual ratio of less than 20% (12.43% to 19.28%).

In Fig. 7(b), we set the average degree of the topologies to
four. Our schemes still achieve almost the same residual ratio.
Notice that the residual ratio is smaller for Single-Nexthop FIB
aggregation. This is not surprising as the fewer neighbors, the
more prefixes with the same next hop.

Another interesting observation is that when the topology
size increases, the residual ratio slightly improves. This is
because when the topology size increases, the neighbors used
as next hops as the routers mapped as egress routers lay
disproportionably.

We next study the impact of the average degree of the
topology on the residual ratio in detail. We see in Fig. 8
that when the average degree increases, the impact of Single-
Nexthop FIB aggregation becomes less significant. Again, this
conforms to the intuition that the more neighbors, the less
prefixes with the same next hop. The residual ratios of Single-
Nexthop FIB aggregation increase above 60%. However, for
our aggregation schemes, they are not affected by the average



100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Brite Topo Size

R
es

id
ua

l R
at

io

 

 

LFC NS−FIB
DSC NS−FIB
Single−Nexthop FIB

(a) Average degree: 10.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Brite Topo Size

R
es

id
ua

l R
at

io

 

 

LFC NS−FIB
DSC NS−FIB
Single−Nexthop FIB

(b) Average degree: 4.

Fig. 7. Residual ratio as a function of the size of the topologies.
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(a) BRITE Topo: 100 nodes.
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(b) BRITE Topo: 400 nodes.

Fig. 8. Residual ratio as a function of average degree.

degree. This is because if there are more neighbors, the number
of selectable next hops also increases. Such property makes
our scheme especially attractive.

In Fig. 9, we fix the number of selectable next hops for each
prefix in DSC NS-FIB to be equal or less than FixNum. We
see that if there are more next hops selectable, the FIB enjoys
higher reduction, but the biggest jump comes from the change
of a single next hop to two selectable next hops.
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Fig. 9. Residual ratio as a function
of the number of next hops.
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Fig. 10. The sizes of the un-
aggregated and aggregated FIBs

To see the impact of FIB aggregation, we apply multiple
FIB aggregation schemes to the historical routing tables of
RouteViews from November 2001 to May 2010. The results
are in Fig. 10. We see that if the Single-Nexthop FIB aggre-
gation is used, the routing table size can be reduced to that
of 2006. Ours, even considering the DSC implementation, can
reduce the routing table size to that of 1998 (see Fig. 1).

V. RELATED WORK

In [14], Zhang, et. al, claimed that the most efficient way
to address the Internet scalability problem is through an
evolutionary path. The first step on this path is FIB shrinking.

A systematic work on four levels of FIB aggregation tech-
niques can be found in [10]. Level 1 removes the prefix that
has the same next hop with the immediate parent in the radix
tree of the FIB, which is Single-Nexthop FIB aggregation
mentioned in this paper; Level 2, 3 and 4 remove prefixes
with the same next hop by packing a special prefix that can

cover all of them. Several additional packing and splitting
techniques are proposed in [11].

Another notable scheme is Virtual Aggregation (VA) [15],
which can shrink the FIB by configuration only. VA divides
the global address space into a set of virtual prefix blocks.
Some Aggregation Point Routers (APR) are responsible for
specific virtual prefix blocks. Other routers forward packets to
the corresponding APRs. VA is incrementally deployable at
ISP level. However, the configuration overhead is non-trivial
and VA does not support router-level incremental deployment.

VI. CONCLUSION AND FUTURE WORK

In this paper, we for the first time proposed Nexthop-
Selectable FIB Aggregation, which is fundamentally different
from all previous FIB aggregation schemes. Most notably,
each prefix has a set of selectable next hops, and prefixes
with one common next hop can be aggregated. We developed
the mathematical foundation of the Nexthop-Selectable FIB
Aggregation problem, including problem formulation, the ef-
ficient optimal algorithms for both offline and online scenarios.
Our evaluation demonstrated that our scheme achieves more
than an order reduction of the FIB size.

As a first study on Nexthop-Selectable FIB Aggregation, we
admit that there can be many future works. An interesting one
is a more comprehensive study on path stretch control in NS-
FIB aggregation. We also believe there are additional ways to
construct the selectable next hops for both intra-domain and
inter-domain routing.
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