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Abstract—Source address filtering is used as an important
mechanism to prevent malicious traffic. Currently, most networks
store filters in hardware such as TCAM, which has limited
capacity, high power consumption and high cost. Although
software can accommodate large number of filters, it needs
multiple accesses to memory on the border router, which bears
much more additional burden than other routers.

In this paper, we propose a software-based mechanism for
source address filtering. In our mechanism, we only need to
check a few bits in source addresses on each router, rather
than checking all bits on the ingress router. Through cooperation
among routers, our mechanism ensures that malicious trafficwill
be filtered in the network.

We formulate this problem as finding a cooperative scheme
such that the loads on all routers are optimally balanced. We
show that the problem can be optimally solved by dynamic
programming. We evaluate our algorithms using comprehensive
simulations with BRITE generated topologies and real world
topologies. We conduct a case study on China Education and
Research Network 2 (CERNET2) configurations, a large IPv6
network. Compared to checking 128-bit IP addresses on ingress
routers, our algorithm checks at most 40 bits on each router.

I. I NTRODUCTION

Packet filtering is a prevalent mechanism for preventing
malicious traffic, such as DDoS attack and scanning. Because
of the important semantics of source address, source address
filtering is widely used in networks. Usually, ingress router
maintains a blacklist, i.e., the source addresses that should
be filtered. With security problem becoming more serious,
the blacklist has increased explosively in the past few years,
especially for large scale networks. In 2003, it was reported
that there were more than 20K sources during an attack against
an online betting site [3]. In 2007, the size of the Storm botnet
reached 50M [12]. In 2008, there were more than 800K unique
malicious IP sources reported every day, according to data
from Dshield.org [2]. The devastating security crisis forces
ISPs to increases their blacklist size, to defend against attacks
from possible malicious sources.

TCAM is currently used as the de facto industry standard
to process IP prefixes. Though it has wire speed performance,
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TCAM has very limited capacity due to high cost. Cisco
12000, a high end core router, can only accommodate 20000
entries per line-card. With tens of thousands of filters per-path
in the network, the limited TCAM resources are not enough to
block currently witnessed attacks, not to mention larger attacks
from millions of sources expected in the near future [18]. Such
limitation make some TCAM-based solutions even block part
of the legitimate traffic for better aggregation [16]. We believe
that the number of blacklisted source address to be filtered will
keep increasing in a much faster pace in the foreseeable future
than the increase of TCAM capacity. Therefore, software
based solutions are promising to accommodate the large space
required by the filters. The key reason that software based
solutions are not widely used in practice nowadays is that,
although software-based SRAM also has fast speed1, these
schemes require multiple accesses to perform a single lookup;
this introduces large latency and congestion.

Conventionally, the filters are placed at border routers,
where the transit traffic definitely passes by. The processing
burden on border routers is high. In this paper, we design a
novel cooperative mechanism, where not only border routers,
but also some downstream routers in the network can work
cooperatively to handle the source-IP filtering. Such design
scales well facing the increase of the filtering requirement.

Unlike previous schemes, that assign tasks to routers by
filters, i.e., address blocks that should be filtered. Our scheme
assigns tasks to routers by bits. That is, multiple routers will
each check partial rather than all bits in source addresses.
Thus, fast lookup speed can be achieved on each router. We
guarantee correctness, i.e., filtering all malicious traffic in the
network; in other words, the routers will cooperatively check
all bits in source addresses. In our scheme, we can get the
best of both worlds: larger storage space in SRAM/DRAM,
and faster lookup speed.

Simple Example:We first use a simple example to explain
our idea. In Fig. 1. Traditionally, the filters are placed at the
border router, e.g., routera. Thus a requires 3 accesses to
memory to filter malicious traffic in the worst case. In our
new mechanism,a has only to check the0th bit, b checks
the 1st, and c checks the2nd. Assume that a packet with
source address 010 arrives at routera, and the path towards

1The maximum clock rate of SRAM is 400MHz, while TCAM is 266MHz,
the price of SRAM is 10-100 times lower than TCAM [10][11]



destination is{a, b, c, d}. First, routera checks the0th bit
in source address, and moves the pointer from the root to
the 1st level, then it passes the packet to routerb. b checks
the 1st bit and passes the packet toc, which checks the2nd
bit and concludes that the packet should be filtered. With the
mechanism, each router requires fewer accesses to memory.
When the network is large, the amortized burden on each
router can be quite low.
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Fig. 1: Routera is the ingress andd, e, f are egress routers.
Assume the source address has 3 bits, and there are 3 source filters:

1*, 00*, 010. The source filters are organized as uni-bit trie.

The above example is not special. In this paper, we gener-
alize the above example by formulating a problem where we
need to balance the load across different routers, given 1) the
total bit set that has to be checked; 2) the spare capacity on
each router that can be used for source filter; in other words,
there is a limitation on the extra burden for each router. We
develop an optimal solution based on dynamic programming.

We conduct comprehensive simulations using both real and
BRITE generated topologies. The results show that our algo-
rithm can largely reduce the number of bits each router has to
check, and load is much more balanced across routers.We also
conduct a case study using the topology of China Education
and Research Network 2 (CERNET2), the world’s largest IPv6
backbone network (including 59 Giga-PoPs). The results show
that each router has only to check at most 40 bits out of
128-bit IPv6 address and the maximum utilization is much
lower. We also evaluate the control overheads of our scheme,
using real data traces, that recorded the topology changes
of CERNET2 during four months. The results show that the
control overheads caused by our scheme is quite low.

II. RELATED WORK

Many solutions have been proposed to battle DoS problem
and spoof problem with filters. For example, ingress access list
[4], static ACL (Access Control List) is used to keep private
source addresses out of the Internet [6]. However, most solu-
tions store the blacklist in TCAM, which is a scarce resourcein
network. While the blacklist increases tremendously, TCAM-
based filtering can not accommodate so many entries.

Due to lack of hardware memory space, many solutions tried
to reduce the number of filters, [14] aggregated source prefixes
to shorter prefixes. [22] proposed to use bloom filter to exclude
suspected malicious traffic. However, reduced filters will cause
collateral damage, i.e., legitimate traffic may also be blocked.
To make efficient use of scarce TCAM resources, [18] studied

the problem of filter selection as a resource allocation problem,
[8] employed bayesian decision theory to optimize the set of
filters based on history of attacking information.

In [18], distributed filtering was studied to reduce collateral
damage. It places different filters on different routers, such
that each router blocks different IP addresses along a path.
However, the scheme has two drawbacks, 1) it is based on
ACLs that resides in TCAM, but in most cases only border
routers have ACLs for preventing malicious traffic into the
network; 2) once the filter set changes, e.g., adding a new
blocked IP address, or network topology changes, routers
have to re-compute across different routers, which increases
additional control overheads. Compared with [18], our scheme
only re-computes when topology changes.

TABLE I: Comparison of different filtering schemes

`````````
Schemes

Metrics
Lookup speed Storage space Overheads**

Centralized&Hardware Fast Low
�
�
�
�

Centralized&Software Slow Large
�
�
�
�

Distributed by filters
&Hardware Fast Larger* Higher

Distributed by filters
&Software Slow Large Higher

Distributed by bits
&Software Fast Large Lower

* The storage space is larger if routers along the path have ACLs, however,
only border routers have ACLs practically.

** Control overheads caused by distributed schemes.

We compare all possible schemes (distributed by
bits&hardware Scheme does not exist) in Table I. We
can see that our scheme is the only one, that can achieve fast
lookup speed, large storage space and low control overheads.

III. D ESIGN OVERVIEW
A. Assumptions

To restrict the scope of our study, we first make a few
assumptions: 1) We assume the existence of blacklist, this can
be constructed based on either history data [12] or attacking
information from other hosts [17]. Constructing the blacklist
is orthogonal to our paper; 2) We assume that we can insert
additional information between IP and MAC header, (e.g., the
same as MPLS), or in the option positions so as to carry
some information between adjacent routers; 3) We assume
the routers are less likely to be attacked and intra-domain
communications are secure, despite our efforts to take fail-
safe into account; 4) We admit that using our scheme, we
may not prevent malicious traffic at the border routers. Some
ISPs do tolerate the existence of malicious traffic inside their
networks [15]. We will study this in more details in our future
work so that we can focus on router cooperation in this paper.
B. Encoding the Trie and Header Format

Ingress routers can get a blacklist, i.e., a set of filters,
through existing methods. Different ingress routers may have
different blacklists, as they may be connected to attackersfrom
different sources, they may also share the same blacklist.

Ingress routers will first distribute the filters to other routers
in network. When any router obtains the filters, it should install



them in software, i.e., construct a trie. In this paper, we will
focus on leaf-pushed uni-bit trie [20], where each trie node
either points to a prefix index or a child node, and it is easy
to extend this work to other tries, e.g., multi-bit trie.

After constructing the trie, routers should encode each node
with a node index. The encoding results should be consistent
across different routers, i.e., we should assign node index1,
2, 3, . . . to the trie nodes following some rule (please refer to
[21]). After encoding the trie, the router should store the nodes
linearly in memory, therefore, the router can get the trie node
in constant time after obtaining the node index. Besides, the
node index can beempty, i.e., previous routers have checked
all bits and concluded that a packet should not be filtered. The
empty state is encoded to be 0.

Ingress 

Router

1

Node Index

3 Bytes

Fig. 2: The additional header
format

Fig. 3: Covering tree rooted at
routera in Fig. 1, with
maximum depth be 2.

An additional header has to be inserted into all data packets
that travel through the network. Fig. 2 shows the format of
the additional header, which has 32 bits, equivalent to MPLS
header. The new header has two fields, the first field denotes
the ingress router, and the second denotes the node index.

C. Data and Control Plane
1) Data Transmission: Upon receiving a packet, router

should first obtain the fields of ingress router and node index
from the additional header. If the node index is empty, then the
router just delivers the packet to the next router. If the node
index is non-empty, router finds the exact trie node according
to the node index. The router also obtains thedelegated bits,
which is the bit set the router should check, then the router
continues to look up the delegated bits in the trie. We will
later discuss how the router obtains the delegated bits.

If the process finally arrives at some leaf node, indicating
that the source address matches a filter in the blacklist, then
router just discards the packet. If we can not search more
deeply into the trie, indicating that the source address does
not match any filter, then the node index is set to be empty.
Else the node index is set to be the node index of the trie node
where the lookup process stops. After setting the node index,
the router delivers the packet to the next hop.

Ingress router looks up from the root node in the trie, and
insert the additional header. Egress router removes the header.

2) Control Information: Combined with the trie and net-
work topology information, we can compute the delegated
bits on each router for traffic from different ingress routers
(described in the next section), such that load is balanced
among all routers. The computed results across different
routers should satisfy that, all bits that appear in the trieshould
be checked orderly (from root to leaf nodes) by routers along
any paths from ingress to egress routers.

There are three kinds of control information exchanged
between routers. First, ingress router computes and distributes
the delegated bits for each router. Second, ingress router
should distribute the filters to other routers. thus each router
can independently construct and encode the trie. When up-
dating (inserting or deleting) on filters happens, the ingress
router should notify other routers about the updates. Each
update message should be tagged with a sequence number,
so all routers can set up the trie consistently. Finally, the
topology information can be distributed through protocolssuch
as OSPF, and the spare capacity of each router can be known
through extension of OSPF or a new protocol.

All control information is exchanged between adjacent
routers, by setting TTL of control packets to be 2552, we
can prevent spoofed message from attackers.

IV. OPTIMAL COVERING SCHEME

To share the load among routers, we formulate and solve
the problem of computing the delegated bits on each router
for traffic from different ingress routers.
A. Problem Formulation

Let G = (V,E) be a network, whereV is the set of routers,
andE is the set of links. LetR denote the set of ingress routers
in the network. LetL be a path (i.e., an ordered set of routers),
Pr (r ∈ R) be the set of paths that a packet may traverse from
r to any other egress routers. Foru, v ∈ L, defineu �L v as
nodeu be the predecessor ofv on L.

Let T r = {b0, b1, . . . , }, (r ∈ R, 0 ≤ bi ≤ 31 for IPv4,
and 0 ≤ bi ≤ 127 for IPv6) be the ordered (i.e.,bi < bj, if
i < j) set of bits that should be checked for traffic from ingress
router r ∈ R. Each router only checks a few bits in source
addresses, letBr

v ⊆ T r be the delegated bits thatv checks for
traffic from r, and

−→
B r = (Br

v1
,Br

v2
, . . .), vi ∈ V be a vector

representing acovering scheme for traffic from r. Along all
paths from ingress to egress, all routers cooperatively check
T r from higher3 to lower bits. Each router in the network
has limited capacity due to CPU limitations. We model this as
the maximum number of additional bits in source addresses
that the router can process. LetCv be the capacity ofv. To
balance the load across the network, letf r(v) be the utilization
function on nodev for ingress routerr, i.e., f r(v) =

|Br

v
|

Cv

.
Considering some ISPs do not want malicious traffic pen-

etrates deeply into their networks, we define themaximum
depth, i.e., distance that malicious traffic could travel before
being filtered. Letd(u, v) be the distance between nodeu and
v, k be the maximum depth, e.g.,k = 0 if the ISP forces all
traffic be filtered at border routers. ISP administrator can select
k based on a tradeoff between security and load balancing.
Then we can formulate the problem as follows,

min max
v∈V,r∈R

f r(v) (1)

s.t. |Br
v| ≤ Cv, ∀v ∈ V, r ∈ R (2)⋃

v∈L

Br
v ⊇ T r, ∀L ∈ Pr, r ∈ R (3)

2TTL is set to be 255 if communication entities are directly connected
3Here, let the most significant bit be the highest order bit
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Br
u = T r or

⋃

u�Lv

Br
u = {p ∈ T r|p > q, ∀q ∈ Br

v},

∀r ∈ R,L ∈ Pr, v ∈ L
(4)

Br
v = ∅, ∀r ∈ R, ∀v, d(v, r) > k (5)

Eq. (1) specifies the objective to minimize the maximum
utilization on all routers. Eq. (2) indicates the constraint on
capacity. Eq. (3) states that all bits must be covered along any
path that a packet can traverse. Eq. (4) states that on any path
from ingress to egress, if not all bits have been checked, then
the successor node should check lower bits. Eq. (5) expresses
the maximum depth the administrator set.

The solution to the problem is called the optimal covering
scheme.

TABLE II: Notation List
Notation Definition
V set of nodes
R set of ingress routers
L a path
r an ingress router

Pr set of paths that a packet can traverse fromr
to egress routers

T r set of ordered bits that should be checked for
packets fromr

Br
v set of bits that nodev checks for packets fromr

−→
B r a covering scheme forr
Cv capacity of nodev
fr(v) utilization function on nodev for ingress routerr

B. Finding the Optimal Covering Scheme

In this section, we will present the algorithmOpt-Cover() to
find the optimal covering scheme by dynamic programming.

Note that in Eq. (1)-(5), variables for different ingress
routers do not interact, So it can be decomposed to a number
of subproblems, one for each ingress router.

We can obtain a spanning tree rooted at an ingress router
and towards all egress routers, and the height of the tree is
less than the maximum depthk. For example, supposek = 2
in Fig. 1, then we can get a tree rooted at ingress routera as
shown in Fig. 3. We call the spanning treecovering tree, which
has to cover all bits that has to be checked, more specifically,
all paths from root to any leaf nodes should cover all bits.

Intrinsically, if a tree has to coveri bits and the root checks
the highestj bits, then each sub-tree rooted at children of the
root nodes has to coveri−j bits. Suppose we know the optimal
cover for each sub-tree, then we can compute the optimal cover
for the entire tree by trying different number of delegated bits
on the root node. For example, if the tree in Fig. 3 has to cover
3 bits, and capacity of each node is 2. If nodea checks 0 bit,
sub-tree rooted at nodeb should cover 3 bits, the maximum
utilization of the optimal cover for the sub-tree (b checks 2
bits andc, e each checks 1 bit, orb checks 1 bit andc, e each
checks 2 bits) is 100%, and the maximum utilization of the
optimal cover for the entire tree is 100%. If nodea checks
1 bit, sub-tree rooted atb should cover 2 bits, the maximum
utilization of the optimal cover for the sub-tree (b checks 1
bits andc, e each checks 1 bit) is 50%, and the maximum
utilization of the optimal cover for the entire tree is 50%. If a

checks more than 1 bit, the maximum utilization of the optimal
cover will be more than 50%. Thus we can conclude that the
optimal cover is:a checks the0th bit, b checks the1st bit,
andc, e each checks the2nd bit.

Let O(v, n) be the Min-max utilization if covering tree
rooted at nodev has to covern bits,Oj(v, n) be the Min-max
utilization if covering tree rooted at nodev has to covern bits,
andv itself has to checkj bits. LetN (v, n) be the number of
delegated bits onv if Min-max utilization is achieved on the
covering tree that is rooted atv and has to covern bits. Let
Parent(v) be the parent node ofv. Algorithm Opt-Cover()
computes the delegated bits of each node as follows.

Algorithm 1: Opt-Cover()
Input : T r

Output : Br
v, ∀v ∈ V

Initialzation : Br
v = ∅, ∀v ∈ V

1 begin
2 PreOrder traverse the Covering tree and push nodes intoStack
3 while Stack 6= null do
4 v = Pop(Stack) for i = 0, 2, . . . , |T r | do
5 if v is a leaf node then
6 O(v, i) = i

Cv

, N (v, i) = i;

7 else
8 for j = 0, 2, . . . , i do
9 Oj(v, i) = j

Cv

10 foreach child node u of v do
11 Oj(v, i) = max{Oj(v, i),Oj(u, i− j)}

12 O(v, i) = minj=0,2,...,i Oj(v, i)
13 N (v, i) = j, whereOj(v, i) = O(v, i)

14 if O(r, |T |) ≤ 100% then
15 PostOrder traverse the Covering tree and push node into

Stack
16 while Stack 6= null do
17 v = Pop(Stack)
18 len(v) =

len(Parent(v)) +N (v, |T | − len(Parent(v)))
19 Br

v = {T r
i | |T r| − 1− len(v) ≤ i <

|T r | − 1− len(Parent(v))}

The input of Algorithm Opt-Cover() is the set of bits that
have to be checked for traffic from an ingress router, and
the output is the delegated bits on each router. Basically,
Algorithm Opt-Cover() first traverses from leaf nodes to root,
following a dynamic programming structure. After computing
the optimal cover, if the Min-max utilization is larger than
100%, then there does not exist a feasible solution. else the
algorithm traverses from the root to leaf nodes and computes
the delegated bits on each node.

Theorem 1: The complexity of Algorithm Opt-Cover() is
O(|V | × (|T r|2)).

Proof: Stack has less than|V | nodes initially. The
number of loops in line 4 and line 8 is less than|T r|. The
number of loops in line 10 is bounded by a constant.

The complexity of Opt-Cover() is low, and linearly increases
with V . Thus the algorithm adapts to large scale network.

C. Distributing the Optimal Covering Scheme
Configuring the delegated bits on all routers is almost

impossible for a large scale network, we need a distribution



mechanism. Computed results should be distributed from
ingress router towards egress routers. During setup time, the
ingress router should first check all bits, and compute the
optimal covering scheme. Then it will send the scheme to
its children along the covering tree rooted at itself. The child
receives the scheme, checks all bits except the delegated bits of
its ancestors, then sends an acknowledgement (ACK for short)
to its parent. After the parent receives ACKs from all children,
the parent will check the delegated bits of the optimal covering
scheme. The children will recursively repeat this process until
egress routers receive the scheme.

Continue the example in Fig. 3, routera first checks all
three bits, and passes the optimal covering scheme tob. b sets
its delegated bits be1st and 2nd bits and send ACK toa. a
receives the ACK, and sets its delegated bits be0th bit. At the
same time,b will send the optimal covering scheme to router
c and e. c and e set their delegated bits be2nd bit and send
ACKs to b. After receiving ACKs from bothc and e, b will
set its delegated bits be1st bit.

When topology changes, e.g., links/nodes fail, the upstream
routers of the changed links/nodes should check all bits except
the delegated bits of their ancestors. Thus malicious traffic
will be filtered before arriving at the changed links/nodes.
When ingress router finds the changes, it first checks all bits,
computes the new optimal covering scheme, and repeats the
distribution process.

Theorem 2: At any time, all bits will be covered by the
covering tree.

Proof: If the covering tree only has one level, i.e., only
one router, it will check all bits at any time. Suppose a covering
tree that hask levels can cover all bits at any time. Then if a
covering tree hask+1 levels, before the root router receives all
ACKs from its children, root router will check all bits. During
the time, all sub-trees, that root at its children and have less
thank + 1 levels, will cover all bits other than delegated bits
of the root router. Thus when root router receives all ACKs
and only checks the delegated bits, the covering tree can still
cover all bits.

We can distribute the delegated bits across routers based
on the extension of OSPF [23]. The protocol works in a
similar way with OSPF, that has to re-distribute the link state
database when topology changes. All control messages can
be piggybacked in the extension of OSPF control messages.
Thus our scheme will not increase the number of exchanged
messages between routers.
D. Discussions on some practical issues

Configuration Cost: Our scheme may raise concerns re-
garding additional configuration cost. We have designed a
light-weight protocol to distribute the covering scheme (Sec-
tion IV-C); so we need to maintain a blacklist on the border
router, and the configuration complexity is the same with
traditional mechanism.
Topology and Filter Changes:Network paths are normally
stable (topology changes daily [13]). In the case where the
border router has to re-compute and distribute a new covering
scheme, it may introduce congestion for a short period of time.

In practice, we believe this is tolerable for current routers.
Filters, or blacklist, changes more frequently. To prevent
oscillation when the filter set changes, we set the total bit
set (which should be checked) to be all bits in source address.

V. PERFORMANCEEVALUATION

A. Simulation Setup
Opt-Cover() is the key component of the mechanism that we

designed. We evaluate the performance of the algorithm using
both BRITE [1] generated topologies and real topologies. A
case study on CERNET2 will be discussed in the next section.

1) BRITE Topology: We generate topologies with routers
from 100 to 500. The average number of links per new router is
set to be 2 to 10. We allow the most specific IP source address
filtering, thus we set the number of bits that will be checked to
be 32 (for IPv4). On each router, we set the capacity constraint
to be 4 to 64. According to [9][5], we set the number of border
routers to be 2 to 20. Among the border routers, we randomly
select one as ingress router, and others as egress routers. We
set the maximum depthk to be infinity, i.e., malicious traffic
should be filtered inside the network. The default value and
other parameters are in Table III.

TABLE III: Parameter table of brite-generated topologies

No. Routers α / β Placement links/new router
300 0.15/0.2 Random 3

Mode Model No. Border Routers k

Router Only Waxman 5 +∞

TABLE IV: Parameter table of real topologies

No. Routers No. Edges Avg. links/new router
CERNET 110 238 2.16
AS 1221 104 151 1.45
AS 1239 315 972 3.09
AS 3257 161 328 2.04
AS 6461 128 372 2.90

2) Real Topology: We obtain the real topology of CERNET,
which is a medium-scale IPv4 network with 110 routers and
238 links. We also obtain four real topologies (AS 1221, AS
1239, AS 3257, AS 6461) from Rocketfuel [19]. The details
of real topologies are in Table IV.

We set ingress-base filtering as a benchmark for comparison.
Our evaluation metric is the Min-max utilization (utilization
for short) on all routers. The results are averaged by 100
independent and random experiments.

B. Simulation Results

Fig. 4 shows the relation between utilization and network
size and compares Opt-Cover() with ingress-based filtering.
We set the number of routers to be 100 to 500. In Fig. 4, we see
that the utilization of Opt-Cover() decreases with networksize.
For example, when the network has 100 nodes, the utilization
is 39.65%, when the network has 500 nodes, the utilization
decreases to be 29.74%. This is because when the network
size increases, the path from ingress to egress router becomes
longer, thus more routers will share the load. Compared to
ingress-based filtering, the utilization of Opt-Cover() ismuch
lower. The utilization of Opt-Cover() stays below 40%, on
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Fig. 4: Utilization as a function of network size.
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Fig. 5: Utilization as a function of network degree.

5 10 15 20
20

30

40

50

Number of Border Routers

U
til

iz
at

io
n(

%
)

 

 

Opt−Cover

5 10 15 20
145

150

155

160

U
til

iz
at

io
n(

%
)

 

 

Ingress−based

Fig. 6: Utilization as a function of number of border routers.
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Fig. 7: Utilization on real topologies.

the contrary, the utilization of ingress-based filtering stays
around 155% (here, we do not put limit on router capacity,
i.e., utilization can exceed 100%). Actually, the ingress-based
filtering is insensitive to network topology, including number
of border routers, this is obvious because the ingress router
takes all responsibility for filtering malicious traffic.

Fig. 5 shows the relation between utilization and network
degree (links/(new router)). We see that the utilization ofOpt-
Cover() increases with network degree, this is because the path
from ingress to egress becomes shorter when degree increases.
However, considering the average degree of Internet is less
than 3 (links/(new router)) [19][7], we believe that essential
benefits can be obtained from our mechanism.

In Fig. 6, we study the impact of number of border routers
on utilization. We see that the utilization of Opt-Cover()
increases with the number of border routers. When there are
20 border routers, the utilization reaches almost 50%. This
is because in Opt-Cover(), all paths from ingress to egress
routers have to cover the bits that should be checked, thus
more paths lead to more constraints on the optimal solution.
However, according to [9], most networks have less than 10
border routers, thus our conclusion is the same as Fig. 5.

Fig. 7 shows the utilization of Opt-Cover() and ingress-
based filtering under different topologies. The results are
similar with results on BRITE generated topologies. Under all
topologies, Opt-Cover() performs much better than ingress-
based filtering. And the performances of Opt-Cover() on
different topologies are related to the size and degree of
topologies. For example, AS 6461 has only 128 nodes while
the degree of it is almost 3.0, thus the utilization of Opt-

Cover() on AS6461 is the highest (35.78%).
Note that we compute the average utilization based on

multiple experiments. On average, our algorithm is much
better than ingress-based filtering. Although our algorithm
may not perform so well under some topologies, such as
topologies that ingress router is adjacent with some egress
routers. However, we believe that there exists a wide range of
application for our mechanism.

VI. A C ASE STUDY

We conduct a case study with the real topology information
of CERNET2. CERNET2 has two international exchange
centers connecting to the foreign Internet, Beijing (CNGI-
6IX) and Shanghai (CNGI-SHIX). We want to block malicious
traffic between CNGI-6IX and CNGI-SHIX along a pre-
defined path, i.e.,{Beijing, Tianjin, Jinan, Hefei, Nanjing,
Shanghai}. Each router has limited capacity, as shown in Fig. 9
(the top bar), estimated based on performance data of routers.

Traditional source filtering places the filters either in Beijing
or Shanghai, and needs to check 128 bits (CERNET2 is an
IPv6 network) in source addresses. The additional burden
exceeds the left capacity. And the maximum utilization across
all routers reaches 160% when filters are place in Beijing.

Fig. 9 (the bottom bar) shows the results computed by Opt-
Cover(). Out of 128 bits, the routers check at most 40 bits (on
the router in Shanghai) in source addresses. The maximum
utilization is only 36.11%, on the router in Tianjin.

Considering the control overheads, in Figure 10, we plot
the estimated number of re-computations, which will consume
CPU resources on routers and cause re-distribution of new
optimal covering scheme (see Section IV-C), using the real
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Fig. 9: Capacity of each router, and number of additional bits that
each router has to check in source addresses.

data traces (topology changes during four months in 2010)
from CERNET2. The maximum number of re-computations
can reach several hundreds in one day. However, because the
complexity of Algorithm 1 is low (it cost less than 1ms for
one computation within CERNET2 topology, according to our
experiments on our PCs with Intel Core i3 CPU 2.4GHz and
2.0G Memory), and re-distribution of new optimal covering
scheme is piggybacked in OSPF messages. Considering the
CPU utilization of CERNET2 routers is lower than 10%, we
believe that the additional control overheads of our scheme
are bearable within CERNET2.
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Fig. 10: Number of re-computations

VII. C ONCLUSION AND FUTURE WORK

In this paper we proposed a new cooperative filtering mech-
anism. Our scheme reduced the number of accesses to memory
through cooperatively lookup by multiple routers along the
path that packets traverse. We formulated the problem as
finding a cooperative scheme such that the loads across routers
are balanced, and guaranteeing the correctness by constraining
that all bits should be checked when traversing the network.
Through simulation, we showed that the Min-max utilization
can be largely reduced through our mechanism.

There can be many future studies. We will conduct more
comprehensive studies on the benefits that our mechanism will
bring, including speeding up lookup process and reducing total
delay. Beside, we will study the potential damages from letting
malicious traffic penetrating into a network.
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