
IP Fast Reroute: NotVia with Early Decapsulation
Qing Li∗, Mingwei Xu∗, Qi Li∗, Dan Wang† and Yong Cui∗

∗ Dept. of Computer Science, Tsinghua Univ., Tsinghua National Laboratory for Information Science and Technology
† Dept. of Computing, The Hong Kong Polytechnic Univ.

Email: {liqing, xmw, liqi, cuiyong}@csnet1.cs.tsinghua.edu.cn, csdwang@comp.polyu.edu.hk

Abstract—Network survivability is an important topic for the
Internet. To improve the performance of the Internet during
failure, IP Fast Reroute (IPFRR) mechanisms are proposed to
establish backup routes for failure-affected packets. NotVia, a
most prominent one, provides 100% protection coverage for
single-node failures. However, it brings in nontrivial computing
and memory pressure to routers with special NotVia addresses,
in which only some are necessary for a specific router. Besides,
the protection path of NotVia is 20% longer than the optimal
path on average.

In this paper, we propose early decapsulated NotVia (ED-
NotVia) handling the aforementioned problems and thus mak-
ing NotVia more practical. We first analyze the properties
of necessary NotVia addresses to any specific node. Then we
develop a heuristic Nec-NotVia Algorithm for a node to find
the necessary NotVia addresses and compute routes for them,
where unnecessary addresses are eliminated. Based on this elim-
ination, early decapsulation is imported to optimize the protection
path with marginal overhead. We evaluate our algorithm and
demonstrate the effectiveness of ED-NotVia using topologies from
Rocketfuel and Brite. The results show that 1) only 5% to 20%
of SPT(Shortest Path Tree)-related NotVia addresses (1.23% to
6.41% of all the NotVia addresses) in an AS are necessary for a
node; 2) by computing the routes for 15% to 40% SPT-related
NotVia addresses, ED-NotVia provides 98% protection coverage;
and 3) the protection path stretch ratio of ED-NotVia is only 1.03
on average as compared to 1.20 for NotVia.

I. INTRODUCTION

In order to provide high-quality transport service for all
kinds of web applications, IP routing is thus designed for
robust operation in case of changing network states. However,
these IP routing protocols take on the order of a few hundred
milliseconds or even tens of minutes to re-converge [1–3].
Recent large-scale deployments of delay and loss-sensitive
applications, such as (VoIP), streaming media, gaming, and
telecommuting/video, have led to stringent demands on the
Internet routing [4]. ISPs hence have strong incentives to
improve the Internet survivability.

IPFRR can provide resilience in the event of a failure by
quickly (less than 50ms) rerouting traffic to pre-computed al-
ternates. By computing backup routes beforehand and handling
failures locally, IPFRR can reduce the disruption time as short
as the failure detection time and meanwhile suppress transient
failures to improve routing stability [5–7].

However, current IPFRR mechanisms cannot meet ISPs’
requirements. Loop-free alternate (LFA) [8] is lightweight,
but it provides only 30-40% protection coverage. Tunnel [9]
provides a high protection coverage but requires too much
computing to find tunnel ends. Compared with LFA and
Tunnel, NotVia [10] can provide 100% protection coverage for

single-node failures. However, it meanwhile brings nontrivial
computing and memory overhead to maintain a set of routes
for special NotVia addresses.

A practical IPFRR mechanism has two important features:
first, it should be lightweight: bring in as little overhead as
possible and react rapidly to failures; second, it should have an
excellent performance including a higher protection coverage
and a shorter protection path. In this paper, we propose ED-
NotVia, an intra-domain IPFRR mechanism, which meets
these two requirements well.

We analyze the properties of necessary NotVia addresses
to any specific node R. According to our analysis, only
those special and related (see below in section III) NotVia
addresses are necessary to R. According to the properties, we
propose a heuristic Nec-NotVia Algorithm for R to find those
necessary NotVia addresses and compute routes for them, so
than unnecessary NotVia addresses are completely eliminated.
Based on this elimination of unnecessary NotVia address, early
decapsulation is introduced to optimize the protection path
with marginal overhead.

An Example. Before exposition, we illustrate our ED-
NotVia using an example in Fig. 1. In total, eighteen (as
the same as the number of unidirectional links [6]) NotVia
addresses exist in the small AS. To R, only TF (to T not
via F), DG and HT are necessary. If F fails, in NotVia the
protection path from S to D is S→R→G→H→T→H→D.
With early decapsulation introduced, ED-NotVia has a much
shorter protection path S→R→G→D. Because route(G,D)
is not via F , G can decapsulate the received TF packets and
forward them by its ordinary Forwarding Information Base
(FIB). G makes the decision of early decapsulation according
to the fact that TF does not exist in its NotVia FIB.

S

F
T

D

3

default link cost: 1

R

H

G

3 2 2

2

Fig. 1. An example of ED-NotVia.

The above example is not special; from analysis and exper-
iments, we find that the ratio of necessary NotVia adddresses
is quite small, especially for large topologies. We demonstrate
the effectiveness of ED-NotVia by simulation based on topolo-
gies from Rocketfuel [11] and Brite [12]. The results show:

• Only 5%-20% of SPT-related NotVia addresses (1.23%-
6.41% of all the NotVia addresses) are necessary. With
all the unnecessary ones eliminated, the average amount

of NotVia addresses for each node has an upper limit of
about 40 no matter how large the AS is.

• The proposed algorithm Nec-NotVia makes a tradeoff
between protection coverage and computing overhead by
configuring parameter, ratio-p. By computing the routes
for 15% to 40% SPT-related NotVia addresses, ED-
NotVia provides 98% protection coverage.

• With early decapsulation adopted, the protection path
stretch ratio of ED-NotVia is only about 1.03 (compared
with 1.20 for NotVia) on average, which means it allevi-
ates NotVia’s protection path stretch by 85%.

The remaining part of the paper is organized as follows.
In the next section, we further describe NotVia and some
improvements over it. And then, in Section III, we introduce
the details of ED-NotVia. Section IV involves the evaluation
results, which show the performance of ED-NotVia. Finally,
we conclude our paper in Section V.

II. BACKGROUND AND RELATED WORK

When a failure occurs, the failure adjacent routers cannot
tell it is a node or link failure. In NotVia, to cope with the worst
case, the adjacent router (or the protection source node) would
regard it as a node failure and attempt to find a protection
path for it. Fig. 1 shows an example of NotVia. F is the
failed node, S is upstream node of F and T is the next next
hop (NNHOP) of route(S,D). If F fails, then the protection
source node (PSN) S would encapsulate the packet to D
using a special NotVia address TF (to T not via F). When
T receives this packet packet, T decapsulates it and routes
it to D. The protection path is S→R→G→H→T→H→D.
Compared with other mechanisms such as LFA [8], U-Turn
[13] and Tunnel [9], NotVia is excellent that it provides 100%
protection coverage for single-node failures. However, some
serious limitations block it from practical deployment.

As shown in Fig. 1, nodes along the protection path from
S to T have to keep an entry for the address TF in their
NotVia FIBs. As there is no efficient way for a node (R for
example) to tell whether itself is on the protection path of TF ,
R has to maintain an entry for TF . And the amount of TF -
like NotVia addresses in an AS is the same as the number
of the directed links [6], introducing nontrivial computing
and memory overhead. Besides, the protection path contains
a transient loop (H , T , H), increasing the protection path
stretch of NotVia. In fact, when a TF packet arrives at G, the
failure has already been bypassed and G can decapsulate this
TF packet.

There are some works that focus on improving NotVia’s per-
formance. In [6], Li, et al., introduce the NotVia aggregation
and prioritization techniques to reduce the computing costs
and the forwarding table entries dedicated to maintaining the
NotVia state. However, the aggregation approach can reduce
only part of the unnecessary NotVia FIB entries and the
algorithm they propose cannot guarantee protection coverage.
In [14], Enyedi, et al., propose lightweight NotVia using the
concept of redundant trees [15]. Lightweight NotVia signifi-
cantly decreases the number of Not-via addresses. However,

in this mechanism, the PSN requires to forward two copies
of one packet to NNHOP by two different routes, and other
nodes along the two different protection paths has to forward
the received packets by different routes too. It is possible that
one of the two copies will not arrive at NNHOP and it is also
possible that both of the copies will arrive at NNHOP. This
approach would aggravate network congestion during failure
by wasting bandwidth. And if NNHOP receives both of the
two copies, it should drop one after the decapsulation (a record
is required). To be brief, light NotVia does an excellent job
on decreasing NotVia addresses, but it also introduces new
problems.

III. ED-NOTVIA

In this section, we first discuss the elimination of unnec-
essary NotVia entries and the early decapsulation of NotVia
packets separately, and then provide a practical and novel
approach to combine them together. Finally, we show our
algorithm for any node in an AS to find all necessary NotVia
addresses and compute backup routes for them.

A. NotVia FIB Shrink

Without any improvement, the number of entries in NotVia
FIB is equal to the number of unidirectional links in the AS
[6], which is intolerable. In this part, we propose the Condition
RS (related and special), according to which NotVia FIB of R
can be shrunk completely.

Definition 1. TF is special to R: if the next hop of
route(R, TF) is the same with the next hop of route(R, T),
TF is ordinary to R; else, TF is special to R.

If TF is ordinary to R, it is obvious that R does not require
TF entry. When receiving a TF packet, R can forward it
according to T entry in its general FIB. (Here we assume that
T is inferrable from TF . Actually our mechanism does not
require this inference, which we will explain later.) However,
the fact that TF is special to R does not mean R requires
TF . For example, in Figure 2, TF is special to R, but TF is
unnecessary for R, because R never receives TF packets if F
actually fails.

R S

A

F T

C

D

2

2

default link cost: 1

Fig. 2. TF is special to R, but R does not require TF entry.

Definition 2. TF is related to R: if for each PSN S,
route(S, TF) is not via R, TF is unrelated to R; else, TF

is related to R.

According to the above definitions, we conclude that TF

is necessary for R if and only if TF is related and special
(Condition RS) to R. If TF is related to R, R will receive
TF packets when F actually fails; meanwhile, if TF is special

to R, R cannot forward TF packets to T without TF entry.
Therefore, if a NotVia address satisfies Condition RS, R
computes a route and save a NotVia entry for it; otherwise R
does nothing for it. When receiving a TF packet, R forwards
it by the NotVia entry if the entry exists in its NotVia FIB; if
not, R forwards the packet by T entry in its ordinary FIB.

B. Early Decapsulation

Before delving into the details of early decapsulation of
NotVia packets, we review the protection path stretch and
decapsulation bottleneck problems of NotVia. Note that if
route(R, TF) and route(T,D) have some common nodes
except T , there will be a transient loop in the protection
path [10]. For example, in Fig. 3, the protection path is
S→X→Y→Z→A→T→A...D, which is not the best choice.
Besides, T requires to decapsulate all the TF packets, which
is a bottleneck of forwarding speed. For example, in Fig. 3,
TF packets encapsulated by S, B and P are all decapsulated
by T , which may incur nontrivial overhead on T .

X

S F T

Y

D

3

2

Z

A

B C

P M

4

default link cost: 1

Fig. 3. Protection path stretch and decapsulation bottleneck of NotVia

However, both the above problems can be solved by early
decapsulation of NotVia packets. As shown in Fig. 3, if Y
or M receives a TF packet, they can decapsulate the packet
and forward it according to their ordinary FIBs. Because both
route(Y,D) and route(M,D) are not via F , which means
that the failure has been bypassed when the protection packet
arrives at Y or M . If early decapsulation is adopted, the
TF packets from S and P would be decapsulated before
reaching T , and only the TF packets from B still require
T to decapsulate. Protection path stretch gets alleviated and
decapsulation bottleneck problem does not exist any more.

C. ED-NotVia Framework

In this part, we provide a practical and novel approach to
combine NotVia FIB shrink and early decapsulation together.

Once R makes the decision of early decapsulating a TF

packet by checking whether F is on route(R,D), R requires
to get the destination D in the payload of the TF packet and
compute route(R,D), which affects forwarding speed and
meanwhile is unpractical because of the computing overhead.
Here, we propose another approach for R to determine whether
to decapsulate a received TF packet. Still assuming that F and
T are inferrable from the NotVia address TF , we provide the
below condition for R to early decapsulate a TF packet:

cost(R, T) < cost(R,F) + cost(F, T)

The condition means that route(R, T) is not via F , from
which we can infer that route(R,D) is not via F either:

cost(R,D) ≤ cost(R, T) + cost(T,D)

< cost(R,F) + cost(F, T) + cost(T,D)

= cost(R,F) + cost(F,D)

Note that the condition that route(R, T) is not via F is a
similar to the condition that TF is ordinary to R. The former
means route(R, T) and route(R, TF) are same, and the latter
means they have the same next hop. According to this, we
combine NotVia FIB shrink and early decapsulation together.

Assuming that R has shrunk its NotVia FIB according to
Condition RS, when receiving a TF packet, R processes it
as follows (this approach avoids using T or F to make the
decision of early decapsulation):

1 If the packet is a NotVia protection packet, go to step
3; else go to step 2.

2 Forward the packet according to the ordinary FIB.
3 Look up the NotVia FIB, if the prefix does not exist,

decapsulate it and switch to step 2; else, forward the
packet by the entry found in the NotVia FIB.

Mostly, this approach works with no problem. Although
this may introduce the re-encapsulation problem, it would not
cause loops. For example, in Fig. 4, TF is ordinary for R,
and R does not save TF entry in its NotVia FIB. When R
receives a TF packet (the original destination is D) from S, R
decapsulates it and forwards the D packet to S according to its
ordinary FIB. Once S receives this packet, it will encapsulate
it with TF address again if F actually fails.

R S F T

D

S'

P

default link cost: 1

2

3

3 3

R

S

F

T
D

S'

P

3 3

R's SPT

Fig. 4. An example of re-encapsulation

There are two ways to handle the re-encapsulation problem:
• Make Definition 1 a little more stringent: TF is ordinary

to R if and only if route(R, TF) is the same with
route(R, T) (not just the next hop). With a very few
extra NotVia entries added in the NotVia FIB, the re-
encapsulation problem does not exist any more.

• Ignore this problem: the probability of re-encapsulation is
very low in real situation. Because if it is the link between
S and F (not the node F) that fails, the re-encapsulation
problem does not exist either; and more than 70% of
failures are single-link failures [16].

Both approaches are acceptable and we believe how to
choose is an implementation-specific issue. In this paper,
we choose the second one because of the following three
reasons. First, as we mentioned above, the re-encapsulation
probability is very low in real application scenarios. Most of
decapsulation would not cause re-encapsulation. Second, the
second method can provide more complete NotVia Forwarding
Information Base (FIB) shrink. Third, meanwhile the most
important, early decapsulation optimizes the protection path

if it is a link failure (more than 70% of failures are single-
link failures [16]). For example in Fig. 4, if link(S′, F) fails,
without early decapsulation the protection path for packets
to D from S′ would be S′→R→S→P→T...D (cost: 10);
by introducing early decapsulation, the protection path is
S′→R→S→F→T...D (cost: 7).

We have shown the major structure of ED-NotVia and the
remaining problem is to design an algorithm for R to find those
necessary NotVia addresses and compute routes for them.

D. Nec-NotVia Algorithm

1) Key Protection Source Node: If T is not the child of
F in the SPT of R, then TF is ordinary to R. Therefore, we
ignore this kind of unnecessary NotVia addresses and only
focus on those SPT-related NotVia addresses.

To determine whether TF is related to R, R requires to
verify whether itself is on any of the protection paths from
all PSNs (all F ’s neighbors excluding T) to TF , with each
protection path requiring one time SPT calculation. In this
part, we give the definition of key-PSN and prove that: if the
route from key-PSN to TF is not via R, R does not require
the TF entry. With early decapsulation, this simplification
can still guarantee that the TF packet will be routed to the
destination without loops and mostly the protection path would
be optimized closer to the shortest path.

Definition 3. To R, the key-PSN (key protection source node)
for TF is the upstream node of F in the SPT of R.

Assuming that S is the key-PSN and S′ is any other general
PSN for TF (for example, in Fig. 4), if R is on route(S, TF),
R saves TF entry and no problem comes out; otherwise, R
does not save TF entry. And when receiving a TF packet,
R would decapsulate it and restore its original destination.
Actually, three possibilities exist after the decapsulation:

• route(R,D) is not via F . So early decapsulation is the
best choice, which is proved in the above subsection.

• F is on route(R,D), but it is the link between S′ and F
(not the node F) that fails. If so, the early decapsulation
is also the best choice for the packet. For example, in
Fig. 4, if D is the original destination and link(S′, F)
fails, the TF packets from S′ are decapsulated by R and
the protection path is optimized a lot.

• route(R,D) is via F and F actually fails. If so, after
the early decapsulation, the packet would be routed to S,
which is the key-PSN of R for TF . And then S would re-
encapsulate it as a TF packet. Anyway, the packet would
reach the destination. Fig. 4 is a specific example.

For the worst case, this simplification causes nothing more
than re-encapsulation, which we have proved is not a big issue.
In fact, 70% of the failures are single-link failures, only 16.5%
are single-node failures, and others are multiple failures [16].
Therefore, in most cases, this simplification not only makes it
easier for R to decide whether TF is related to itself but also
optimizes protection paths.

2) Algorithm Design: According to the discussion above,
R can decide whether TF is necessary to itself by verifying
whether the route from key-PSN to TF is via itself.

Intuitively, the further F is from R, the less possi-
ble TF is necessary for R. Assuming that route(R,F) is
R→Rk→Rk−1...R2→R1→F and di is the degree of Ri,
if R receives the TF packet from R1 (key-PSN), it means
route(R1, TF) is R1→R2...Rk−1→Rk→R...TF . We suppose
the probability that Ri forwards a TF packet to Ri+1 is 1/di.,
then the probability that R receives the TF packet from R1

is 1/
∏

di. So a threshold ratio-p (p for short) can be set
to guarantee the protection coverage. If 1/

∏
di < 1 − p, R

would not compute a route for TF , because the possibility that
route(key-PSN, TF) traverses R is low enough. For example,
assuming that p is set to 0.95, when

∏
di > 20, the possibility

that TF is necessary to R is less than 0.05, and then R would
not save the TF entry.

Algorithm 1 Nec-NotVia
Input: a node R, the SPT of R T and parameter p
Output: the routes of necessary NotVia addresses

1: if 0 < p < 1 then D ← 1/(1− p)
2: else D ← +∞
3: end if
4: root← T .root, root.d← 1
5: for all ch ∈ root.children do
6: ch.d← ch.degree, insert(ch,Ω)
7: end for
8: while Ω ̸= ∅ do
9: F ← delete(Ω), NV routes← iSPFNV(T , F)

10: for all Q ∈ F.chilren do
11: QF route← get(NV routes,Q)
12: if QF route.nexthop ̸= Q.nexthop then
13: NotV iaTable.add(QF route)
14: end if
15: if F.d ≤ D then
16: Q.d← F.d×Q.degree, insert(Ω, Q)
17: end if
18: end for
19: end while

Algorithm 1 is designed for R to find out all necessary
NotVia addresses and compute routes for them. This algorithm
traverses the SPT of R in the post order. When obtaining some
node (F), the algorithm would take it as a failed node and
compute the backup routes from R to all the children of F (T
for example) if TF is related to R according to p.

For each failed node F , one time of iSPFNV is required.
Given R’s SPT T and the failed node F , assuming that F
fails, iSPFNV, which is revised from iSPF [17], computes the
routes from R to all children of F .

IV. PERFORMANCE EVALUATION

In this section, we evaluate our ED-NotVia mechanism by
analyzing the topologies collected by the Rocketfuel project
[11] and generated by the Brite [12]. For the Rocketfuel data,

the topological characteristics are summarized in Table I. As
the table shows that they have great diversity, we believe our
evaluation can represent different topologies.

TABLE I
TOPOLOGICAL CHARACTERISTICS OF ROCKETFUEL DATA

AS Number #PoP #Router #Link Average degree
AS 1221 15 50 97 3.88
AS 3967 20 72 140 3.90
AS 3257 35 113 279 4.94
AS 6441 21 129 363 5.63
AS 1239 38 284 941 6.63
AS 7018 47 574 2021 7.04

A. Algorithm Validity

To examine the availability and performance of the Algo-
rithm Nec-NotVia, we make a project modified from SSFNET
to analyze the Rocketfuel and Brite data. The results demon-
strate the benefits of our algorithm in several aspects:

• Averagely only a small proportion of NotVia addresses
are actually necessary to some node R in the topologies,
which is shown in Fig. 5. This is the ratio between the
necessary and the SPT-related NotVia addresses of R, and
the ratio between the necessary and all NotVia addresses
would be much lower. Unnecessary NotVia addresses
require no computing and memory, which confirms the
value of our P-NotVia scheme.

• For the Rocketfuel topologies, the actual protection cover-
age is always not lower (mostly much higher) than ratio-p
without exception, as shown in Fig. 8(a). Although this
might not be strictly guaranteed for Brite topologies, it
still works well, as is shown in Figure 9(a).

• The ratio of regarded-as-necessary (RaN) NotVia ad-
dresses is very low, especially for large ASs. Among these
RaN NotVia addresses,there are some wrongly regarded-
as-necessary address (W-RaN) addresses. Take As shown
in Fig. 8(b), even if the ratio-p is set as 0.98, only about
10% of SPT-related NotVia addresses are regarded as
necessary; and only 15% of these RsN NotVia addresses
are not necessary actually. (At the same time, higher than
98% protection coverage is achieved).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

N
ec

. N
ot

V
ia

 A
dd

r.
 R

at
io

Topo. size

Necessary NotVia Address Ratio

Rocketfuel
Brite Topo

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600

N
ec

. N
ot

V
ia

 A
dd

r.
 A

m
ou

nt

Topo. size

Necessary NotVia Address Amount

Rocketfuel
Brite Topo

Fig. 5. Necessary NotVia addresses ratio and amount.

B. Protection Path Length Stretch

ED-NotVia is far better than NotVia on path length stretch
(the ratio between the protection path and the optimal shortest
path). Fig. 6 and Fig. 7 show the results from the topologies
of both Rocketfuel and Brite.

As the earlier decapsulation is brought in, the protection
path of ED-NotVia is much shorter than that of NotVia. For
ED-NotVia, the protection path length stretch is either about
1.05 or much less than 1.05, which means the protection path
of ED-NotVia is extremely close to the shortest path after the
failure. This is a big improvement for NotVia.

 1
 1.02
 1.04
 1.06
 1.08
 1.1

 1.12
 1.14
 1.16
 1.18
 1.2

1221 1239 3257 3967 6461 7081

S
tr

ec
th

 R
at

io

AS NO.

Protection Path Length Strecth

NotVia
ED-NotVia

Fig. 6. Protection Path Length Strecth - Rocketfuel

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

100 200 300 400 500 600

S
tr

ec
th

 R
at

io

of Nodes

Protection Path Length Strecth

NotVia
ED-NotVia

Fig. 7. Protection Path Length Strecth - Brite

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented ED-NotVia, which is a
great improvement over NotVia. This mechanism provides
higher protection coverage than LFA and is much more
lightweight than Tunnel and NotVia. Compared with other
improvements of NotVia ([6] and [14]), ED-NotVia is better in
three aspects: first, it reduces NotVia addresses dramatically;
second, it brings in the early decapsulation with marginal
overhead, alleviating the path stretch of NotVia by 85%; third,
we proposed a heuristic and flexible algorithm for a node to
find necessary NotVia addresses and compute backup routes
for them.

We believe that ED-NotVia is a practical approach to
enhance the intra-domain network reliability. It can effectively
reduce packet drops and network congestion during failure.
However, ED-NotVia still does not support incremental de-
ployment at the router level, just like NotVia. We are planning
to work on this problem to make ED-NotVia more practical
as the next step.

VI. ACKNOWLEDGMENT

This work is supported by the National Basic Research
Program of China (973) with No. 2009CB320502, the Na-
tional High-tech R&D Program of China (863) with No.
2009AA01Z251, the National Science & Technology Pillar
Program of China with No.2008BAH37B03, Hong Kong
PolyU/GY-G78, A-PB0R, A-PJ19, 1-ZV5W, and RGC/GRF
PolyU 5305/08E.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

ac
tu

al
 p

ro
te

ct
io

n
co

ve
ra

ge

ratio-p

Actual Protection Coverage

AS1221
AS1239
AS3257
AS3967
AS6461
AS7018

(a) Actual Protection Coverage.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

R
aN

 r
at

io

ratio-p

Regarded-as-Necessary Ratio

AS1221
AS1239
AS3257
AS3967
AS6461
AS7018

(b) Regarded-as-necessary (RaN) ratio.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

W
-R

aN
 r

at
io

ratio-p

W-RaN ratio

AS1221
AS1239
AS3257
AS3967
AS6461
AS7018

(c) Wrongly-RaN ratio.

Fig. 8. The verification of our algorithm based on Rocketfuel Topologies. (a) Actual protection coverage is always much higher than ratio-p, guaranteeing
the validity of our algorithm. (b) RaN ratio is very low while compared with the protection coverage our algorithm achieves. (c) W-RaN ratio is less than
20% with 98% protection coverage, which means less computation is wasted.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

ac
tu

al
 p

ro
te

ct
io

n
co

ve
ra

ge

ratio-p

Actual Protection Coverage

100
200
300
400
500

(a) Actual Protection Coverage

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

R
aN

 p
er

ce
nt

ratio-p

Regarded-as-Necessary Ratio

100
200
300
400
500

(b) RaN ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.6 0.7 0.8 0.9 1

W
-R

aN
 r

at
io

ratio-p

W-RaN ratio

100
200
300
400
500

(c) W-RaN ratio

Fig. 9. The verification of our algorithm based on Brite topologies, which respectively contain 100, 200, 300, 400 and 500 nodes but are with the same
average degree of 6. The results can be explained in the same way as Fig. 8

REFERENCES

[1] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed
Internet Routing Convergence,” in Proc. SIGCOMM ’00, Stock-
holm, Sweden, Aug. 2000.

[2] G. Iannaccone, C.-N. Chuah, S. Bhattacharyya, and C. Diot,
“Feasibility of IP restoration in a tier 1 backbone.” IEEE
Network, vol. 18, no. 2, pp. 13–19, 2004.

[3] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achiev-
ing sub-second IGP convergence in large IP networks,” SIG-
COMM CCR, vol. 35, no. 3, pp. 35–44, 2005.

[4] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson,
S. Shenker, and I. Stoica, “Achieving Convergence-free Routing
Using Failure-carrying Packets,” in Proc. SIGCOMM’07, Kyoto,
Japan, Aug. 2007.

[5] M. Shand and S. Bryant, “IP Fast Reroute Framework,” RFC
5714, Jan. 2010.

[6] A. Li, P. Francois, and X. Yang, “On Improving the Efficiency
and Manageability of NotVia,” in Proc. CoNEXT’07, New York,
NY, Dec. 2007.

[7] A. Raj and O. C. Ibe, “A Survey of IP and Multiprotocol Label
Switching Fast Reroute Schemes,” Comput. Netw., vol. 51,
no. 8, pp. 1882–1907, 2007.

[8] A. Atlas and A. Zinin, “Basic Specification for IP Fast-Reroute:
Loop-free Alternates,” RFC 5286, Sep. 2008.

[9] S. Bryant, C. Filsfils, S. Previdi, and M. Shands, “IP Fast

Reroute Using Tunnels,” Internet Draft, draft-bryant-ipfrr-
tunnels-03, Nov. 2007.

[10] M. Shands, S. Bryant, and S. Previdi, “IP Fast Reroute Using
Not-via Addresses,” Internet Draft, draft-ietf-rtgwg-ipfrr-notvia-
addresses-05, Mar 2010.

[11] Rocketfuel: An ISP Topology Mapping Engine, http://www.cs.
washington.edu/research/networking/rocketfuel.

[12] BRITE Project, http://www.cs.bu.edu/brite/index.html.
[13] A. Atlas, R. Torvi, G. Choudhury, and D. Fedyk, “Ospfv2

extensions for link capabilities to support u-turn alternates
for IP/LDP fast-reroute,” Internet Draft, draft-atlas-ospf-local-
protect-cap-02, Feb. 2006.

[14] G. Enyedi, G. Rétvári, P. Szilágyi, and A. Császár, “IP Fast
ReRoute: Lightweight Not-Via,” in Proc. NETWORKING’09,
Aachen, Germany, May 2009.

[15] T. Cicic, A. F. Hansen, and O. K. Apeland, “Redundant Trees
for Fast IP Recovery,” in Proc. BROADNETS’07, Raleigh, NC,
Sep. 2007.

[16] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N.
Chuah, and C. Diot, “Characterization of Failures in an IP
Backbone,” in Proc. IEEE INFOCOM’04, Mar. 2004.

[17] P. Narváez, K.-Y. Siu, and H.-Y. Tzeng, “New dynamic spt
algorithm based on a ball-and-string model,” IEEE/ACM Trans.
Netw., vol. 9, no. 6, pp. 706–718, 2001.

