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Abstract—Video analytics using networked smart cameras has
become a core function for many applications such as surveil-
lance, object detection, AR/VR, etc. In the past years, a number of
architectures have been proposed to organize the computing and
networking resources of the cloud and edge cameras to collec-
tively complete an analytics task, e.g., 3D reconstruction, Multi-
view re-identification, etc. Unfortunately, in many applications,
image sharing can lead to privacy concerns. One example is the
High Definition Map (HD Map) for autonomous driving. An HD
Map has a highly dynamic layer of real-time objects. Vehicles
can collectively contribute videos from their on-board cameras to
construct such a layer, yet the video images can contain private
information, e.g., the plate number of front cars.

In this paper, we propose FEVA, a new FEderated Video
Analytics architecture. Intrinsically, FEVA keeps the video image
data local to the edge for analytics and transmits the analytics
results to the cloud for aggregation. FEVA partitions the video
analytics computing tasks in a way that is privacy-preserving and
maximizes the overall analytics accuracy under the computing
and communication resource constraints of the edge devices.

We show how FEVA can be used in practice by a case
study using FEVA to support a video analytics application on
Multi-View Vehicles 3D reconstruction. We implement FEVA by
extending the open-source platform TensorFlow Federated from
Google. We deploy our case in an environment with four Amazon
DeepLens cameras. Our evaluation shows that FEVA can protect
privacy while effectively increasing the accuracy of the video
analytics application.

I. INTRODUCTION

Recently, we have witnessed that the accuracy of machine
learning models in computer vision improves to become
useful for real-world applications. In these applications, a deep
neural network (DNN) or a convolution neural network (CNN)
model is trained for a certain video analytics task, e.g., face
recognition. Then video analytics applies the pre-trained model
to analyze video images for high accuracy analytics functions.

Real-world applications have diverse requirements and re-
source constraints. For example, many applications require
multiple cameras to collaboratively complete a video analytics
task to solve the problems on limited view scopes, image
missing and errors, low-resolution videos, etc. Typical exam-
ples include 3D Reconstruction [1], Multi-view Object Re-
identification [2], etc. There are also constraints on computing
and communication resources. For example, edge devices,
e.g., cameras, are resource-limited. Several architectures have
been proposed to manage resources, and support application
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requirements, ranging from edge-cloud video analytics [3] to
collaborative video analytics [4].

Unfortunately, in many applications, image sharing can lead
to privacy concerns. One example is the high-definition map
(HD map) developed for autonomous driving [5]. The HD
map is a map overlaid with various information such as
traffic conditions, access ways, etc., with high precision at the
centimetre level and updated frequently. The HD map is a key
for Mobility as a Service, ADAS (Advanced Driver Assistance
System) and autonomous driving. Constructing the HD Map
is a multi-party effort. The on-board cameras in vehicles are
essential to video sources for HD map construction and up-
dates. Nevertheless, video images can contain an HD map with
irrelevant yet privacy-sensitive data, e.g., the plate number.

In this paper, we propose FEVA, a FEderated Video An-
alytics architecture. FEVA is partially inspired by the feder-
ated analytics (FA) framework proposed by Google in May
2020 [6]. FA is a new evolution following the federated
learning (FL) framework. In the FA framework, individual
clients collectively carry out a non-training analytic task, rather
than training a model in the FL, and send derived insights, not
weight updates in FL, to a coordinating server. Though the
newly introduced FA still follows the federation paradigm as
its predecessor, the central aggregation part and local analytics
part in FA calls for careful designs in specific applications.

FEVA is designed to support a specific class of applications
on collaborative video analytics with privacy concerns. FEVA
assumes that a DNN/CNN model has been trained. A video
analytic task, e.g., 3D reconstruction, needs video images from
multiple cameras; yet these cameras have privacy concerns.

We carefully study the video analytic computing task work-
flow and the diverse resource constraints at the edge. In our de-
sign, FEVA keeps video image data local to the edge devices,
and FEVA partitions the video analytics computing workflow
in a privacy-preserving way. FEVA also maximizes the video
analytics accuracy with consideration of the computing and
communication resources at the edge devices.

We show how FEVA can be used in practice by a case study
where we implement the FEVA architecture to support a Multi-
view Vehicle 3D Reconstruction application. We implement
FEVA by extending TensorFlow Federated (TFF), an open-
source federated learning platform developed by Google. We
pre-train four models using two real-world traces on the cloud.
Our experiment uses four Amazon DeepLens cameras for
Multi-view Vehicle 3D Reconstruction. We evaluate the FEVA
performance in comparison with two methods a collaborative
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video analytic method and a privacy masking video analytic
method. FEVA successfully makes approaches to solve two
major challenges in FA that there is no exited architecture
for federated analytics on privacy-preserving video analytics,
and it is necessary to design optimization algorithms for
FEVA resource management and performance. As a result,
we observe that FEVA increases the video analytics accuracy
up to 1.90 times and 1.34 times, respectively.

In summary, the contributions of this paper are:
• We show that a new architecture is necessary by carefully

studying privacy-sensitive video analytics applications
and the limitation of existing architectures (Section II).
We clarify the position of FEVA in the literature.

• We analyze the video analytics computing workflow and
design the FEVA architecture that is privacy-preserving
and resource-efficient (Section III).

• We show how the FEVA architecture can be landed into
practice by a case study on multi-view vehicle 3D recon-
struction with real-world implementation in TensorFlow
Federated and DeepLens cameras (Section IV).

II. RELATED ARCHITECTURE

Video analytics applies pre-trained machine learning mod-
els, e.g., DNN/CNN, to analyze video frames for a specific
analytics task. More specifically, video frames are fed into the
DNN/CNN model, and the computing goes through the layers
in the DNN/CNN model, see Fig. 1(a).

In the past years, several architectures have been proposed
to meet diverse application requirements and resource con-
straints. Video analytics were first conducted in the cloud
to serve video analytics queries [7]. In many applications,
videos are generated in edge devices, e.g., smart cameras.
The computing and communication resources of the edge
devices are limited. Edge-cloud computing architectures [8]
were proposed where the edge devices will conduct initial
computing of a few DNN/CNN layers to reduce the amount of
data transmission, see Fig. 1(a). In some recent applications, a
video analytics task cannot be completed by one single edge
device; and collaborative video analytics architectures were
proposed to coordinate multiple edge cameras [4].

In these architectures, privacy is not an application concern.
Privacy-sensitive applications are emerging. One example is
the HD map for autonomous driving and it is becoming
a killer application. An HD map contains not only static
objects, e.g., roads and signs but also real-time objects, e.g.,
vehicles. The HD map is constructed by diverse industry
players, and a critical player is the vehicles with on-board
cameras. Note that the captured videos contain not only HD
map relevant information, e.g., real-time vehicles in an abstract
object level, but also privacy-sensitive HD map irrelevant
information, e.g., human faces, plate numbers. To the best of
our knowledge, no existing architecture is designed to support
this class of applications: collaborative video analytics with
privacy concerns, such as HD maps. FEVA fills in this gap.

We comment that there are architectures for model training.
In a parameter server (PS) architecture [9], distributed workers
train a DNN/CNN model and exchange model updates (i.e.,
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Fig. 1: The Video Analytic Computing Workflows.

gradients) through a parameter server. The federated learning
architecture [10] can be seen as a PS architecture, yet raw
data will not be exchanged to protect privacy. FEVA differs
since FEVA targets the model inference phase. User inputs
are privacy-sensitive; thus, model training (federated learning)
and model inference (federated analytics) have to be done by
keeping data local. FEVA differs from the Google FA [6] since
FEVA emphasizes on the video analytics applications that have
unique computing workflow.

III. THE FEVA ARCHITECTURE

A. Privacy-preserving Video Analytics Workflow Partitioning

In current privacy-agnostic architectures, the partition of
the video analytics computing task is based on resource
optimization consideration. This can lead to privacy issues.
For example, Fig. 1(b) shows that if the DNN/CNN layers
are partitioned in Fig. 1(a), the intermediate results expose
analytics task-irrelevant (sky and trees) yet privacy-sensitive
(human beings) information. This is because the inference
of the DNN/CNN layers up to this stage is still a binary
image. To solve this problem, we look into the details of a
video analytics computing task workflow and separate it into
two parts: Sensitive Computation and Insensitive Computation.
The separation position is decided by the intermediate results
in each layer of the model. The Sensitive Computation part
is those model layers whose intermediate results are highly
similar to the raw input data, and the Insensitive Computation
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one is those with insight information and cannot be traced
back to raw data. We continue to subdivide the Sensitive
Computation into two steps with practical meaning: frame
preprocessing, features extraction and subdivide the Insensi-
tive Computation into another two steps with features scaling
and features aggregation, see Fig. 1(c). Frame preprocessing
reshapes the images in different sizes into a regular one for
later batch operations. Feature extraction extracts the features
from the images. Intuitively, feature extraction collects the
regions or information of interest that is relevant for solving
the analytics task and outputs several feature fragments in
different shapes and sizes containing critical information from
the raw inputs. Feature scaling normalizes and standardizes
the fragments. Feature aggregation aggregates the regulated
features and returns the analytic results. A key observation
is that the extracted features are only related to the target
of the video analytics task, not to the raw video images.
Consider an example video analytics task of vehicle tracking.
The DNN/CNN model will be pre-trained to identify vehicles.
The extracted features will then be the features of the vehicles.
It will not expose privacy-sensitive data, e.g., pedestrians, in
the video images. Therefore, keeping the feature extraction
step local can effectively preserve privacy as long as the
trained DNN/CNN model does not conflict with individual
privacy concerns.

In this way, privacy-preserving video analytics is trans-
formed into ensuring the privacy policy of an edge device
to have no conflict with the pre-trained DNN/CNN model. If
the video analytics task has a conflict with the local privacy
policy of an edge device, another edge device without privacy
conflict can be chosen; we call the peers that have no privacy
conflict with the video analytics task the privacy-preserving
peers. Clearly, if all peers have privacy conflicts with the
video analytics task, this video analytics task itself would have
been very sensitive and thus cannot be completed. We present
the FEVA architecture given the privacy-preserving peers and
leave it into future work on how such peers can be selected.

B. The FEVA Architecture
We show the FEVA modular architecture in Fig. 2. FEVA

has computing modules that undertake video analytics tasks

and control modules that manage and optimize the resource
constraints in diverse applications.

Intrinsically, the FEVA computing modules partition the
video analytics computing task by a Frame Preprocessing
module, a Feature Extraction module, a Feature Scaling mod-
ule in the edge and a Feature Aggregation module in the cloud.

The FEVA control modules maximize video analytics accu-
racy under computing and communication resource constraints
of the edge devices. Note that a specific video analytics task
can be achieved by multiple machine learning models leading
to diverse computing requirements and generating a different
amount of intermediate data for communication. FEVA has
a Model & Feature Controller module in the cloud side for
model selection and feature filtering (details in Section III-C);
as well as a Configuration Receiver in the edge to configure
the model and the feature types from the Model & Feature
Controller module. A Feature Filtering computing module is
added to drop the features as instructed by the Configuration
Receiver module.

C. High Accuracy Video Analytics with Resource Constraints
Different applications can have diverse resource constraints

and a number of pre-trained models. We maximize the video
analytics accuracy under resource constraints. Specifically,
The FEVA Resource Optimization (FEVA-RO) Problem:
given the computation capacity and the communication capac-
ity of the edge devices and the cloud, the pre-trained models,
the features, and the required delay, determine a model and
a set of features for the video analytics task to maximize the
analytic accuracy.

The models vary in accuracy and the needed computation
time under the given computation resource. The features vary
in the “importance" for accuracy and the needed communi-
cation time. Feature importance is defined as the accuracy
degradation incurred by dropping the feature [11]. To adapt
the privacy restrictions in FEVA application, a privacy neg-
ative correlation parameter is also included in each feature
importance computation, that can reduce the importance if the
features have high privacy risk. It is setup according to variant
FEVA application requirements and local law restrictions.
Please note that the accuracy and the computation time of
a model can be derived through measurement, and the feature
importance can be derived through measurement on a small
dataset in advance. The FEVA-RO problem has a Knapsack
structure, as the required delay, the models and features, the
model accuracy and the feature importance, the computation
time and the communication time for a given model and
features can be regarded as the capacity of the knapsack, the
weight of the item, the value of the item, respectively. The
FEVA-RO problem is equivalent to a Knapsack problem which
has been proved as NP-hard.

The FEVA-RO problem is NP-hard. It is unrealistic to
find a globally optimal solution within polynomial time. We
design Maximize Analytics Accuracy (MAA) algorithm which
divides the FEVA-RO problem into two subproblems: the
Model Selection Problem and the Feature Filtering problem:
The Model Selection Problem: Given the pre-trained models
with the accuracy and the computation time of each model,



4

Server 

ModelFEVAControl()

Client Manager

Client Model

FEVAExtract() FEVASelect()

DataSets

FEVAPreprocess()

Report

invokeReport

Report

Federated Computation Builders

FEVAScaling()

Federated Computation Builders

FEVAAggregate()

FEVAReceive()

invoke Report

Cloud

Edge

Fig. 3: FEVA implementation based on TFF.

determine a model for video analytics, subject to the constraint
that the computation time is within the required delay, to
maximize the analytics accuracy.

The Feature Filtering Problem: Given the selected model,
the features with feature size and feature importance, the
required delay and the bandwidth, determine a set of features
to maximize the total feature importance.

Accordingly, we develop two subalgorithms, specifically, a
Model Selection Algorithm and a Feature Filtering Algorithm,
to solve the above two subproblems, respectively.

Model Selection Algorithm simply traverses the pre-trained
models to find out the model with the maximum accuracy
while the computation time of the model is within the required
delay. This algorithm outputs the selected model and the
computation time. With the computation time, the algorithm
can get the required communication time by subtracting the
computation time from the required delay.

Feature Filtering Algorithm is a simple greedy algorithm,
which selects the feature with the maximum ratio of the feature
importance and the feature size one by one, as long as the
communication delay constraint holds.

The developed MAA algorithm consisting of the two sub-
algorithms works as follow: when a video analytic tasks
generates at the edge, it takes the computation capacity and
the communication capacity of the edge devices and the cloud,
the pre-trained models, the features, and the required delay
as inputs, runs the model selection algorithms to determine
the model for video analytics first, and then runs feature
filtering algorithm to determine a set of features. In this way,
the model and the features are determined to maximize the
accuracy. Our algorithm decouples model selection and feature
filtering. We admit that joint optimization of model selection
and feature filtering can achieve better performance. However,
the evaluation shows our decoupled approach achieves an
acceptable performance, and a joint optimization requires a
more complex algorithm and implementation, which is left
for a future investigation.

IV. A CASE STUDY ON MULTI-VIEW VEHICLES 3D
RECONSTRUCTION

In this section, we apply the FEVA architecture to support
a Multi-View Vehicles 3D Reconstruction (MV3DR) applica-
tion [12]. MV3DR constructs 3D models for vehicles through
the captured videos. Video analytics using 3D models can
help to establish the real-time objects of the HD map. Clearly,
constructing the 3D models needs videos from collaborative
cameras since the visual appearance of vehicles varies greatly
under different viewpoints (e.g., the front and rear viewpoints
of the vehicle). Consequently, multiple video images are
exploited for the multi-view vehicle 3D reconstruction via the
3D reconstruction algorithm [1].

A. Implementation
1) FEVA Implementation: We implement FEVA by extend-

ing Google’s TensorFlow Federated (TFF) [13]. The codes are
publicly available on the GitHub site. 1

Briefing of the TFF Architecture: Fig. 3 shows the
architecture of TFF. It works as follows: 1) the Client
Manager on the cloud monitors the states of the edge devices
(e.g. the bandwidth) and selects a set of edge devices for the
next round of model training. It sends an FL plan including
the global model and the training parameters (e.g. the learning
steps) to the selected edge devices; 2) The Client Model
on the edge updates the local model and training parameters
according to the received FL plan and further reforms these as
a TensorFlow graph file which is the execution description file
and is sent the Federated Computation Builders
(FCB) on edge; 3) The DataSets on edge preprocesses the
data to the required format and sends it to the FCB; 4) Edge
side FCB takes the TensorFlow graph file and the reformed
data as inputs, runs the training algorithm to update the
local model, which is then reported to the Server Model
on the cloud; 5) After receiving the local models from all
edges, the Server Model invokes FCB to aggregate these
local models; 6) Then, the cloud side FCB runs the model
aggregation algorithm to update the global model, which is
then reported to the client manager. The above steps
repeat until the global model converges.

FEVA Modules Implementation: We implement FEVA
modules by revising the modules in TFF as shown in Fig. 3.
For the Model & Feature Controller module, we add a
FEVAControl function into Client Manager, which runs the
model selection and feature filtering algorithm to compute the
model and the feature types. The FEVAControl gets the
bandwidth of the edge devices by calling the state monitoring
API provided by TFF and encapsulates the results as an
FL plan to send to the edge. We add the FEVAReciever
function into the Client Model to reform the received
models as a TensorFlow graph file so that the model can be run
in the TensorFlow environment. We modify the DataSets to
reform the frames by adding a function FEVAPreprocess.

In TFF, FCB modules provide the execution environment
for all operations, and especially they provide lots of func-
tions for model testing (model inference). To exploit the

1*https://github.com/polyuDLab/FEVA-DEMO
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Fig. 4: The schematic of FEVA-supported Multi-view
Vehicles 3D Reconstruction system implementation.

mature model execution functions and environment, We add
a function FEVAAggregate to the cloud side FCB to run
the models for feature aggregation. We also add functions
FEVAExtract, FEVAScaling into edge side FCB to run
models for feature extraction, and feature scaling respectively.
Function FEVASelect is added to filter our given features
to reduce the feature size.

2) MV3DR Implementation: We implement MV3DR on
FEVA. We pre-train four models for MV3DR with different
levels of accuracy on the cloud: an LSTM model, a GAN-
based model, and two CNN-based models. We derive the
inputs of function FEVAControl in advance: 1) the com-
putation and communication time, we measure by running the
models on the deployed cameras and the computer; 2) the
feature sizes, we can derive directly from the model definition;
and 3) the feature importance, we apply an Adaptive Multi-
view Features Selection (AMFS) [11] method to leverage all
the features extracted by a weight matrix, which is trained by a
small valid dataset VeRi [14] to rank the features according to
their importance. We reform the frames to a 256× 256 size in
8 bits colour by resampling using pixel area relation methods
to get better performance for our case study.

B. Evaluation

1) Evaluation Setup: We evaluate the performance of our
FEVA-supported MV3DR in an environment with four Ama-
zon DeepLens cameras acting as edge devices and a laptop
acting as a cloud server, see Fig. 4. We use two popular bench-
mark vehicle images dataset for model training: 1) VeRi [14],
denoted as DATASET I, contains over 50,000 images of 776
vehicles and 2) CityFlow [15], denoted as DATASET II, con-
tains more than 10,000 images of 666 vehicles. Each vehicle is
captured in both datasets from different viewpoints (e.g., front,
front-side, side, rear-side, rear) under different illumination,
resolution conditions. We train the models with the dataset on
a computation server with an RTX2080Ti GPU and an Intel
i7 CPU. The DeepLens captures the video streams from the
dataset in 10 frames per second and connects to the cloud
server by 2.4GHz WiFi. The required delay is set to 350 ms.
The system conducts the MV3DR task one time per second.
Evaluation Criteria: We evaluate the accuracy and the delay
performance of the video analytic application supported by

FEVA. We use PSNR (Peak Signal-to-Noise Ratio) as the
evaluation metrics for accuracy:

%(#' = 10 lg
"2

"(�
(1)

where " = 255 since our image is coded in 8 bits, and "(�
represents the mean square error between the imputed frames
and the ground truth. Baselines for Comparison: There is
currently no architecture for collaborative video analytics with
privacy concerns. We design two straightforward privacy-
preserving schemes as baselines for comparison.

• Collaborative Video Analytics (CVA), the edges automat-
ically ignore the frames including private information,
such as the human face, licenses plates, and refuse to
upload those to the cloud server.

• Homomorphic Encryption Video Analytics (HEVA), the
edges automatically encrypt the data before uploading
to the cloud server, preventing privacy-leaking. And the
cloud receives and applies complex homomorphic analyt-
ics algorithms without decrypting them.

• Privacy Masking Video Analytics (PMVA), the edges
detect and circle the outlines of this private information
and replace it with null values. The cloud receives these
processed frames with blanks.

We also explore FEVA’s internal components, i.e., the MAA
algorithm for the FEVA resource optimization, to better under-
stand its contribution to the performance of the system. Thus,
we implement FEVA without resource optimization (FEVA-
WO-RO), i.e., FEVA selects a model with maximum accuracy
from the set of models whose delay meets the required delay
without running the MAA algorithms.

2) Experiment Results: In this section, we present our
experimental results. Performance Improvement: Fig. 5(a)
shows the PSNR of different methods under both datasets.
We also measure the computation delay, the communication
delay and the overall delay to complete a video analytics task
in Fig. 5(b). There are several key observations.

First, FEVA outperforms CVA in both datasets. For exam-
ple, in DATASET I, the PSNR of CVA and FEVA reaches
up to 17.56dB and 33.34dB, respectively. FEVA gets 1.90
times PSNR than that of CVA. It is because CVA streams raw
frames to the cloud without privacy protection. Edges may
drop important frames instead of uploading them to the cloud
because of their private information. The cloud cannot get
sufficient data to get a better performance. However, in FEVA,
all the features the cloud needed are permitted to upload. In
exchange, it takes longer time and increases the computation
delay as shown in Fig. 5(b).

Second, FEVA outperforms HEVA and PMVA in both
datasets. We take DATASET I as an example; the PSNR of
HEVA and PMVA reaches up to 20.55dB and 24.87dB. FEVA
gets a 1.34 and 1.62 times improvement than HEVA and
PMVA, respectively. It is because the encryption computation
and masking operations in edges are highly time-consuming,
limiting the selection of analytics models running on the cloud
since the total time is constant. The computation delay of
PMVA is larger than FEVA since the detection of privacy
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information still requires another neural network running in
edges. In contrast, FEVA runs only some of the layers.

Fig. 5(a) also shows the PSNR of FEVA and FEVA-WO-
RO in both datasets. We notice that FEVA has an accuracy
improvement of 1.23 times compared with FEVA-WO-RO in
DATASET I. These results illustrate that the model selection
and feature filtering algorithms of FEVA work effectively.

Moreover, we compare FEVA to FEVA-WO-RO in terms
of the computation time and the communication time. We
observe that FEVA and FEVA-WO-RO have a similar overall
delay and meet the delay requirement. We can see that FEVA
outperforms FEVA-WO-RO with a 16.80% reduction in com-
munication time. It illustrates that our resource optimization
algorithm, MAA, can significantly reduce the size of features
streamed to the cloud. We also notice that FEVA has more
computation time compared to FEVA-WO-RO. It means more
computation time can be allocated for running a complex
model with higher accuracy in FEVA. These results confirm
the proposed algorithms can improve the analytics accuracy.
The End-to-End Operations of FEVA: Fig. 6 shows the end-
to-end operations in the field of FEVA in 60-min. The top
graph shows the bandwidth changing under the 2.4GHz WiFi
connection. The second and third graphs show the average
PSNR and the percentages of uploading features of the 3D
reconstruction in each minute. The bottom graph displays the
model selected by FEVA. On the right size of Fig. 6, we
display a 3D reconstruction result at about 45min. It indicates
that FEVA adjusts the model and feature filtering algorithm

to achieve a high analytics quality in runtime successfully.
For example, at about 42min, the bandwidth raises, and the
FEVA rapidly switches to the highest accuracy model and
uploads more features to the cloud. It successfully starts to
maintain the highest PSNR at 45min until the bandwidth drops
at 48min. These validate that our proposed method is feasible
and effective in practice.

V. CONCLUSION

In this article, we proposed FEVA, a federated video analyt-
ics architecture, for privacy-persevering and resource-efficient
video analytics applications. Intrinsically, FEVA keeps the
video image data local to the edge for analytics and trans-
mits the analytics results to the cloud for aggregation. We
develop algorithms that can partition the video analytics
computing tasks in a way that is privacy-preserving and
maximizes the overall analytics accuracy under the computing
and communication resource constraints of the edge devices.
We implemented a FEVA-supported Multi-view Vehicle 3D
Reconstruction application. Evaluation results show substantial
improvements in video analytic accuracy.
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