
AugPlug: An Automated Data Augmentation Model to Enhance
Online Building Load Forecasting

Yang Deng
Hong Kong Polytechnic Univ.

Hong Kong
yang2.deng@connect.polyu.hk

Rui Liang
Hong Kong Polytechnic Univ.

Hong Kong
maxwell-rui.liang@connect.polyu.hk

Yaohui Liu
Hong Kong Polytechnic Univ.

Hong Kong
yaohui.liu@connect.polyu.hk

Jiaqi Fan
Hong Kong Polytechnic Univ.

Hong Kong
23040866r@connect.polyu.hk

Dan Wang
Hong Kong Polytechnic Univ.

Hong Kong
dan.wang@polyu.edu.hk

ABSTRACT
Online Building Load Forecasting (BLF) is a scheme that designs
a model update strategy to continuously update the deployed ML-
based BLF model to adapt to changes in the distribution of data.
Many online BLF schemes have recently been developed. However,
updates can be ineffective, resulting in a decay in accuracy or even
in performance that is worse to compared to that without the update.
One primary reason for this is poor preparation of the data used to
update the model (namely the updating set), since most of the online
BLF schemes that have been developed update the ML model using
collected historical data, which may not reflect the characteristics
of the future distribution of data.

To prepare a suitable updating set for the BLF model update is a
challenging and ad hoc exercise. In this paper, we propose to lever-
age automated data augmentation (AutoDA), a data augmentation
(DA) framework based on reinforcement learning, to automatically
search for the optimal DA policy to generate synthetic data.We thus
develop AugPlug, a data augmentation model to instantiate AutoDA
in online BLF and demonstrate how it can generate updating sets.
A unique advantage of AugPlug is its plug-and-play compatibility
for integration into different online BLF schemes. Comprehensive
experiments on four published online BLF schemes, involving hun-
dreds of buildings, show that AugPlug can improve the overall
performance of the online BLF by 29.37%.

CCS CONCEPTS
• Applied computing→ Engineering.

KEYWORDS
Building load forecasting, Automated machine learning, Data aug-
mentation, Reinforcement learning

This work is licensed under a Creative Commons Attribution International 4.0
License.
BuildSys ’24, November 7–8, 2024, Hangzhou, China
© 2024 Association for Computing Machinery.
ACM ISBN 979-8-4007-0706-3/24/11
https://doi.org/10.1145/3671127.3698190

1 INTRODUCTION
Buildings are major energy consumers and carbon emitters in mod-
ern society. In the US, buildings account for over 40% of total energy
usage. To better operate building systems and conserve energy,
building load forecasting (BLF) plays an important role in many
building applications, such as HVAC control, demand response, and
others. With the rapid progression of machine learning (ML) during
the past decade, many ML-based BLF models have been deployed
[16, 20, 27, 28].

Instead of training a BLF model once and continuing to use it
thereafter, the practitioner usually needs to continuously update
the model with newly collected data. This process is achieved by
online machine learning and the data used to performmodel updates
is referred to as updating set [41]. Online ML is commonly used
in situations where the data are too large to be processed all at
once or where the distribution of data is constantly changing1.
Almost all of the works on online BLF fall into the latter category
and are aimed at keeping the accuracy acceptable even if the data
distribution changes. For example, an update strategy based on
weekly retraining was adopted to update the SVM-based BLF model
during the COVID-19 period, with the aim of adapting to changes
in human behavior [38]. In most online BLF schemes, the updating
set is the recently collected historical data or a selected subset of
it. However, the collected data may not be effective at updating
the current operational model because the data stream could be
continuously drifting. For example, if the cooling demand continues
to increase due to the seasonal factor, the forecasts of the updated
model could be inaccurate.

Therefore, to achieve acceptable forecasting accuracy in online
BLF, it is important to prepare suitable updating sets that reflect
the potential characteristics of the coming data distribution for the
model updates. Considering that the collected historical data may
not directly involve such characteristics, this raises an essential
question that remains to be studied: Can we generate synthetic data
as updating sets to support the online BLF model updates, to mitigate
the negative impact of changes in data distribution?

To answer the above question, we designed AugPlug, a data
augmentation model based on the Automated data augmentation
(AutoDA) paradigm [8, 10]. AutoDA is one type of data augmenta-
tion that automatically explores the data augmentation (DA) policy

1Namely, concept drift in the fields related to data science and machine learning.

143

https://doi.org/10.1145/3671127.3698190
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3671127.3698190&domain=pdf&date_stamp=2024-10-29

BuildSys ’24, November 7–8, 2024, Hangzhou, China Deng et al.

to improve the quality of the ML model. AutoDA partly resembles
the concept of automated machine learning (AutoML), the aim of
which is to reduce manual costs to find the optimal strategy. Typical
applications that have integrated AutoDA to generate data include
Waymo Driver (self-driving), Google Assistant (speech recognition),
and others. AutoDA provides us with concrete steps to follow, as
well as perspectives on approaches to the solution to which we
can refer. Specifically, the proposed AugPlug model materializes
key component of AutoDA to search for a DA policy: that is, the
search algorithm and the associated search space. Following typical
AutoDA tasks, we introduce a reinforcement learning (RL) search
algorithm. We formulate the RL process where a recurrent neu-
ral network (RNN) based DA policy controller serves as the RL
agent to predict the DA policy. We refer to the applications of Au-
toDA in other time-series fields to design the DA policy search
space and finally obtain four types of time-series transformation
operations. Moreover, to generate the updating sets for online BLF
model updates in our scenario, AugPlug overcomes two unique chal-
lenges: how to represent the temporal dynamics of the observed
data stream and how to support update strategies in different types
of online BLF schemes. To address these two challenges, we de-
signed a Temporal Convolutional Networks layer and an adaptable
data transformation module for the DA policy controller.

To show the effectiveness of our approach, we evaluate the
proposed AugPlug model to enhance four published online BLF
schemes. The evaluation is conducted in 100+ real-world buildings
of different building types. We compare AugPlug with two state-of-
the-art baselines, including a time-series generation method and a
concept drift adaptation method. Our evaluation indicates that the
online BLF schemes enhanced by the AugPlug model can achieve
an overall improvement in BLF accuracy of 29.37% as compared
to the default schemes. Moreover, AugPlug can help the existing
online BLF schemes to reduce the percentage of ineffective update
operations by 34.73%.

The contributions of the paper can be summarized as follows:

• We investigate the effectiveness of online updates in existing
online BLF schemes and empirically show that, contrary to
expectations, a significant proportion of these updates have
negative effects during the changes in data distribution in
the ML deployment phase.
• To the best of our knowledge, this is the first data augmen-
tation solution for improving the performance of the in-
operation BLF in deployment. Specifically, we introduce the
AutoDA framework for developing a data augmentation
model AugPlug2, to automatically search for the suitable
data augmentation policies to enhance the updating set for
the online BLF model update. We show that the AugPlug
model can improve the effectiveness of the updates and out-
performs other solutions.
• As a data augmentation model, AugPlug is plug-and-play
and can easily be integrated into online BLF schemes.

2The code is available at https://github.com/Dylan0211/AugPlug.

Table 1: Categorization of the online BLF schemes based on
the model update strategies.

Adaptation

Learning
mode Retrain Fine-tune

Periodically SVM [38],RF [34], HMM [1],
ensemble [6] LSTM [18, 42]

Triggered RF[32], KNN [39], RNN [9, 25],
LSTM [26] GRU [29], AE [17]

2 MOTIVATION AND POTENTIAL APPROACH
2.1 Background on Online Building Load

Forecasting
Online BLF refers to the ML-based BLF model that is designed with
a model update strategy to enable the model to adapt itself quickly
and capture new revealing patterns. Generally, the model update
strategies can be differentiated on two dimensions from the online
machine learning perspective [4]: adaptation and the learning mode.
The former explains how a change in model is initiated, either based
on a trigger such as a data distribution change detector or based
on a fixed periodic interval such as three months without any
explicit detection of change. The learning mode refers to how the
model is updated when an adaptation is required. The model can
either be retrained from scratch or updated with the most recently
collected data. We observed that the update strategy of the majority
of existing online BLF schemes falls into this taxonomy.

Another key to the accuracy of a model is the data leveraged
to update the model, i.e., the updating set. We observed that the
majority of schemes prepare the updating set by directly using his-
torical data. For example, in LSTM [18], the LSTM-based forecasting
model is continuously updated using historical samples inwhich the
model has previously performed poorly; A sliding-window buffer
that keeps recent data is used to update the NN-based forecasting
model in [46]. We list some of these works in Table 1. However, only
using collected data as the updating set may not involve character-
istics that represent the upcoming data. Thus, the update can be
ineffective, i.e., the BLF model can not achieve a good performance
after the update.

2.2 Motivation
We re-implemented some of the published online BLF schemes and
conducted a measurement study on real buildings to simulate the
deployment process.We show that online updates can be ineffective.
Then, we overview the potential approach.

An Example of Motivation: Figure 1 illustrates variations in
BLF performance. Here we use the above-mentioned LSTM [18],
one representative online BLF scheme with a periodically + fine
tune update strategy, which has also been tested in other studies
[12, 22]. We tested it on a real university office building with two
years’ worth of hourly data. First, the initial ML model was well-
trained using data from the first-year3. Then, in the second year
we simulated the model deployment process for 24-hour ahead of
the BLF. Here, we compare two accuracies on different modes: (i)
freezing the parameters of the initial model and forecasting, and (ii)

3The BLF model meets industry requirements: RMSE < 30%, as defined by ASHRAE.

144

AugPlug: An Automated Data Augmentation Model to Enhance Online Building Load Forecasting BuildSys ’24, November 7–8, 2024, Hangzhou, China

Fox_office_Molly, Arizona Stage Univ (Jul.31 ~ Sep.30, 2017)

21.96% Lower Acc

Update Update

Figure 1: Example of ineffective update in the deployment
of scheme [18] (CVRMSE, lower is better).

allowing the model to follow its pre-designed update strategy while
forecasting. Figure 1 illustrates an example of a variation in run-time
performance during a two-month period. We observe that not only
do the updates not always lead to improvements in accuracy, but
that even the model with updates does not consistently outperform
the frozen model. For instance, during the three-week period from
9 September to 30 September, there was a 21.96% gap in accuracy,
indicating that the updates can sometimes be ineffective.

Statistical Analysis: We now determine whether ineffective
updates in online BLF are common by testing multiple published
online BLF schemes (refer to Table 1) in a large number of buildings.

Datasets and online BLF models:We use a public dataset, Genome
[33]. This dataset contains hourly electrical meter data from 1,636
buildings in various countries over a two-year period. For the sake
of brevity, we focus on buildings in the USA and leave those in
other countries for a future study. We end up with 557 buildings
for our analysis. For the BLF schemes, in addition to [18], we re-
implemented three more schemes [17, 32, 38] and thus covered
all four types of online update strategies in Table 1 (SVM [38] is
retrain + periodically4, Random Forest [32] is retrain + triggered5,
and Autoencoder [17] is fine-tune + triggered6. Note that we chose
the above four schemes because their design mechanisms are clear
and the input features are supported by Genome datasets. Further-
more, the model training and testing settings are consistent with
the above motivation example.

Metrics: We employ online A/B testing [5] to quantify the effec-
tiveness of specific update operations. For each update, we compare
the accuracy of the updated model with the accuracy of the model
had the update not been applied (over the period between this up-
date and the next). We define an update as ineffective if it does not
result in an improvement in accuracy.

Results: Table 2 shows the performance of the four tested models
across 557 buildings. We compiled statistics on the total number of
update operations and the percentage of ineffective updates. We
observed that at least 25% of the updates of all of the models were
ineffective. In particular, the rate of ineffective updates during the
deployment of RF [32] was 32.3% (which conducted the greatest

4Update strategy in [38]: weekly retrain based on 30 recent days of data.
5Update strategy in [32]: error-based (WAPE) retrain by 20 recent working days of
data.
6Update strategy in [17]: error-based (CVRMSE) fine-tuned 30 recent days of data.

Online BLF
scheme

Num of
Update
(103)

Ratio of
Ineffec-
tiveness

SVM [38] 10.7 29.9%
LSTM [18] 6.5 27.3%
RF[32] 15.3 32.3%
AE [17] 11.4 30.7%

Table 2: The proportion of
ineffective updates. Figure 2: Accuracy im-

proved through updates.

number of update operations). Additionally, we drew a histogram
distribution to summarize and visualize the contributions of all up-
dates in Figure 2. The histogram reveals that 11.95% of the updates
in fact resulted in a decay in accuracy of more than 10%.

Summary. Our measurements show that the proportion of inef-
fective updates in online BLF schemes is significant. More impor-
tantly, this evaluation was made only in comparison to taking no
action at all; thus, we see that there is much room for improvement.

2.3 Potential Approach: Automated Data
Augmentation (AutoDA)

The two keys to the accuracy of a model are: the design of the
model structure (such as the NN layer, loss function, and hyper-
parameters), and the data (i.e., the data used to train or update the
model should be similar in characteristic to the data in the deploy-
ment environment). Modifying the ML model structure in an online
scenario is challenging. Moreover, the designs of the BLF models
vary greatly, making it unrealistic for the practitioner to calibrate
the model case by case. Intuitively, it is more promising to improve
the suitability of the updating set to enhance the effectiveness of
online BLF model updates. This means generating synthetic data
that involves the potential characteristics of the upcoming data to
serve as the updating set for each online update operation.

There are several challenges associated with this data generation
task. First, while most data generation approaches applied in the
building energy field can enhance data diversity and help train ML
models to avoid overfitting, they are not suitable for augmenting
data when the data distribution changes during the ML model’s
operational period. Second, it is impractical to directly model all
of the dynamics of the building data distribution, especially when
the interval between two updates spans a long period. Last, due to
the absence of standard metrics to quantify the characteristics of
the building data stream, preparing an appropriate update set for
each specific update operation requires significant manual effort
and expertise. This makes the process inefficient.

We thus leverage Automated Data Augmentation (AutoDA), a
subfield of automated machine learning (AutoML) [21], which will
provide us with a systematic solution framework. AutoDA is the
task of searching for a suitable data augmentation policy for a given
data set through a learning-based approach. AutoDA has been
applied to contribute real products. An example is Waymo Driver, a
Google self-driving project. The Google Brain team started applying
AutoDA toWaymo in 2019, by leveragingAutoDA to generate traffic
data (e.g., pedestrians in various postures and positions) for the
image and lidar 3D detection tasks. Meanwhile, the NVIDIA DALI

145

BuildSys ’24, November 7–8, 2024, Hangzhou, China Deng et al.

Table 3: Key Notations and Descriptions.

Symbol Definition
𝑀1, ..., 𝑀 𝑗 the BLF models during the deployment process
𝐷
𝑗
𝑢𝑝 the original updating set used to update𝑀𝑗

F𝑢𝑝 (·, ·) The BLF model update function F𝑢𝑝 : 𝐷 𝑗
𝑢𝑝 , 𝑀𝑗 → 𝑀𝑗+1

𝐷
𝑗

𝑐𝑜𝑙
the collected data (with a fixed size) before updating𝑀𝑗

𝜋𝜃 the DA policy controller RNN for predicting 𝜏
𝜏 the data augmentation policy 𝜏 = {𝑂}
𝑂 the data transformation operator contains three parameters: 𝑡 , 𝜆, 𝑝
𝐷
𝑗
𝜏 the updating set augmented by policy 𝜏 , 𝐷 𝑗

𝜏 = 𝜏 (𝐷 𝑗
𝑢𝑝)

library7 introduced an AutoDA module from the 2023 version, with
three popular AutoDA algorithms [10, 11, 35]. Intrinsically, The
searched DA policy expresses the choices and orders of the data
transformation operations, e.g., a sequential application of scaling
followed by rotation on point clouds of the pedestrians (to simulate
possible movements in the Waymo project).

The key aspect of developing AutoDA is specifying the search
algorithm used to find the optimal data augmentation policy, as well
as the associated search space. Inspired by AutoML, reinforcement
learning (RL) is a typical search algorithm in AutoDA, where the RL
agent will explore the DA policies through the feedback reward, i.e.,
theMLmodel accuracy.We follow this approach, but we believe that
further improvements in the results are possible if better algorithms
are used. Besides, the search space of the DA policy is affected by
the set of candidate augmentation operations and their parameters,
such as the data transformation type.

3 AUTOMATED DATA AUGMENTATION
MODEL

In this section, we describe the design of the proposed AutoDA
model, AugPlug, including the problem statement, the RL-based
framework, the RL agent design, and the AugPlug training method.

3.1 Design Overview
Problem statement:Given an online building load forecast scheme,
i.e., an ML-based BLF model will keep updating following a pre-
designed update strategy (refer to Table 1), as well as the building
to deploy the model, our objective is to maximize the forecasting
accuracy of the BLF model during each update process by utilizing
the generated update set.

We first present the process and the notations in the typical
online BLF scenario, which works as follows: An initial ML-based
BLF model 𝑀 will be trained first. When the model is deployed
in a building, the model can be updated with the updating set
𝐷𝑢𝑝 = {(𝑥𝑖 , 𝑦𝑖)}𝑚𝑖=1 which is extracted from the collected obser-
vations 𝐷𝑐𝑜𝑙 , where 𝑥 is the input features (such as weather and
historical load), and 𝑦 is the forecast load value in one or multiple
steps. The model update is performed by further training the model
with 𝐷𝑢𝑝 . More formally, the BLF model deployed in a specific
building can be denoted as a model sequence of {𝑀1, 𝑀2, ...} for
the associated time slots, and the accuracy of a model 𝑀𝑗 in its
time slot is denoted as ACC𝑣𝑎𝑙 (𝑀𝑗) (for the sake of simplicity, we
omit the notation of the validation data). The updating strategy

7The NVIDIA Data Loading Library (DALI) is a well-known GPU-accelerated library
for data loading and pre-processing to accelerate deep learning applications.

Action: DA policy 𝜏

Use 𝑅 to update the RL Agent

Update the BLF model M

with 𝜏 to get accuracy 𝑅

(Reward)

RNN

𝒂𝟏

RNN

𝒂𝟐

RNN

𝒂𝟑

RL Agent: (A Controller RNN)

Figure 3: Overview of the AutoDA framework which uses
Reinforcement Learning to search for better data augmen-
tation policies. A controller RNN (RL agent) predicts a DA
policy 𝜏 from the search space. The BLF model is updated to
achieve an accuracy 𝑅. The reward 𝑅 will be used with the
policy gradient method to update the controller so that it can
generate better policies over time.

function F𝑢𝑝 specifying the adaptation and the learning mode can
be defined as F𝑢𝑝 : 𝐷 𝑗

𝑢𝑝 , 𝑀𝑗 → 𝑀𝑗+1, where 𝑀𝑗+1 is the updated
version8 of𝑀𝑗 .

We now present AugPlug, a new AutoDA model to benefit the
above online model update process. For each update, i.e., given the
BLF model 𝑀𝑗 , the defined F𝑢𝑝 , and the historical observations
𝐷
𝑗

𝑐𝑜𝑙
, then a data augmentation policy 𝜏 is applied to transform the

original updating set 𝐷 𝑗
𝑢𝑝 to a synthetic updating set 𝐷 𝑗

𝜏 = 𝜏 (𝐷 𝑗
𝑢𝑝)

that involves potential characteristics of the upcoming future data.
The goal of AugPlug is to find the optimal data augmentation policy
𝜏∗ that leads to high forecast accuracy of the updated 𝑀𝑗+1. Let
𝑀𝜏

𝑗+1 = F𝑢𝑝 (𝑀𝑗 , 𝐷
𝑗
𝜏) be the 𝑀𝑗 updated by 𝐷

𝑗
𝜏 . The problem can

be formulated as follows:
𝜏∗ = argmax

𝜏
ACC𝑣𝑎𝑙 (𝑀𝜏

𝑗+1), 𝑗 = 1, 2, ... (1)

In the following, we first explain how we represent the auto-
mated building data augmentation problem in the context of RL
(§3.2); Next, we introduce the RL Agent design, the core in the
RL framework, to generate actionable DA policies for the online
BLF schemes in the various data distributions (§3.3); Finally, we
introduce the training and inference algorithm for the RL-based
AutoDA model (§3.4).

3.2 Reinforcement Learning Formulation
We represent the RL formulation in our data augmentation scenario
(see Figure 3) following the classical AutoDA works that leverages
RL as the search algorithm to find the optimal DA policy 𝜏∗ in the
update process𝑀𝑗 → 𝑀𝑗+1 in a specified building.

At a high level, when the current BLF model 𝑀𝑗 calls F𝑢𝑝 for
updating, the RL agent 𝜋𝜃 (implemented as a controller RNN, which
will be shown later) will predict an associated DA policy 𝜏 as a list
of actions 𝑎1:𝑇 based on the current observed state 𝑠 . Then, the
DA policy 𝜏 is applied into transform 𝐷

𝑗
𝑢𝑝 to a synthetic dataset

8For the retrain mode, although a new𝑀𝑗+1 is trained from scratch, the structure of the
MLmodel remains the same as that of𝑀𝑗 ; thus, we argue that F𝑢𝑝 : 𝐷 𝑗

𝑢𝑝 , 𝑀𝑗 → 𝑀𝑗+1
still applicable for retrain.

146

AugPlug: An Automated Data Augmentation Model to Enhance Online Building Load Forecasting BuildSys ’24, November 7–8, 2024, Hangzhou, China

Table 4: Time-series transformations and the associated mag-
nitude range.

Type Description Magnitudes
Scaling Multiplies the entire series controlled by 𝜆. [1,3], [0.3,1]
Jittering Adds white noise with 𝜎 controlled by 𝜆 . [0, 0.1]

Smoothing Performs low-pass filtering using
a average window (with size 𝜆). (0, 11]

Shifting Adding 𝜆 on the entire series. [-0.5, 0.5]

𝐷
𝑗
𝜏 . After 𝑀𝜏

𝑗+1 = F𝑢𝑝 (𝑀𝑗 , 𝐷
𝑗
𝜏), we see a reward 𝑅 representing

the performance of the online BLF model update. Based on this 𝑅,
we use reinforcement learning to train the controller RNN. More
concretely, to find the optimal DA policy, we ask the controller
RNN to maximize its expected reward, represented by 𝐽 (𝜃). The
detailed definitions of state, action, and reward are as follows.

𝐽 (𝜃) = 𝐸𝑃 (𝑎1:𝑇 ;𝜃) [𝑅] (2)

State: The state is the observed data stream 𝐷
𝑗

𝑐𝑜𝑙
that we can see

when updating a BLFmodel𝑀𝑗 . We define𝐷𝑐𝑜𝑙 contains two classes
of observations: i) the collected mechanical and meteorological
data, and ii) the historical BLF accuracy records. Both of these two
observations are data stream and with the same length. We note
that the accuracy records in 𝐷𝑐𝑜𝑙 is helpful for exploring 𝜏 since it
is an intuitive indicator for data distribution change.

the Search Space and Action: Generally, the DA policy 𝜏 expresses
a list of data transformation operations {𝑂} that will be conducted
sequentially on the original 𝐷𝑢𝑝 . Each operation 𝑂 is defined with
three parameters: (1) the type of transformation 𝑡 ; (2) the magnitude
with which the operation is applied 𝜆; and (3) the probability of
applying this operation 𝑝 .

We follow the existing time-series AutoDA works [36] to design
this part, which involves conventional time-series transformation
operations such as scaling, jittering, etc., and which are also applied
in the building energy scenario to augment data [15]. For example,
the operator 𝑂 (”𝑠𝑐𝑎𝑙𝑖𝑛𝑔”, 2.0, 0.8) signifies that the transformation
operation "scaling" is performed with a probability of 0.8 to scale
up the values of the time-series to two times. The DA policy 𝜏 can
be formulated as Eq.3 and Figure 4 shows a process of applying
a 𝜏 with two operations on a two-day load time-series. Note that
calling probability is primarily employed to introduce stochasticity
in policies, which has been demonstrated to be effective [10]. And
the identity map (i.e., no augmentation) is also possible with the
probability of (1 − 𝑝1) (1 − 𝑝2).

𝜏 = {𝑂𝑛 (𝑡𝑛, 𝜆𝑛, 𝑝𝑛) : 𝑛 = 1, 2, ..., 𝑁 } (3)

Taking into consideration the physical characteristics of the time-
series data in building applications, we select four transformation
operations to suit our scenario (see Table 4). For instance, a jittering
operation can simulate malfunctions in building sensors or data
collection systems, and scaling (or shifting) can simulate the change
in load demands caused by seasons and events. We design the
associated magnitude range settings based on data analysis and
experiments. Note that, the operator settings are domain-specific
and there are works study how to optimize the search space [11].
We put this in future work.

Reward: Our objective is to enhance the accuracy of the BLF
model𝑀 , while the reward is an improvement in the accuracy in

Original

𝑂!
1 − 𝑝!
Identity

Operation 1
(scaling)

𝑂"

𝑂"

no augment

[jittering]

[scaling]

[scaling,
 jittering]

1 − 𝑝"
Identity

Operation 2
(jittering)

𝑝"

𝑝!

1 − 𝑝"
Identity

Operation 2
(jittering)

𝑝"𝜏 = {𝑂! (𝑡=𝑠𝑐𝑎𝑙𝑖𝑛𝑔, 𝜆=2.0, 𝑝=𝑝!),
 𝑂" (𝑡=𝑗𝑖𝑡𝑡𝑒𝑟𝑖𝑛𝑔, 𝜆=0.05, 𝑝=𝑝")}

Figure 4: An example of augmented two-day load time-series
via a data augmentation policy with two transformation op-
erations. The two operations are applied with the correspond-
ing probabilities.

the time slot of𝑀𝑗+1, i.e., from conducting an update on𝑀𝑗 to the
next update. Equation 4 shows the definition of the reward.

𝑅 = ACC𝑣𝑎𝑙 (𝑀𝜏
𝑗+1) − ACC𝑣𝑎𝑙 (𝑀𝑗+1) (4)

3.3 RL Agent Design: a Controller RNN
In this section, we first outline the architecture of the DA policy con-
troller. Then, we present two challenges when applying this design
to the online BLF scenario, along with the proposed solutions.

We employ a one-layer LSTM with 100 hidden units as the con-
troller RNN for generating DA policies. As shown in Figure 5, the
controller outputs a sequence of actions 𝑎1:𝑇 in an auto-regressive
manner, where each 𝑎 represents the index of a decision regarding
a type 𝑡 , a magnitude 𝜆, or a probability 𝑝 . That means that the
predicted DA policy 𝜏 = 𝑎1, ...𝑎𝑇 = 𝑡1, 𝜆1, 𝑝1, ..., 𝑡𝑁 , 𝜆𝑁 , 𝑝𝑁 . At each
step in the RNN, the RNN model takes state 𝑠 , the previous action
𝑎𝑡−1 and the previous hidden state as inputs. We then apply the
softmax layer, utilizing three separate fully connected layers for
the three parameters (see Figure 5).

There are two challenges unique to our scenario that prevent
direct application of the controller RNN. The first challenge is the
representation of the state 𝑠 , which directs the controller RNN to
generate a reliable 𝜏 . Generally, The NN-based models design a
fully connected layer to encode the input for extracting informative
embedding. In our scenario, to identify 𝜏 , the temporal dynamics
of the observed data stream should be extracted, as it can provide
insights into the characteristics of future data. We address this
challenge by designing a temporal convolutional network (TCN)
embedding layer to represent the state 𝑠 (Section 3.3.1). The second
challenge is the execution of DA policy 𝜏 for different types of
update strategy F𝑢𝑝 . Unlike other AutoDA models designed to
benefit the specified ML model, in our scenario, the four different
types of F𝑢𝑝 have varying requirements regarding data size and
diversity. We address this challenge by proposing an adaptable data
transformation module (Section 3.3.2).

3.3.1 TCN-based embedding layer. we adopt a temporal convolu-
tional network (TCN) [3] to extract the temporal dynamics infor-
mation from 𝐷𝑐𝑜𝑙 because it is superior to other types of neural
networks (e.g., MLP or autoencoder) as it exploits convolutional
layers with dilated kernels to capture temporal dependencies in
samples while maintaining a manageable number of parameters.

147

BuildSys ’24, November 7–8, 2024, Hangzhou, China Deng et al.

…

LSTM

𝜆!

LSTM

𝑝!

LSTM

𝑡!"#

LSTM

𝑝!$#

LSTM

𝑡!

Operation 𝑂!

fc2 fc3 fc1fc3 fc1

LSTM

𝜆!$#

fc2

LSTM

𝜆!"#

fc2

Operation 𝑂!"# Operation 𝑂!$#

TCN Layer
Week-level

… … …

… … … …

…

…

… … … …

… … … …

…

…

…

…

…

𝑫𝒄𝒐𝒍

State 𝑠

Day-level

Figure 5: How the controller RNN samples a DA policy. It
predicts the type, magnitude, and probability for an opera-
tion and repeats.

Generally, the TCN layer is designed into multiple TCN blocks
(with different kernel sizes) for the time-series with multi-scale
seasonality, which is quite suit for building energy scenarios, i.e.,
daily and weekly seasonality in terms of occupant behaviors.

As illustrated in the lower part of Figure 5, the designed TCN
consists of three blocks with the kernel sizes set to 24, 7, and 4, and
the dilation sizes set to 1, 24, and 24*7. This structure is designed
to align with the seasonal periods commonly observed in energy
time-series (daily and weekly cycles), and corresponds to the data
sampling frequency. We consider the output of the last time step as
the embedding.

3.3.2 Adaptable data transformation. The online BLF schemes with
different update strategies F𝑢𝑝 have distinct requirements on data
size and diversity of the generated updating set 𝐷𝜏 , resulting in spe-
cific data transformation execution. Intuitively, 𝐷𝜏 for the retrain-
based F𝑢𝑝 requires larger data size compared to the fine-tune-based
one because the former retrains the ML model from scratch. For the
adaptation mode, the periodically-based F𝑢𝑝 needs more diverse
𝐷𝜏 compared to the triggered-based F𝑢𝑝 , as the latter usually deal
with a relatively deterministic data distribution change.

The data transformed by a specific DA policy 𝜏 can be regarded
as sampled from the same distribution, we can control the number
of transformations conducted (denoted as 𝑉) to manage the size of
𝐷𝑢𝑝 . The diversity of 𝐷𝜏 can be increased through the controller
RNN predicts multiple different 𝜏 with the same state 𝑠 . We seek
the solution from the RL fundamental. There are two types of
methods by which the RL agent predicts the action: 𝑎𝑟𝑔𝑚𝑎𝑥 () and
𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (), and thus to get a deterministic policy and stochastic
policy respectively. Thus, we re-design the RNN output layer as
Eq.5, where ℎ𝑡 = LSTM([𝑠, 𝑎𝑡−1], ℎ𝑡−1).

𝑎𝑡 :
{

= argmax(softmax(fc𝑖 (ℎ𝑡))), // less diversity
∼ Categorical(softmax(fc𝑖 (ℎ𝑡))), // greater diversity

(5)
, we use 𝑈 to denote the numbers of the final DA policy 𝜏 if 𝜏
sampled from 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 (). Finally, the synthetic data generated
by the 𝜏 can be denoted a union set as:

𝐷
𝑗
𝜏 = ∪𝑈𝑢=1 ∪

𝑉
𝑣=1 𝜏𝑢 (𝐷

𝑗
𝑢𝑝) (6)

Algorithm 1: Training design of AugPlug.
Input: The building dataset {D}. The BLF model𝑀 and its update

strategy F𝑢𝑝 .
Output: The controller 𝜋𝜃 .

1 Initialize D𝑡𝑟𝑎𝑖𝑛 ← ∅;
2 for D ∈ {D} do
3 Obtain samples { (𝑀𝑗 , 𝐷

𝑗

𝑐𝑜𝑙
, 𝐷

𝑗
𝑢𝑝) } by deploying𝑀 on D;

4 D𝑡𝑟𝑎𝑖𝑛 ← D𝑡𝑟𝑎𝑖𝑛 ∪ { (𝑀𝑗 , 𝐷
𝑗

𝑐𝑜𝑙
, 𝐷

𝑗
𝑢𝑝) };

5 for 𝑖 = 1, ..., #𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠 do
6 for (𝑀𝑗 , 𝐷

𝑗

𝑐𝑜𝑙
, 𝐷

𝑗
𝑢𝑝) ∈ D𝑡𝑟𝑎𝑖𝑛 do

/* Step 1: prepare updating set */

7 Obtain state 𝑠 through embedding 𝐷 𝑗

𝑐𝑜𝑙
with TCN;

8 {𝜏𝑢 }𝑈𝑢=1 ← 𝜋𝜃 (𝑠) ;
9 𝐷

𝑗
𝜏 ← ∪𝑈𝑢=1 ∪𝑉𝑣=1 𝜏𝑢 (𝐷

𝑗
𝑢𝑝) ; // Eq. 6

/* Step 2: update BLF model */

10 𝑀𝑗+1 ← F𝑢𝑝 (𝑀𝑗 , 𝐷
𝑗
𝑢𝑝) ;

11 𝑀𝜏
𝑗+1 ← F𝑢𝑝 (𝑀𝑗 , 𝐷

𝑗
𝜏) ;

12 𝑅 ← ACC𝑣𝑎𝑙 (𝑀𝜏
𝑗+1) − ACC𝑣𝑎𝑙 (𝑀𝑗+1) ;

/* Step 3: update the RL agent */

13 𝜃 ← 𝜃 − 𝜂∇𝜃 L𝑃𝑃𝑂 (𝜃) ; // Eq. 7

For the settings of parameters 𝑉 and 𝑈 , considering that the
most common practice in AutoDA is to conduct transformation
one time for a data sample, thus, we use 𝑉 = 1 if F𝑢𝑝 requiring a
smaller size of 𝐷𝜏 while 𝑉 = 2 for the F𝑢𝑝 requiring a larger size.
We set the 𝑈 = 5 for the greater diversity referring to an image
AutoDA task [10] which also samples five policies to generate data.
Besides, we set 𝑉 = 2 for the F𝑢𝑝 requiring a larger size and 𝑈 = 1
for less diversity based on our massive experiments.

3.4 AugPlug Training
Given a specific online BLF scheme, the associated AugPlug model
will first be trained on multiple building datasets. After that, the
AugPlug-enhanced online BLF scheme can be deployed in a target
building to forecast building load (will be shown later in §4). In
this section, we present the AugPlug training process to maximize
the expected reward 𝐽 (𝜃) in Eq.2 for a BLF model𝑀𝑗 . Considering
that the reward signal 𝑅 is non-differentiable, we need to adopt a
policy gradient method to iteratively update 𝜃 . We employ the Prox-
imal Policy Optimization (PPO) algorithm for our agent training
considering its effectiveness and stability. In addition, we choose
the clipped surrogate objective to stabilize the training process by
limiting the size of the policy change at each step. The loss function
is shown as follows.
L𝑃𝑃𝑂 (𝜃) = −𝐸𝑃 (𝑎1:𝑇 ;𝜃) [min(𝑤 (𝜃)𝑅, clip(𝑤 (𝜃), 1 − 𝜖, 1 + 𝜖)𝑅)],

𝑤 (𝜃) = 𝜋𝜃 (𝑎1:𝑇 |𝑠)
𝜋𝜃𝑜𝑙𝑑 (𝑎1:𝑇 |𝑠)

=

∑𝑇
𝑡=1 log 𝑃 (𝑎𝑡 |𝑎 (𝑡−1) :1, 𝑠;𝜃)∑𝑇

𝑡=1 log 𝑃 (𝑎𝑡 |𝑎 (𝑡−1) :1, 𝑠;𝜃𝑜𝑙𝑑)
(7)

Next, we outline the flow of our training process (as depicted in
Algorithm 1). The training set D𝑡𝑟𝑎𝑖𝑛 is first initiated by deploying
the studied BLF model on all training buildings to get a sequence of
samples where each consists of the model𝑀𝑗 , collected data 𝐷 𝑗

𝑐𝑜𝑙
,

and updating set 𝐷 𝑗
𝑢𝑝 within the associated period (line 1-4). For

148

AugPlug: An Automated Data Augmentation Model to Enhance Online Building Load Forecasting BuildSys ’24, November 7–8, 2024, Hangzhou, China

import AugPlug
import numpy, torch, ...
def get_raw_data(): …
def preprocessing(): …
def predict(): …
class buffer_mechanism(): …
# ℱ!"	𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 (periodically + fine-tune)
def update(model, updating_set):

for epoch in range(total_iters):
 for x, y in updating_set:

loss = criterion(model(x), y)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()

if __name__ == '__main__’:
 model = torch.load(‘BLF_model.pt’)
 buffer = buffer_mechanism()
 # BLF model forecasts then updates
 while raw_data := get_raw_data():
 inference_set = preprocessing(raw_data)
 pred, err = predict(model, inference_set)
 buffer.append_data(inference_set)
 # original updating set
 updating_set = buffer.output()

replace with augmented updating set
updating_set = AugPlug(updating_set,

 raw_data, err)
 update(model, updating_set)

The file of inference.py

Figure 6: An example of integrating AugPlug into the online
BLF scheme: LSTM [18].

each training sample, the state is obtained through embedding 𝐷 𝑗

𝑐𝑜𝑙
with the developed TCN network, based on which the controller 𝜋𝜃
predicts a set of augmentation policies. Then, according to updating
strategy of the model, a suitable augmented updating set 𝐷 𝑗

𝜏 is
generated through the designed data transformation scheme (line
7-9). With the original and augmented updating set, we obtain
two versions of updated models, namely𝑀𝑗+1 and𝑀𝜏

𝑗+1 and their
validation accuracy gap (line 10-12), which is considered as the
reward. Finally, 𝜃 is updated with the PPO loss (line 13).

4 THE ADOPTION OF AUGPLUG
There are two considerations when using the AugPlug model to
benefit an online BLF scheme.

The input features of the BLF model: The first consideration
is how to augment different categories of features. For an ML-based
BLF model, the commonly used input features can be categorized
into three types: (1) mechanical features, e.g., history load, power;
(2) meteorological features, e.g., outdoor temperature; (3) and time
features, e.g., current hour, day of the week [45]. The features
designed in all 13 online BLF schemes in Table 1 fall into these
three categories. For the first two types, we train separate controller
RNNs and perform DA on these features separately if these features
are in the BLF model. In particular, we concatenate the input load
and output load time-series because they should share the same
DA policy 9. In BLF, time features are typically represented using
one-hot encoding. We believe that the temporal dependencies, such
as the daily and weekly seasonality of the original samples in 𝐷𝑢𝑝 ,
should remain unchanged after data augmentation. Additionally,
none of the 13 analyzed schemes incorporate month or year indices
in their features. Therefore, we directly replicate the time features
without any modifications.

Integrating AugPlug into the BLF model: The second con-
sideration is how to integrate the AugPlug model into a developed
online BLF scheme to achieve plug-and-play. We still use the LSTM
[18] as an example, which is periodically + fine-tune. For an ML
task (implemented in Python), the code can usually be separated
into two parts, i.e., train.py and inference.py. This work targets
the model inference process and there is no revision in train.py,
where an initial LSTM-based model is trained. The revision in
inference.py is shown in Figure 6. In this case, besides the basic

9The history load sequence is a key input feature and 13 of the analyzed schemes
involve this feature.

BLF1 BLF2 BLF3 BLF4
0.0

0.1

0.2

0.3

0.4

A
cc

. I
m

pr
ov

e
(x

10
0%

)

TimeGAN DDG-DA AugPlug

Figure 7: BLF Accuracy improvement through AugPlug and
baselines.

functions (e.g., data preparation and loading model), inference.py
specifies the update() function, i.e., F𝑢𝑝 , and the updating set is
based on its buffer mechanism. As a result, only two additional
Python codes are added to replace the original updating set. In
addition, here we assume that the naming of the .py file and the
update() function should be regulated; hence the AugPlug training
algorithm can smoothly import update() (for training the AugPlug
model in Algorithm 1).

In summary, there are three steps that a practitioner must follow
to use the DA service from AugPlug: (1) Revise the inference.py
of the online BLF scheme to set a new 𝐷𝑢𝑝 (refer to Figure 6); (2)
Train the AugPlug model by Algorithm 1, which imports the user’s
update() from inference.py; (3) Run inference.py in a target
building for load forecasting.

5 EVALUATION
In this section, we present the evaluation of the proposed AugPlug
model. We first introduce the evaluation methodology. Then, we
present the evaluation results, as well as an ablation study to show
the key components contributing to the performance of AugPlug.

5.1 Methodology
Online BLF schemes and building datasets: We evaluate the
extent to which the accuracy of the online BLF schemes can be
improved through the AugPlug model. The tested BLF models and
buildings follow the setting in §2.2: SVM [38], LSTM [18], RF [32],
and Autoencoder [17]. They correspond to different model updating
strategies. We denote them as 𝐵𝐿𝐹1 to 𝐵𝐿𝐹4 in the following exper-
iments. The 557 Genome buildings that we used [33] comprised
five main types (i.e., office, education, etc.).

Metrics: To assess the improvement in the BLF accuracy via
the proposed AugPlug, we adopt a commonly used metric for eval-
uating accuracy in the field of load forecasting: the coefficient of

varation of the root mean square error (CVRMSE):
√∑𝑛

𝑖=1 (𝑦𝑖−�̂�)2/𝑛∑𝑛
𝑖=1 𝑦𝑖/𝑛

.
In addition, we adopt the online A/B testing metrics in §2.2 to assess
the proportion of effective updates that were conducted.

Baseline methods: We compare AugPlug with two categories
of approaches that also can be leveraged to improve the quality of
online BLF model updates: (1) the GAN-based method, the classic
data augmentation method that generates more diverse data to
update the ML model; (2) the concept drift adaptation method. We
leverage one state-of-the-art method that directly forecasts the

149

BuildSys ’24, November 7–8, 2024, Hangzhou, China Deng et al.

Table 5: The CVRMSE (lower is better) of the day ahead load forecasting results on 15 buildings. Comparisons across the default
online BLF scheme and the scheme equipped with AugPlug and the baselines.
Online BLF
models

Methods Education Public Assembly Office Lodging
𝐵1 𝐵2 𝐵3 𝐵4 𝐵5 𝐵6 𝐵7 𝐵8 𝐵9 𝐵10 𝐵11 𝐵12 𝐵13 𝐵14 𝐵15

𝐵𝐿𝐹1

Original 71.48 33.93 32.11 43.53 34.23 49.19 60.27 26.82 43.95 42.97 38.17 44.48 49.75 34.89 40.77
+ TimeGAN 65.13 37.05 27.75 44.88 35.97 45.31 52.11 27.27 44.89 41.36 34.63 42.85 48.12 38.01 42.66
+ DDG-DA 53.35 27.43 24.13 39.22 26.81 41.19 46.75 23.53 37.18 38.93 35.07 37.66 43.61 28.92 39.34
+ AugPlug 41.47 22.86 23.35 33.57 23.31 36.77 33.77 18.88 32.59 28.83 25.02 31.09 31.92 29.58 29.43

𝐵𝐿𝐹2

Original 54.13 18.53 21.78 23.65 22.01 38.25 46.13 15.03 29.18 28.42 24.86 27.41 36.39 23.24 25.07
+ TimeGAN 50.24 22.14 19.06 22.31 22.33 36.11 46.94 14.44 26.02 27.55 22.45 26.16 35.32 31.17 26.47
+ DDG-DA 37.38 16.03 18.22 17.35 18.03 31.29 45.29 13.76 27.45 28.54 24.87 23.98 31.22 21.03 25.08
+ AugPlug 27.55 14.87 18.71 16.83 15.41 28.44 32.27 13.51 23.65 25.28 18.06 23.09 19.67 16.71 20.99

𝐵𝐿𝐹3

Original 71.26 35.81 31.26 43.81 36.26 52.41 58.66 33.54 44.59 43.85 42.82 47.31 50.06 38.08 43.47
+ TimeGAN 56.12 39.12 26.85 40.81 40.54 54.79 51.35 32.14 47.47 40.76 38.44 43.89 48.59 43.78 43.67
+ DDG-DA 49.34 30.38 22.74 40.38 36.42 48.26 43.18 29.93 41.24 35.11 34.51 38.08 47.66 36.86 43.74
+ AugPlug 36.22 24.27 24.59 34.59 26.41 41.21 39.78 26.13 34.35 32.64 29.56 35.63 34.46 32.73 32.09

𝐵𝐿𝐹4

Original 66.52 31.49 22.96 27.58 31.52 26.35 61.62 28.11 32.67 29.42 23.13 24.15 52.52 30.18 42.01
+ TimeGAN 48.81 30.28 45.89 33.38 29.86 28.92 41.52 22.78 28.36 34.05 26.88 24.06 40.87 30.56 40.78
+ DDG-DA 44.98 28.26 24.73 26.07 25.89 21.64 37.01 21.72 26.09 30.86 25.14 21.39 30.22 22.17 36.77
+ AugPlug 20.12 16.39 20.31 17.21 25.32 13.44 32.38 18.16 19.58 26.28 17.54 20.23 25.12 13.17 20.33

future distribution of data. As a result, the following methods are
compared:

(1) TimeGAN [44]. This is a state-of-the-art GAN for the time-
series field that incorporates temporal dynamics. TimeGAN has
been widely used in the energy time-series field, e.g., HVAC control,
and heating load prediction. In our scenario, the TimeGAN model
is pre-trained on some source buildings and will be fine-tuned with
𝐷𝑢𝑝 . Every time the BLF model needs updates, the TimeGANmodel
generates synthetic data as the updating set.

(2) DDG-DA [30]. DDG-DA designed a resampling mechanism
to sample suitable historical data to approximate the distribution of
the incoming data stream. The synthetic data can then be generated
from the distribution. This method works well in the public energy
dataset [37] for updating the ML forecast model.

Setup of the experiments: To conduct data augmentation, we
train the associated AugPlug model for each online BLF scheme.
The Genome buildings are split into the training set at 80% and the
testing set at 20% (i.e., 445 training buildings and 112 testing build-
ings, respectively) for the AugPlug and the two baseline methods.
The online BLF process is the same as that described in §2: for a
test building, the initial BLF model is trained in the first year, and
then conducted 24-hour-ahead forecasting as well as the updating
in the second year. The proposed AugPlug and the two baseline
methods prepare the updating set for each update operation.

5.2 Performance Result
5.2.1 Overall performance. Figure 7 shows the overall improve-
ment in accuracy achieved by AugPlug and the baselines for the
BLF schemes over the 112 test buildings. We can see that AugPlug
outperforms the baselines on all four BLF schemes. The improve-
ment in accuracy achieved by AugPlug is 27.43%, 28.41%, 26.12%,
and 35.53% for the four schemes, respectively. As a comparison,
the accuracies of TimeGAN and DDG-DA are much lower, at 2.94%
and 17.39% on average. It is worth noting that TimeGAN achieves
the least improvement in accuracy among all three methods. This

-50% -25% 0% +25% +50%
0.0

0.3

0.6

0.9

1.2

1.5
C

ou
nt

 (1
03)

BLF with AugPlug
BLF without AugPlug

Figure 8: Accuracy improvement (with vs without AugPlug).

Model Training
time
(hour)

Inference
time
(sec)

𝐵𝐿𝐹1 70.56 0.43
𝐵𝐿𝐹2 47.76 0.36
𝐵𝐿𝐹3 77.04 0.51
𝐵𝐿𝐹4 59.28 0.42

Table 6: Execution time.

BLF1 BLF2 BLF3 BLF4
0.0

0.1

0.2

0.3

0.4

0.5

C
V

R
M

SE

AugPlug-A AugPlug-B AugPlug

Figure 9: Comparison of AugPlug
and the variants.

result verifies that conventional DA methods are ineffective in our
scenario where data are dynamically changing.

We drew two histograms in Figure 8 to show the improvement in
accuracy of the BLF schemes after updates (following the settings
in §2.2). Compared to the histogram of the BLF schemes without
AugPlug, the histogram of those equipped with AugPlug shows
a noticeable shift to the right, which indicates that the average
effectiveness for model updates is enhanced through AugPlug. In
detail, AugPlug not only greatly reduces the ratio of ineffective
updates (i.e., there was no improvement in accuracy) from 27.2% to
17.7%, but also achieves an overall improvement of 46.8%.

We next study the effectiveness of AugPlug in five different types
of buildings. The top three buildings of each type, where the original
BLF schemes resulted in the most ineffective updates, are selected.

150

AugPlug: An Automated Data Augmentation Model to Enhance Online Building Load Forecasting BuildSys ’24, November 7–8, 2024, Hangzhou, China

Bull_lodging_Melissa (Nov.30, 2016 ~ Jan.1, 2017)

P
o

li
cy

 (
L

o
ad

) {(‘scale’, 0.58, 0.9),

 (‘jitter’, 0.06, 0.8),

 (‘shift’, -0.1, 0.5)}

{(‘jitter’, 0.5, 0.5),

 (‘jitter’, 0.6, 0.8),

 (‘scale’, 0.72, 0.8)}

Fox_education_Lilly (Aug.11~Sep.2, 2017)

P
o

li
cy

 (
L

o
ad

)

P
o

li
cy

(T
em

p
.){(‘scale’, 1.4, 0.6),

 (‘smooth’, 7, 0.8),

 (‘scale’, 0.86, 0.4)}

{(‘scale’, 1.8, 0.7),

 (‘smooth’, 3, 0.5),

 (‘smooth’, 9, 0.9)}

{(‘shift’, 0.3, 0.8),

 (‘smooth’, 2, 0.3),

 (‘scale’, 1.4, 0.8)}

{(‘shift’, 0.3, 0.8),

 (‘scale’, 0.86, 0.4),

 (‘shift’, 0.1, 0.5)}

Figure 10: Two examples to show how AugPlug benefits BLF model update. The dashed line indicates a model update. (Top:
ground truth and forecasting results. Middle: Error of the BLF under with/without AugPlug. Bottom: the predicted DA policies
for the input features from the controller RNN.)

P
ro

p
o

rt
io

n
 (

%
)

BLF1 BLF2 BLF3 BLF4

Figure 11: The percentage proportion of data transformation
operations for four studied schemes.

Table 5 shows the forecasting accuracy of schemes equipped with
AugPlug and baselines on the selected 15 buildings in terms of
CVRMSE, where the best-performing method is highlighted in bold
font. Overall, AugPlug achieves an average improvement of 30.26%
and 19.85% over TimeGAN and DDG-DA, respectively. We also
examine that AugPlug nearly outperforms the baselines on all 15
buildings, with improvements of 30.41%, 22.15%, 21.32%, 19.28%,
and 29.77% on average for Education, Public, Assembly, Office, and
Lodging buildings, respectively. The only exception is that DDG-DA
slightly outperforms AugPlug on 𝐵3 and 𝐵14. After examining the
data in these buildings, we find that the changes in data distribution
of the two buildings are regular and steady such that DDG-DA,
which is based on resampling historical data for adaptation, quite
fits this scenario.

In addition, we study the execution time of the AugPlug model
training and inference for the four studied BLF schemes (shown in
Table 6), where the training episode is set as 50 for RL convergence.
We see that the training process usually takes less than three days
and we argue that this is acceptable as the BLF equipped with the
trained AugPlug model can be directly deployed in buildings. In
addition, the inference time for the BLF schemes equipped with the
trained AugPlug model is at most half a second, which is efficient
enough for load forecasting under an online setting.

5.2.2 DA Policy analysis. Figure 11 illustrates the proportion in
percentages of the transformation operations that were selected for
each of the studied BLF schemes. We observe that the proportions
of the operations that were adopted differ among the four BLF

schemes. This is because different F𝑢𝑝 result in diverse data distri-
bution changes from the perspective of in-operation BLF schemes.
Specifically, the proportions of the four operations are relatively
balanced (between 19% and 32%) in 𝐵𝐿𝐹1, while there are notable
differences in the operations conducted in the other three BLF
schemes. In particular, in 𝐵𝐿𝐹4, the proportion of scaling is as high
as 47%, while that of smoothing is only 8%. We also observe that
the rankings of operations among BLF schemes are different, i.e.,
𝐵𝐿𝐹3 and 𝐵𝐿𝐹4 conducted the most scaling operations, while 𝐵𝐿𝐹1
and 𝐵𝐿𝐹2 conducted the most jittering and smoothing operations.
In detail, we see that scaling and shifting operations are prominent
for schemes with triggered-based F𝑢𝑝 (i.e., 𝐵𝐿𝐹3 and 𝐵𝐿𝐹4). This
is because triggered-based F𝑢𝑝 in 𝐵𝐿𝐹3 and 𝐵𝐿𝐹4 are determined
by forecasting errors. Therefore, updates are usually performed
when the data stream changes in amplitude, which requires scaling
and shifting for data transformation. By contrast, for schemes with
periodically-based F𝑢𝑝 (i.e., 𝐵𝐿𝐹1 and 𝐵𝐿𝐹2), the proportions of
the four operations are relatively balanced. This implies that the
changes in data distribution encountered by the two schemes are
more complex as compared to the other schemes, requiring a more
diverse selection of operations.

We then analyze how AugPlug contributes BLF model updates.
Figure 10 presents two concrete examples of the deployment of BLF
schemes, which perform univariate and multivariate forecasting,
respectively.We compare the forecasting results and the accuracy of
the BLF scheme equipped with AugPlug against the original scheme.
The results show that the predicted DA policies greatly improve the
accuracy of BLF schemes after model updates. Specifically, for the
first case, the load data value gradually decreases and involves more
noise. We observe that the DA policy primarily consists of scaling
and jittering operations, which are well-suited to the characteristics
of data after update. A similar result is observed in the second case,
where AugPlug accurately identified the upcoming increase in load
values and reduced instability. Therefore, it generated a DA policy
mainly comprised of scaling and smoothing operations to cope
with these changes. In addition, since the scheme in the second
example takes temperature as an input feature, a separate DA policy
is predicted to conduct transformation for temperature data. We

151

BuildSys ’24, November 7–8, 2024, Hangzhou, China Deng et al.

14 30 60 90 180
Number of days in Dcol

0.2

0.3

0.4

0.5

0.6

C
V

R
M

SE

1 2 3 4 5
Number of operations

0.2

0.3

0.4

0.5

0.6

C
V

R
M

SE

Figure 12: The key parameters setting.

observe that the most frequently selected operation for temperature
data is shifting, which differs from the operations commonly chosen
for load data. This is because the distributions for the two types of
data are different, and so are the way they change. For temperature
data, we find that the diurnal temperature difference remains nearly
constant while the overall temperature level changes, thus requiring
shifting operations to adapt.

5.3 Ablation Study
We implement two breakdown versions of AugPlug to more closely
examine the contribution of each component. AugPlug-A replaces
the TCN-based embedding §3.3.1 with a fully connected layer to
embed the input state 𝑠 . AugPlug-B replaces the adaptable data
transformation §3.3.2 with a simplified setting where only one DA
policy is searched and applied for transformation. The results are
displayed in Figure 9, where AugPlug shows a consistently better
performance than the other configurations. We see that AugPlug
outperforms AugPlug-A and AugPlug-B by 32.65% and 20.69%, re-
spectively, in CVRMSE. More specifically, AugPlug-A has the worst
performance of all BLF models, which implies the significance of
the specifically designed embedding layer for learning effective rep-
resentations for energy time-series data. In addition, we find that
AugPlug only outperforms AugPlug-B by 12.12% on 𝐵𝐿𝐹4, while
achieving a 23.55% improvement on average over the other three
schemes. This is reasonable because the update strategy of 𝐵𝐿𝐹4
is triggered + fine-tune, which does not require a large and diverse
set of updating data. Thus, a simplified transformation scheme can
achieve a comparable performance.

In addition, we analyze two key parameter settings in AugPlug:
i) the length of collected data stream 𝐷𝑐𝑜𝑙 and ii) the number of
operations in a DA policy 𝜏 . As shown in Figure 12, we observe
that the optimal length of 𝐷𝑐𝑜𝑙 is two months, outperforming the
other configurations by 28.59% on average. As for the number of
operations in each policy, the best performance is observed when
three consecutive operations are involved, which is 36.82% better
than the other settings.

6 RELATEDWORK
Our work falls under several categories:

Data augmentation in the building domain. Having been
targeted to improve data diversity and the size of training data to
improve the accuracy of the ML model, data augmentation (DA)
has been a commonly employed technique in various application
domains. On the one hand, it can be integrated as a data preprocess-
ing step to enhance the quality of building data analysis results, as
improvements are typically expected even given sufficient data. On
the other hand, it is extremely useful for enriching building opera-
tional data for specific building energy management tasks. In the

building energy scenario, a number of studies have exploited both
basic DA methods (e.g., random transformation, pattern mixing)
[15] and advanced learning-based DA methods to generate syn-
thetic data [13, 19], for example, Conditional GANwas developed to
generate load data in the multiple buildings [2]. These DA methods
have shown promise in applications such as building occupancy
patterns [7], electricity load patterns [15], and Fault Detection and
Diagnostics (FDD) [43]. While DA schemes have been used in many
building applications, they are usually applied to train an initial
model before deployment. In response to these developments, our
work takes a significant step forward to benefit the building ML
model deployment phase.

Automated data augmentation. Conventional data augmen-
tation applies label-preserving transformations to augment data,
however, the specification of data augmentation functions relies
heavily on expert knowledge or repeated trials. To address this
shortcoming, AutoDA learns the optimal policy to augment the
target dataset [8]. AutoAugment takes a reinforcement learning ap-
proach to learn the probability and magnitude of applying different
transformations to image dataset [10]. PBA [23] and RandAugment
[11] study more efficient search methods to reduce the expensive
search effort of AutoAugment, for example, RandAugment replaces
the augmentation parameters in AutoAugment by uniform values
across all transformations and searches for the magnitude and the
number of transformations. AutoDA has been applied in such do-
mains as image [10], text [40], and time-series [36] to improve the
accuracy of the ML model. Our paper capitalizes on the strengths
of AutoDA to forge a novel path in building energy-related tasks.
In addition to leveraging RL to search for DA policies, there are
also some works based on other search algorithms, such as the
evolution algorithm [23] and Bayesian optimization [31]. Recently,
in the ML community, a great deal of work has been conducted
on improving AutoDA, such as by shortening the policy searching
time [31] , by optimizing the search space [11] , and by dynamic
policy search [24].

7 CONCLUSION
In this paper, we presented AugPlug, an automated data augmenta-
tion model to generate synthetic data as the updating sets for online
building load forecasting in the deployment phase. We first showed
that the phenomenon of ineffective updates commonly exists in
online BLF schemes. Following the automated data augmentation
(AutoDA) paradigm, we then developed a reinforcement learning-
based AutoDA model to search for the optimal data augmentation
policy when the BLF model conducts updates. AugPlug can easily
be integrated into existing online BLF schemes. Extensive evalua-
tion with four representative online BLF schemes demonstrates its
outstanding performance. We envision AugPlug being integrated
with ML training and testing platforms in building scenarios (e.g.,
AI platform for building HVAC [14]) to achieve energy savings in
future smart buildings.

ACKNOWLEDGMENTS
Dan Wang’s work is supported by RGC GRF 15200321, 15201322,
15230624, RGC-CRF C5018-20G, ITC ITF-ITS/056/22MX, and PolyU
1-CDKK, G-SAC8.

152

AugPlug: An Automated Data Augmentation Model to Enhance Online Building Load Forecasting BuildSys ’24, November 7–8, 2024, Hangzhou, China

REFERENCES
[1] V. Álvarez, S. Mazuelas, et al. 2021. Probabilistic load forecasting based on adap-

tive online learning. IEEE Transactions on Power Systems 36, 4 (2021), 3668–3680.
[2] G. Baasch, G. Rousseau, et al. 2021. A Conditional Generative adversarial Network

for energy use in multiple buildings using scarce data. Energy and AI (2021).
[3] S. Bai, J. Kolter, et al. 2018. An empirical evaluation of generic convolutional

and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271
(2018).

[4] Lucas Baier. 2021. Concept Drift Handling in Information Systems: Preserving
the Validity of Deployed Machine Learning Models. (2021).

[5] A. A. Benczúr, L. Kocsis, et al. 2018. Online machine learning in big data streams.
arXiv preprint arXiv:1802.05872 (2018).

[6] Yvon Besanger, Quoc Tuan Tran, et al. 2022. Self-updating machine learning
system for building load forecasting-method, implementation and case-study on
COVID-19 impact. Sustainable Energy, Grids and Networks 32 (2022), 100873.

[7] Zhenghua Chen and Chaoyang Jiang. 2018. Building occupancy modeling using
generative adversarial network. Energy and Buildings 174 (2018), 372–379.

[8] Tsz-Him Cheung and Dit-Yan Yeung. 2023. A Survey of Automated Data Aug-
mentation for Image Classification: Learning to Compose, Mix, and Generate.
IEEE Transactions on Neural Networks and Learning Systems (2023).

[9] G. Chitalia, M. Pipattanasomporn, et al. 2020. Robust short-term electrical load
forecasting framework for commercial buildings using deep recurrent neural
networks. Applied Energy 278 (2020), 115410.

[10] E. Cubuk, B. Zoph, et al. 2019. Autoaugment: Learning augmentation strate-
gies from data. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 113–123.

[11] E. Cubuk, B. Zoph, et al. 2020. Randaugment: Practical automated data augmen-
tation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops. 702–703.

[12] Y. Deng, J. Fan, et al. 2022. Behavior testing of load forecasting models using
BuildChecks. In Proc. of ACM e-Energy ’22.

[13] Y. Deng, R. Liang, et al. 2023. Decomposition-based Data Augmentation for
Time-series Building Load Data. In Proceedings of the 10th ACM International
Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation.
51–60.

[14] Yang Deng, Donghua Xie, Jingyun Zeng, Rui Liang, Yufei Zhang, Jiaqi Fan, Sam-
son Tai, and Dan Wang. 2024. Towards Deploying ML-based Load Forecasting
Models for Building HVAC System: an AI Evaluation Platform. In Proceedings of
the 15th ACM International Conference on Future and Sustainable Energy Systems.
488–489.

[15] C. Fan, M. Chen, R. Tang, and J. Wang. 2022. A novel deep generative modeling-
based data augmentation strategy for improving short-term building energy
predictions. In Building Simulation.

[16] C. Fan, F. Xiao, and Y. Zhao. 2017. A short-term building cooling load prediction
method using deep learning algorithms. Applied energy (2017).

[17] Z. Fazlipour, E. Mashhour, and M. Joorabian. 2022. A deep model for short-term
load forecasting applying a stacked autoencoder based on LSTM supported by a
multi-stage attention mechanism. Applied Energy 327 (2022), 120063.

[18] M. Fekri, H. Patel, et al. 2021. Deep learning for load forecasting with smart
meter data: Online Adaptive Recurrent Neural Network. Applied Energy 282
(2021), 116177.

[19] M. Fochesato, Fa. Khayatian, et al. 2022. On the use of conditional TimeGAN to
enhance the robustness of a reinforcement learning agent in the building domain.
In Proc. of ACM Buildsys ’22.

[20] N. Gugulothu and E. Subramanian. 2019. Load Forecasting in Energy Markets:
An Approach Using Sparse Neural Networks. In Proceedings of the Tenth ACM
International Conference on Future Energy Systems. 403–405.

[21] Xin He, Kaiyong Zhao, and Xiaowen Chu. 2021. AutoML: A survey of the state-
of-the-art. Knowledge-based systems 212 (2021), 106622.

[22] B. Heidrich, N. Ludwig, et al. 2022. Adaptively coping with concept drifts in
energy time series forecasting using profiles. In Proceedings of the Thirteenth
ACM International Conference on Future Energy Systems. 459–470.

[23] D. Ho, E. Liang, et al. 2019. Population based augmentation: Efficient learning of
augmentation policy schedules. In International conference on machine learning.

PMLR, 2731–2741.
[24] Chengkai Hou, Jieyu Zhang, and Tianyi Zhou. 2023. When to learn what: Model-

adaptive data augmentation curriculum. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision. 1717–1728.

[25] Rashpinder Kaur Jagait, Mohammad Navid Fekri, Katarina Grolinger, and Syed
Mir. 2021. Load forecasting under concept drift: Online ensemble learning with
recurrent neural network and ARIMA. IEEE Access 9 (2021), 98992–99008.

[26] Y. Ji, G. Geng, et al. 2021. Enhancing model adaptability using concept drift de-
tection for short-term load forecast. In 2021 IEEE/IAS Industrial and Commercial
Power System Asia (I&CPS Asia). IEEE, 464–469.

[27] A. Jozi, T. Pinto, et al. 2022. Contextual learning for energy forecasting in
buildings. International Journal of Electrical Power & Energy Systems 136 (2022),
107707.

[28] A. Li, F. Xiao, et al. 2021. Attention-based interpretable neural network for
building cooling load prediction. Applied Energy (2021).

[29] D. Li, G. Sun, et al. 2022. A short-term electric load forecast method based
on improved sequence-to-sequence GRU with adaptive temporal dependence.
International Journal of Electrical Power & Energy Systems 137 (2022), 107627.

[30] Wendi Li, Xiao Yang, Weiqing Liu, Yingce Xia, and Jiang Bian. 2022. DDG-
DA: Data Distribution Generation for Predictable Concept Drift Adaptation. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4092–4100.

[31] S. Lim, I. Kim, et al. 2019. Fast autoaugment. Advances in Neural Information
Processing Systems 32 (2019).

[32] D. Mariano-Hernández, L. Hernández-Callejo, et al. 2022. Analysis of the integra-
tion of drift detection methods in learning algorithms for electrical consumption
forecasting in smart buildings. Sustainability 14, 10 (2022), 5857.

[33] C. Miller, A. Kathirgamanathan, et al. 2020. The building data genome project
2, energy meter data from the ASHRAE great energy predictor III competition.
Scientific data (2020).

[34] Jihoon Moon, Sungwoo Park, Seungmin Rho, and Eenjun Hwang. 2022. Robust
building energy consumption forecasting using an online learning approach with
R ranger. Journal of Building Engineering 47 (2022), 103851.

[35] Samuel GMüller and FrankHutter. 2021. Trivialaugment: Tuning-free yet state-of-
the-art data augmentation. In Proceedings of the IEEE/CVF international conference
on computer vision. 774–782.

[36] Liran Nochumsohn and Omri Azencot. 2024. Data Augmentation Policy Search
for Long-Term Forecasting. arXiv preprint arXiv:2405.00319 (2024).

[37] Hugo TC Pedro, David P Larson, and Carlos FM Coimbra. 2019. A comprehensive
dataset for the accelerated development and benchmarking of solar forecasting
methods. Journal of Renewable and Sustainable Energy 11, 3 (2019).

[38] Eric Pla and Mariana Jiménez Martínez. 2023. Dealing with change: Retraining
strategies to improve load forecasting in individual households under Covid-19
restrictions. Energy Reports 9 (2023), 82–89.

[39] D. Ramos, B. Teixeira, et al. 2020. Use of sensors and analyzers data for load
forecasting: A two stage approach. Sensors 20, 12 (2020), 3524.

[40] S. Ren, J. Zhang, et al. 2021. Text autoaugment: Learning compositional augmen-
tation policy for text classification. arXiv preprint arXiv:2109.00523 (2021).

[41] A. Salem, A. Bhattacharya, et al. 2020. {Updates-Leak}: Data set inference and
reconstruction attacks in online learning. In 29th USENIX security symposium
(USENIX Security 20). 1291–1308.

[42] H. Tu, S. Lukic, et al. 2020. An LSTM-Based Online Prediction Method for Build-
ing Electric Load During COVID-19. In Annual Conference of the PHM Society,
Vol. 12. 8–8.

[43] K. Yan, A. Chong, and Y. Mo. 2020. Generative adversarial network for fault
detection diagnosis of chillers. Building and Environment 172 (2020), 106698.

[44] J. Yoon, D. Jarrett, et al. 2019. Time-series generative adversarial networks.
Advances in neural information processing systems (2019).

[45] Z. Zheng, Q. Chen, et al. 2018. Data driven chiller sequencing for reducing HVAC
electricity consumption in commercial buildings. In Proceedings of the Ninth
International Conference on Future Energy Systems. 236–248.

[46] Y. Zhou, X. Tian, et al. 2022. Elastic weight consolidation-based adaptive neural
networks for dynamic building energy load prediction modeling. Energy and
Buildings 265 (2022), 112098.

153

	Abstract
	1 Introduction
	2 Motivation and potential approach
	2.1 Background on Online Building Load Forecasting
	2.2 Motivation
	2.3 Potential Approach: Automated Data Augmentation (AutoDA)

	3 Automated Data Augmentation Model
	3.1 Design Overview
	3.2 Reinforcement Learning Formulation
	3.3 RL Agent Design: a Controller RNN
	3.4 AugPlug Training

	4 The Adoption of AugPlug
	5 Evaluation
	5.1 Methodology
	5.2 Performance Result
	5.3 Ablation Study

	6 Related work
	7 Conclusion
	Acknowledgments
	References

