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Abstract—Energy conservation is a global concern nowadays
and it is widely expected that energy cost will continuously
increase in the near future. The design of the Internet, un-
fortunately, has not taken energy issues into consideration at
the very beginning. There are emerging studies on reducing
Internet energy footprint. These studies aim at turning network
components such as line cards or routers into sleeping modes.
We make an observation that different traffic volumes on links
result in different energy consumption, even without turning-off
network devices. As such, we for the first time design a green
Internet traffic routing scheme; and it is orthogonal to those
turning-off network components schemes.

There can be many design choices for our green routing
schemes. As an example, an optimization problem can be formu-
lated where we centralized compute routing paths to minimize the
overall energy consumption. Such approach, however, requires
to deploy additional protocols for the Internet. In this paper,
we propose a hop-by-hop routing scheme. Such scheme can be
easily incorporated into current OSPF protocol. We solve many
challenges. First, we present a power model to quantify link
rate and power consumption. We validate our model using real
world experiments. Second, unlike centralized computing, a key
challenge for hop-by-hop computing is to avoid routing loops.
We thus design green routing algorithms that are isotonic and
guarantee that no loop will be formulated. Third, hop-by-hop
routing without loops does not naturally lead to minimized energy
consumption. Therefore, we develop a set of enhanced algorithms
that substantially improve the performance. Fourth, a “green”
path may degrade QoS performance such as end-to-end delay. We
study this problem and develop an algorithm that co-considers
energy conservation and path stretch.

We comprehensively evaluate our algorithms through simula-
tions on synthetic and real topologies and traffic traces. We show
that with green routing, we can save the power that is consumed
by line cards for as much as 50%.

I. INTRODUCTION

Energy conservation is a global concern nowadays and
energy cost is expected to increase for the forthcoming future.
As a consequence, energy has become an important issue
in the designs of such area as data centers [1][2], building
management [3][4], to name but a few.

There are emerging studies for saving energy for the Internet
[5][6][7][8][9][10]. In general, these studies turn the network
components such as line cards or routers into sleeping modes.
The network components to be turned off are carefully chosen
and trade-offs are investigated to balance network performance
and energy conservation. Internet routing is then conducted in
the residual topology or realized by MPLS assistance, etc.

In this paper, we study “green” routing in the sense that we
deliver traffic by selecting paths that can consume less power.
This fundamentally differs from previous schemes, though our
approach is orthogonal and can be jointly applied with them.

At the very beginning of the Internet routing designs, short-
est path routing was adopted in the hope to save such critical
resources as router computing capacity, bandwidth, etc. Energy
conservation was not listed in the design space. A commonly
accepted vision nowadays, however, is that computing and
information are becoming cheaper and energy is becoming
more expensive and we may trade computing capacity for
energy saving opportunities. In-line with such vision, we may
want to search a path that is “greener”, even though longer.

A key observation that makes this possible is that even if we
do not turn off a network component, the energy consumption
for packet delivery can be different under different traffic
volume [11]. Intrinsically, this is due to such technologies as
trunking (or bundled links) [14] and adaptive link rates (ALR)
[12]. Trunking, standardized in IEEE 802.1AX, refers to the
fact that a logical link in the Internet often reflects multiple
physical links, e.g., a 40Gbps link may consist of four 10Gbps
links; and when traffic volume is less, less physical links can
be used and less energy is consumed. ALR is an ethernet
technology where link rate and power dynamically scales
with traffic volume. Such observation leads us to think to
incorporate energy conservation into Internet routing designs.
We show an example as follows.

Example Consider a network in Fig. 1 where two links
(a, b) and (b, c) are both consisted of four parallel OC48
(2.5Gbps) physical links and the other tree links are single
OC192 (10Gbps) physical links. More specifically, for an
OC48 link, there is a baseline 125.1Watt energy consumption
and an additional 0.006Watt for each 1Mbps traffic; and for an
OC192 link, there is a baseline 134.2Watt energy consumption
and an additional 0.004 Watt for each 1Mbps traffic. In this
topology, shortest path routing will result in three paths on
each link. For example, (a, b) will support paths a ↔ b, a ↔ c
and b ↔ e. Assume that the traffic volume is 1Gbps on each
path. Link (a, b) and (b, c) then have to power on two parallel
OC48 physical links because the total traffic on these links
is 3Gbps. The total energy consumption is (125.1 + 1500 ×
0.006) × 4 + (134.2 + 3000 × 0.004) × 3 = 975.0Watt. If,
however, we use a routing where every path is the same as
shortest path except that path a ↔ c = (a, e, d, c). Then link



(a, b) and (b, c) will only carry 2Gbps and power on only one
OC48 physical link for each. The total energy consumption is
(125.1 + 2000× 0.006)× 2 + (134.2 + 4000× 0.004)× 3 =
724.8Watt, a 25.7% improvement.

One way to generalize the above example and maximize
energy conservation is to formulate the problem into an
optimization problem; analyze the problem complexity and
design a centralized routing algorithm. Such approach requires
developing a separate protocol to establish the routing paths.
In this paper, we instead choose a hop-by-hop approach. More
specifically, each router can separately compute next hops, the
same as what they do in Dijkstra today. We can then easily
incorporate the routing algorithm into OSPF protocol.

Under this hop-by-hop design decision, we face three main
challenges: 1) we need to clarify an appropriate power model;
2) to be practical, the computation complexity should be com-
parable to shortest path routing (i.e., Dijkstra) and loop-free; 3)
hop-by-hop computing should maximize energy conservation;
and 4) important QoS performance of the network such as path
stretch may be co-considered, and can be naturally adjusted.

In this paper, we present a comprehensive study. We first
develop a power model and we validate our power model
using real experiments. We then develop principles and a
baseline hop-by-hop green routing algorithm that guarantees
loop-free. The algorithm follows the widely known algebra
with isotonic property. We further develop an advanced al-
gorithm that substantially improves the baseline algorithm in
energy conservation. We also develop an algorithm that co-
considers energy conservation and path stretch, and do a in-
depth study on the problem of maximizing energy conservation
with QoS requirements. We evaluate our algorithms using
comprehensive simulations on synthetic and real topologies
and traffic traces. The results show that our algorithms may
save more than 50% energy on line cards.

The rest of this paper is organized as follows. Section II
presents related work. The power model is presented in Section
III. The design outline and some properties of routing algebra
are discussed in Section IV. After that, the design of hop-
by-hop green routing is presented in Section V. Section VI
presents the evaluation while Section VII concludes the paper.

II. RELATED WORK

Together with the world-wide objective to build a greener
globe, more and more computing systems put energy conser-
vation into their design principles [1][2].

There are efforts to develop a greener Internet as well
[15][16]. Some studies save energy of specific network devices
[17][18]. GreenTE [5] is proposed to use MPLS tunnels to
aggregate traffic so as to turn the under-utilized network
components into sleeping modes to save energy. REsPoNse
[6] is proposed to offline identify energy-critical paths and on-
demand paths. The packets are online delivered also with the
objective to effectively aggregate traffic to turn more network
components into sleeping modes. GreenTE and REsPoNse
are both centralized schemes. GreenOSPF [7] is proposed
to aggregate traffic in a distributed fashion and turn the

network components into sleeping modes. However, to achieve
a good performance, a centralized algorithm [8] is still needed
to assign sleeping links. ESACON [9] is proposed to col-
laboratively select sleeping links with special connectivity
properties. Routing paths are then computed after removing
these links. A fully distributed approach is proposed [10]
which collects global traffic information and aggregates traffic
to turn appropriate network components into sleeping mode.

Our approach differs from all the aforementioned schemes
as follows. First, all previous proposals set network devices
or links into sleeping modes. Our design is based on the
observation that different traffic volume also has different
energy consumption. Internet routing algorithm may take this
into consideration. To the best of our knowledge, we are the
first to propose such scheme. Second, though some previous
schemes compute the network components to be shut down in
a distributed fashion, large changes to current routing protocols
are still needed. Our routing computation is hop-by-hop and
Dijkstra-oriented. We believe this is easier to be incorporated
into current routing architecture.

We may consider green as one type of service that the
Internet should be provisioned. There are many studies on
Internet Quality of Service [19]. There were two different
approaches in Internet QoS support beyond shortest path
routing. One is centralized computation [20]. The benefit
is that since different types of services usually introduce
conflictions, a centralized scheme can compute optimal or near
optimal solutions. The disadvantage is that centralized com-
putation requires additional protocols, which is a non-trivial
overhead. The other is to maintain hop-by-hop computation
by managing different types of services into a singular link
weight [21]. A seminal paper [21] shows that to make hop-
by-hop computation loop-free requires the link weights to have
certain isotonicity properties and a routing algebra model is
developed.

In this paper, we also leverage the algebra model to develop
hop-by-hop computing for green Internet routing that is loop-
free. We have a set of algorithms where we gradually improve
the energy conservation performance.

III. POWER MODEL

We model the relationship between the power consumption
and the traffic volume. We first present the router operation
backgrounds and our modeling details. We then use simula-
tions and experiments to validate our modeling.

A. Router Operation Backgrounds and Power Modeling

A link between two routers is physically connected by two
line cards; and the line cards consume the majority power
of the routers [11]. We thus use link power consumption to
abstract the power consumption of the line cards.

We can divide the power consumption into two different
categories: 1) power consumed by line card CPU processor;
this is super-linear to the traffic volume and 2) power con-
sumed by such operations as buffer I/O, packet lookup, etc;
this is usually linear to the traffic volume.
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Fig. 1: An example of green routing
with adaptive link rates.

Fig. 2: The link power model. (a) The traffic-power curves defined by Eq. (1) and Eq.
(4). (b) The measured traffic-power curve, where two links are sharing the traffic when
the traffic is larger than 400Mbps.

There are many components in a line card. With advanced
technologies, many components can individually change to
low-power states or be turned off after the traffic volume is
reduced under different levels of thresholds. For instance, an
Intel processor has active state C0, auto halt state C1, stop
clock state C2, deep sleep state C3 and deeper sleep state
C4, all with different power consumption. Similarly a PCIe
bus which connects the chips has the states of D0, D1, D2,
D3hot and D3cold. Since turning on-off of these components
are discrete, we can generally see a discrete stair-like behavior
in power consumption (see Fig. 2(a)).

With these backgrounds, we can classify two types of
links: 1) trunk-links (i.e., adaptive link rate) where advanced
technologies are adopted and components can be individually
turned off, resulting a stair-like behavior in power consumption
and 2) non-trunk-links. Today, non-trunk-links are still the
majority, yet trunk and ALR technologies are under fast
development.

We first model the non-trunk-links and then we model the
trunk-links by revising the non-trunk-link model to include the
stair-like behavior. Our objective is to model the relationship
between link power consumption and traffic volume.

Note that a logical link in the Internet topology may consist
of several bundled physical links. Let l be a link, and nl be
the number of physical links. Let xl be the traffic volume on
this link; then the traffic on each physical link is xl

nl
. Let δl

be the idle power of a line card. The power consumption for
the first category (i.e., CPU, super-linear) on each physical
link can be modeled as µl

(
xl

nl

)αl

, where µl, αl are constants
(α > 1) [22]. The power consumption for the second category
(buffer I/O, packet lookup, etc, linear) on each physical link
is ρl

xl

nl
, where ρl is a constant. Finally, let Pno

l be the total
power consumption of a non-ALR-link, we have

Pno
l (xl) = 2nl ×

(
δl + ρl

xl

nl
+ µl

(
xl

nl

)αl
)
. (1)

Here 2nl denote the fact that the power is consumed for the
line cards on both ends of the link.

For a trunk-link, the difference is the discrete stair-like
behavior. We model two intrinsic reasons for the discrete stair-

like behavior: 1) physical links can be powered off under
different traffic volume; and 2) different components in line
cards can be turned-off under different traffic volume.

Let nc ∈ {0, 1, . . . , nl−1} be the number of physical links
being powered off and r0, r1, . . . , rnl−1(r0 < r1 < · · · <
rnl−1) are traffic volume thresholds to power off a physical
link, we have:

nc =


nl − 1, if r0 ≤ xl < r1
nl − 2, if r1 ≤ xl < r2
. . . , . . .
1, if rnl−2 ≤ xl < rnl−1

0, if rnl−1 ≤ xl

(2)

Similarly, let the number of line card states be ns, and δc =
δi for i ∈ {0, 1, . . . , ns−1} be the power reduced by switching
a line card into the ith state (0 = δ0 < δ1 < · · · < δns−1), we
have

δc =


δns−1, if r′0 ≤ xl

nl−nc
< r′1

δns−2, if r′1 ≤ xl

nl−nc
< r′2

. . . , . . .
δ1, if r′ns−2 ≤ xl

nl−nc
< r′ns−1

δ0, if r′ns−1 ≤ xl

nl−nc

(3)

where r′0, r
′
1, . . . , r

′
ns−1 are traffic volume thresholds.

Finally, let P a
l be the total power consumption of a trunk-

link, we have

Pa
l (xl) = 2(nl − nc)

(
δl − δc +

ρlxl

nl − nc
+ µl

(
xl

nl − nc

)αl
)

(4)

Eq. (4) is equivalent to Eq. (1) if nc and δc equal 0.

B. Simulation and Experimental Validation

Eq. (1) and Eq. (4) are abstract. For illustration purpose,
we plot them in Fig. 2(a). In Fig. 2(a) we set the link to
consist of four 1Gbps physical links (i.e., nl = 4). The idle
power δl for each physical link is set to 180 Watt. We set
ρl = 0.0005, µl = 0.001 and αl = 1.4; these are based on
suggested values in [11] and [22]. We set r0, r1, r2, r3, r4 to
0, 1000, 2000, 3000, 4000 Mbps. We assume that there are 5
states for the line card components, which can reduce power
by 5, 3.5, 2, 1, 0 Watt respectively. We set r′0, r

′
1, r

′
2, r

′
3, r

′
4 to



0, 200, 400, 600, 800, 1000 Mbps. This can be seen as the fact
that smaller traffic volume leads to more energy conservation
for a trunk-link.

Not surprisingly, we see that for the non-trunk-link, the
power consumption is dynamically correlated to the traffic
volume; and for the trunk-link, the power consumption shows
a discrete stair-link behavior. We validate this power model
with experiments using a real commercial router.

We set up the experiment by generating packets of 64
bytes using a PC and sending the packets to a commercial
BitEngine12000 router [23], through four 1Gb ethernet links.
The traffic volume varies from 1Mbps to 4000Mbps. The
router has four 4GE line cards and powers on proper number
of line cards to forward the traffic. We measure the power of
the 4GE line cards and the results are shown in Fig. 2(b). We
see that the curve matches our model closely.

In this paper, we will focus on the power consumed for
traffics. Therefore, we subtract the idle power P a

l (0) or
Pno
l (0). The final power model Pl(xl) is

Pl(xl) =

{
P a
l (xl)− P a

l (0) l is a trunk-link
Pno
l (xl)− Pno

l (0) l is a non-trunk-link (5)

IV. OVERVIEW AND PRELIMINARIES

The objective of our green Internet routing is to minimize
the total energy consumption in the network. We choose a
hop-by-hop approach because it can be easily integrated to
the current Internet routing architecture.

Formally, a network is modeled as G(V,E), where V
denotes the set of vertexes (nodes) and E denotes the set
of edges (links). A path from node s to d is a sequence of
nodes (v0 = s, v1, v2, . . . , vn = d), where (vi, vi+1) ∈ E
for 0 ≤ i < n. Following Section III, let xl be the traffic
volume and Pl(xl) follow the power model in Eq. (5). The
objective is thus min

∑
l∈E Pl(xl), with the constraint that the

source-destination paths are loop-free and can be polynomially
computed at each node.

For a hop-by-hop approach, simply computing the “green-
est” path (i.e., with smallest energy consumption) for each
source and destination pair may not minimize total energy con-
sumption. The traffics of different paths collectively increase a
link utilization ratio, and lead to a larger energy consumption.
This is a standard local vs. global optimal problem. One
possible solution is to let each router compute routing based
on global traffic matrices which reflect the volume of traffic
that flows between all possible source and destination pairs.
However, it is not easy to obtain a traffic matrix, because 1)
direct measurements to populate a traffic matrix is typically
prohibitively expensive [24], and 2) the procedure to estimate
a traffic matrix from partial data is of high complexity, as the
associated optimization problem is non-convex [24].

Thus, for a hop-by-hop scheme whose complexity can be
comparable to Dijkstra, we design a path weight similar to the
path weight used by Dijkstra, where the weight should reflect
total energy conservation based on partial traffic data.

The path weights must be carefully designed to make sure
hop-by-hop computing is loop-free. We show an example

where loop-freeness fail. We see a topology in Fig. 3. Assume
that (a, b), (a, c) are non-trunk-links and (b, c) is a trunk-link.
The power consumption of the links are P(a,b)(xl) = 0.1xl,
P(a,c)(xl) = 0.3xl, and P(b,c)(xl) = 0.1xl if xl < 10, or else
P(b,c)(xl) = 0.1xl + 5.

Given the traffic demand of a source node, assume a hop-by-
hop scheme straightforwardly chooses to compute path weight
as the sum of the power consumption of all the links in the path
(i.e., “greenest” path). Suppose node a has a traffic demand of
5 to send to node c. The path weight of (a, b, c) is 0.1× 5 +
0.1×5 = 1 and the path weight of (a, c) is 0.3×5 = 1.5. Thus
node a will choose path (a, b, c) to deliver packets. Meanwhile,
suppose node b has a traffic demand of 10 to send to node c.
The path weight of (b, a, c) is 0.1 × 10 + 0.3 × 10 = 4 and
the path weight of (b, c) is 0.1×10+5 = 6. Thus node b will
choose path (b, a, c) to deliver packets. As a result, a loop is
introduced between node a and b, and packets destined for c
will never reach c.

b

a c

The path to c
calculated by b

The path to c
calculated by a

Fig. 3: An example of routing loops.

Intrinsically, to achieve loop-freeness, there are certain
properties that the path weights should follow. A seminal work
[21] first explained the properties through a routing algebra
model. Here we briefly present the background.

A routing algebra (also called a path weight structure) is
defined as quadruplet (S,⊕,≼, w). S denotes the set of path
weights. ⊕ is a binary operation upon the path weights. ≼
is an order relation to compare two path weights. w is a
function that maps a path to a weight. Let p ◦ q denotes the
concatenation of path p and q. Then w(p ◦ q) = w(p)⊕w(q).
In particular, the weight of a path p = (v0, v1, . . . , vn) is
w(p) = w(v0, v1) ⊕ w(v1, v2) ⊕ · · · ⊕ w(vn−1, vn). We call
the weight of a path which has only one hop a link weight.
The path with the lightest weight is preferred. Formally, path
p is the lightest path if w(p) ≼ w(q) for any q.

For example, in shortest path routing, the path weight is
the sum of the link lengths. Thus, S = R+ and ⊕ is +. The
shortest path is preferred and thus ≼ is ≤. In widest routing,
where one needs to find a path with the largest bandwidth, the
path weight equals the bandwidth of the bottleneck link. Thus
S = R+, w(p)⊕ w(q) means min(w(p), w(q)), and ≼ is ≥.

There are two steps to avoid loops in hop-by-hop computing
[25]: 1) certain properties need to be satisfied (intrinsically,
path concatenation should follow certain properties) and 2)
routing algorithm is designed accordingly. We introduce a few
definitions from [25].

Definition 4.1: (S,⊕,≼, w) is left-isotonic if w(p1) ≼
w(p2) implies w(q ◦ p1) ≼ w(q ◦ p2), for all paths p1, p2, q.
Similarly, (S,⊕,≼, w) is strictly left-isotonic if w(p1) ≺
w(p2) implies w(q ◦ p1) ≺ w(q ◦ p2), for all paths p1, p2, q.

Definition 4.2: (S,⊕,≼, w) is right-isotonic if w(p1) ≼
w(p2) implies w(p1◦q) ≼ w(p2◦q), for all p1, p2, q. Similarly,



(S,⊕,≼, w) is strictly right-isotonic if w(p1) ≺ w(p2) implies
w(p1 ◦ q) ≺ w(p2 ◦ q), for all paths p1, p2, q.

We have the following theorems [25][26].
Theorem 4.1: Dijkstra’s algorithm is guaranteed to find the

lightest paths if and only if the path weight structure (S,⊕,≼
, w) is right-isotonic [25].

Dijkstra’s algorithm mentioned in Theorem 4.1 uses source
node s as the root node for computation. If we use the
destination node d as the root node for computation, we have:

Theorem 4.2: Dijkstra’s algorithm that uses d as the root
node is guaranteed to find the lightest paths if and only if the
path weight structure (S,⊕,≼, w) is strictly left-isotonic [26].

V. HOP-BY-HOP GREEN ROUTING ALGORITHMS

We now study hop-by-hop green routing (Green-HR). We
first study a baseline Green-HR algorithm Dijkstra-Green-B
that is loop-free. We then study some intrinsic relationships
between link weights and power consumption and we finally
develop an advanced algorithm Dijkstra-Green-Adv.

A. Dijkstra-Green-B Algorithm

From Section IV, we see that the key is to develop an
appropriate weight for a path so that it incorporates “green”
and holds isotonicity. A Dijkstra-oriented algorithm can then
be developed to achieve loop-free hop-by-hop routing.

In this algorithm, we emphasize on isotonicity. A pre-
liminary observation is that though we cannot choose the
“greenest” paths; for global energy conservation, we also
should not choose a path that is too long, which collectively
consumes more energy.

We thus set the weight as follows. For each destination node
d, we assign xv

0 as a starting weight. This xv
0 is determined

by the total bandwidth associated with d and we will specify
this later. For a path p = (s = v0, v1, . . . , vn = d), we
set a “virtual traffic volume” for each link l = (vi, vi+1),
i ∈ {0, 1, . . . , n − 1} to xv

l = xv
0 · βh. Here β (β > 1) is

a constant and h is the hop number of the lightest-shortest
path pls(vi+1, d), i.e., one of the lightest paths from vi+1

to d which has the least number of hops. Intuitively, we
pose an exponential penalty to each additional hop in a
path. The weight of a link is set to Pl(x

v
l ), where Pl(·)

follows the power function in Section III. The weight of path
p = (s = v0, v1, . . . , vn = d) is the sum of the weight of each
link:

wb(p) =
n−1∑
i=0

P(vi,vi+1)

(
xv
0 · βHops(pls(vi+1,d))

)
, (6)

where function Hops(p) returns the hop number of path p.
Note that a link’s weight is not a static value, and may differ
with path p and destination node d. However, we can proof
the strict left-isotonicity of this path weight structure.

We define an algebra (S,⊕,≼, wb) based on Eq. (6) where
S is R+, ≼ is ≤, wb are given in Eq. (6), and wb(p)⊕wb(q)
is equal to wb(p ◦ q) which can be calculated by Eq. (6).

Theorem 5.1: The algebra (S,⊕,≼, wb) defined by Eq. (6)
is strictly left-isotonic.

Proof: As shown in Fig. 4. Suppose p1 and p2 are two
paths from node s to node d. Without loss of generality, we
suppose that p1 is lighter than p2, i.e., wb(p1) ≺ wb(p2). Let
us check the order relation between wb(q ◦ p1) and wb(q ◦
p2), i.e., the weights after concatenating p1 and p2 to path q,
respectively.

dv0

p1

p2

q

v1 vn=s

The lightest-shortest 
path from vi+1 to d

vi+1

Fig. 4: The topology used to prove the strict left-isotonicity of path
weight structure defined by Eq. (6).

Assume q = (v0, v1, v2, . . . , vn = s). According to Eq. (6)
we have

wb(q ◦ p1) =
n−1∑
i=0

P(vi,vi+1)

(
xv
0 · βHops(pls(vi+1,d))

)
+wb(p1)

and

wb(q ◦p2) =
n−1∑
i=0

P(vi,vi+1)

(
xv
0 · βHops(pls(vi+1,d))

)
+wb(p2).

Note that the length of the lightest-shortest path from vi to d
is independent of p1 or p2. Because wb(p1) ≺ wb(p2) means
wb(p1) < wb(p2), we can obtain from the above equations
wb(q ◦p1) < w(q ◦p2), which means wb(q ◦p1) ≺ wb(q ◦p2).

This implies that the strict left-isotonicity holds, and com-
pletes the proof.

Based on Theorem 4.2 and Theorem 5.1, we can achieve
a consistent (thus loop-free) hop-by-hop routing by applying
Dijkstra-like algorithm and we develop Algorithm Dijkstra-
Green-B. P in the inputs denotes the set of the traffic-power
functions of all the links in E. In the algorithm, w[v] denotes
the weight of the current path from v to d and φ[v] denotes
the successor (or next hop node) of v. N(u) denotes the
set of neighbor nodes of u. h[u] is used to store the hop
number of the lightest-shortest path from u to d. There are
a few differences between Dijkstra-Green-B and the standard
Dijkstra. 1) A sink tree rooted at d is calculated and the
algorithm halts once s is extracted (Step 5 to 7). 2) h[u] is
used to record the lightest-shortest path. 3) A link weight is
calculated according to Eq. (6) in Step 9 and 10.

The computation complexity of Dijkstra-Green-B is the
same as the standard Dijkstra in the worst case, i.e., O(|E|+
|V | log |V |). However, the algorithm can stop once the path
from s to d is finished and the complexity in the best case is
O(1). Thus, we can expect that the average complexity is less
than Dijkstra.

B. Link Weights vs. Energy Conversation

In order to achieve greater energy conversation, we take a
closer look at two main factors affecting power consumption.



Algorithm Dijkstra-Green-B()
Input: G(V,E), s, d, P , xv

0 , β;
Output: the green path from s to d which is stored in φ[];
1: for each node v ∈ V
2: w[v] ⇐ ∞; φ[v] ⇐ null; h[v] ⇐ ∞;
3: Q ⇐ V ; w[d] ⇐ 0; h[d] ⇐ 0;
4: while Q ̸= ϕ
5: u ⇐ Extract Min(Q);
6: if u = s
7: return φ[];
8: for each node v ∈ N(u)

9: x ⇐ xv
0 · βh[u];

10: ϖ ⇐ P(v,u)(x);
11: if w[u] +ϖ < w[v]
12: φ[v] ⇐ u;
13: w[v] ⇐ w[u] +ϖ; h[v] ⇐ h[u] + 1;
14: else if w[u] +ϖ = w[v] and h[u] + 1 < w[v]
15: φ[v] ⇐ u; h[v] ⇐ h[u] + 1;
16: return null; //unreachable

1) Link weights vs. Power consumption per unit traffic
volume: Recall the traffic-power functions (Eq. (1) and Eq.
(4)) in Section III. The power consumption of a link increases
with the increasing of the traffic volume. The link weight
should reflect this. As a matter of fact, if the traffic volume
xl is proportion to ρl, we can achieve an optimal routing.

Lemma 5.1: If Pl(xl) = ρlxl for any l ∈ E, the minimum
power routing can be achieved by setting the weight of link l
to ρl, and running Dijkstra in each router.

Proof: The total power consumption can be represented
by the sum of the power consumed by each path, because
Pl(xl) = ρlxl = ρl

∑
p x

p
l , where xp

l is the traffic volume of
path p which traverses link l. For any path p = (v0, v1, . . . , vn)
which has a traffic volume xp, the power consumption
is

∑n−1
i=0 ρ(vi,vi+1)x

p = xp
∑n−1

i=0 ρ(vi,vi+1). By setting the
weight of each link l to ρl and running Dijkstra in each router,∑n−1

i=0 ρ(vi,vi+1) can be minimized. Thus, the power of path
p is minimized. As a result, the total power consumption is
minimized.

In general, a link weight should reflect dPl

dxl
, i.e., the power

consumption per unit traffic volume. We can set the link weight
to Pl(xl +∆x)− Pl(xl) where ∆x is a small constant.

2) Link weight vs. trunk-link: We know that for a trunk-
link, if the traffic volume results in a leap to a higher “stair”,
there can be great power loss. We tend to assign a higher
weight for a trunk-link to reduce its traffic volume. However,
this comes with a tradeoff that the end-to-end paths may
become longer and the extra hops also consume power. We
can reduce the power consumption only if the power increment
induced by the path stretches is less than the power leaping.

Generally, we take a heuristic by multiplying the weight of
an trunk-link with a factor kl

kl = γ

√
xv
0

ru − rd
, (7)

where γ is used to balance the link weights of non-trunk-
links and trunk-links; xv

0 is an estimated end-to-end traffic
and is the same as in Section V-A; ru and rd are calculated as
follows. Given traffic volume xl, ru is the least traffic volume
where a power leaping may occur and ru > xl (recall that we

have traffic thresholds r0, r1, . . . , rnl−1 in our power model in
Section III), and let ru = cl if ru cannot be found, where cl
is the capacity of link l; rd is the largest traffic volume where
a power leaping may occur and rd < xl, and let rd = 0 if rd
cannot be found. In practical, we use the historical link load x̄l

instead of the realtime value xl to avoid routing oscillations,
because x̄l has a diurnal pattern under shortest path routing.
We can see that if xv

0 is big and/or ru − rd is small, a power
leaping is likely to happen, and we have a big kl.

In what follows, we prove that we can develop a path weight
that is isotonic based on these two improvements. We however
admit that these two improvements are still preliminary and
we leave more in depth investigation into future work.

C. Dijkstra-Green-Adv Algorithm

Based on the discussion above, we design an advanced path
weight for Green-HR. We also prove the isotonicity to achieve
the loop-free hop-by-hop routing, after which we develop the
Dijkstra-Green-Adv algorithm.

Specifically, a link weight is assigned in two steps. First,
the weight of link l is set to Pl(x̄l+xv

0)−Pl(x̄l), where x̄l is
the historical traffic volume estimation for link l and xv

0 is the
same as in Section V-A. Second, we scale up the link weight
by kl if link l is a trunk-link, where kl is defined as in Eq.
(7). For a path p, the weight function wadv(p) is defined as
follows.

wadv(p) =
∑
l∈p

(Pl(x̄l + xv
0)− Pl(x̄l)) · kl. (8)

We define the path weight structure (S,⊕,≼, wadv) based
on Eq. (8). S is R+ and ≼ is ≤. wadv are given in Eq. (8),
and wadv(p)⊕wadv(q) is equal to wadv(p ◦ q) which is equal
to wadv(p) + wadv(q).

Theorem 5.2: The path weight structure defined by Eq. (8)
is strictly left-isotonic.

Proof: As shown in Fig. 5. Suppose p1 and p2 are two
paths from node s to node d. Without loss of generality, we
suppose that p1 is lighter than p2, i.e., wadv(p1) ≺ wadv(p2).
We need to check the order relation between wadv(q ◦p1) and
wadv(q ◦ p2) to proof strictly left-isotonicity.

s d

p1

p2

q

Fig. 5: The topologies used to prove the strict isotonicity of path
weight structure defined by Eq. (8).

According to Eq. (8), we have wadv(q ◦ p1) = wadv(q) +
wadv(p1) and wadv(q ◦ p2) = wadv(q) + wadv(p2). This is
because x̄l and xv

0 do not change when concatenating p1
and p2 to q, respectively. Because wadv(p1) ≺ wadv(p2), i.e.
wadv(p1) < wadv(p2), we obtain wadv(q◦p1) < wadv(q◦p2),
which means wadv(q ◦ p1) ≺ wadv(q ◦ p2). This implies that
the path weight structure is strictly left-isotonic.



Algorithm Dijkstra-Green-Adv()
Input: G(V,E), s, d, P , xv

0 , x̄;
Output: the advanced green path from s to d which is stored in φ[];
1: for each node v ∈ V
2: w[v] ⇐ ∞;φ[v] ⇐ null;
3: Q ⇐ V ;w[d] ⇐ 0;
4: while Q ̸= ϕ
5: u ⇐ Extract Min(Q);
6: if u = s
7: return φ[];
8: for each node v ∈ N(u)
9: ϖ ⇐ P(u,v)(x̄(u, v) + xv

0)− P(u,v)(x̄(u, v));
10: ϖ ⇐ ϖ · k(u, v);
11: if w[u] +ϖ < w[v]
12: φ[v] ⇐ u;
13: w[v] ⇐ w[u] +ϖ;
14: return;

Based on Theorem 4.1 and Theorem 5.2, we design the
advanced algorithm which can run in a hop-by-hop manner,
namely the Dijkstra-Green-Adv algorithm.

The algorithm makes only a few modifications to the stan-
dard Dijkstra’s algorithm. There are some new inputs including
the set of traffic-power functions P , the set of historical traffic
volumes x̄, and xv

0 . In the algorithm, w[v] denotes the weight
of the current path from v to d and φ[v] denotes the successor
(or next hop node) node of v. N(u) denotes the set of neighbor
nodes of u. The main difference between Dijkstra-Green-Adv
and the standard Dijkstra’s algorithm is that Dijkstra-Green-
Adv calculates the link weight of (u, v) in Step 9 and 10
according to Eq. (8). The computation complexity of Dijkstra-
Green-Adv is the same as the Dijkstra-Green-B algorithm, i.e.,
O(|E|+ |V | log |V |) in the worst case.

D. Dijkstra-Green Algorithm

When designing the Green-HR algorithm for energy conser-
vation, we should also take into account the QoS requirements
such as end-to-end delay and bottleneck bandwidth. This
is because QoS guarantee is important to users and is a
major concern of Internet Service Providers (ISP). However, a
greener path may be longer or more congested, which degrades
the QoS performance. We will first develop an algorithm that
co-considers energy conservation and path length. We will then
further discuss the relationship between Green-HR and QoS
requirements.

Let wadv(p) be the path weight defined as Eq. (8), which
reflects the power consumption. Let Len(p) be the length
of path p. We will combine wadv(p) and Len(p) in order
to get small path stretch (the ratio of a path of the source-
destination against the shortest path of the source-destination).
We analysis the path stretches of wadv(p) and find that the
path stretch is small for most of the paths; yet there exists
some big stretch when the length of the shortest path is small.
Thus, we develop the algorithm which takes additional special
considerations for the short paths.

Specifically, we take a heuristic by dividing the link length
with the root of the shortest path length to node d. In this way,
path length will dominate in the path weight for short paths,
and power will dominate for long paths. The weight of path

p = (s = v0, v1, . . . , vn = d) is defined as

wg(p) = wadv(p) +

n−1∑
i=0

κ · Len(vi, vi+1)√
Len(ps(vi+1, d))

(9)

where ps(vi, vj) denotes the shortest path from node vi to
node vj , and κ is a constant factor which we can use to adjust
the path stretch performance.

We define the path weight structure (S,⊕,≼, wg) similar to
(S,⊕,≼, wb) and (S,⊕,≼, wadv), except that ⊕ and wadv is
defined by Eq. (9).

Theorem 5.3: The path weight structure defined by Eq. (9)
is strictly left-isotonic.

Proof: As shown in Fig. 4. Suppose p1 and p2 are two
paths from node s to node d. Without loss of generality, we
suppose that p1 is lighter than p2, i.e., wg(p1) ≺ wg(p2).

Assume q = (v0, v1, v2, . . . , vn = s). According to Eq. (9)
we have

wg(q ◦ p1) =
n−1∑
i=0

κ · Len(vi, vi+1)√
Len(ps(vi+1, d))

+ wg(p1)

and

wg(q ◦ p2) =
n−1∑
i=0

κ · Len(vi, vi+1)√
Len(ps(vi+1, d))

+ wg(p2).

Note that the length of the shortest path (not the light-
shortest path as shown in Fig. 4) from vi+1 to d is independent
of p1 or p2. Because w(p1) ≺ w(p2) means wg(p1) < wg(p2),
we can then obtain wg(q ◦ p1) < wg(q ◦ p2), which means
wg(q ◦ p1) ≺ wg(q ◦ p2). This implies that the strict left-
isotonicity holds.

Based on Theorem 4.2 and Theorem 5.3, we develop a loop-
free hop-by-hop algorithm named Dijkstra-Green.

Algorithm Dijkstra-Green()
Input: G(V,E), s, d, P , xv

0 , x̄, ps, κ;
Output: the green path with less path stretch from s to d
which is stored in φ[];

1: for each node v ∈ V
2: w[v] ⇐ ∞;φ[v] ⇐ null;
3: Q ⇐ V ;w[d] ⇐ 0;
4: while Q ̸= ϕ
5: u ⇐ Extract Min(Q);
6: if u = s
7: return φ[];
8: for each node v ∈ N(u)
9: ϖ ⇐ P(u,v)(x̄(u, v) + xv

0)− P(u,v)(x̄(u, v));
10: ϖ ⇐ ϖ · k(u, v);
11: ϖ ⇐ ϖ + κ · Len(u, v)/

√
Len(ps(u, d));

12: if w[u] +ϖ < w[v]
13: φ[v] ⇐ u;
14: w[v] ⇐ w[u] +ϖ;
15: return;

The algorithm is based on Dijkstra-Green-Adv. We add
new inputs including the set of shortest paths ps and κ.
The main modification made to Dijkstra-Green-Adv is that
Dijkstra-Green combines path length in the link weight in
Step 11. Since we have to maintain the shortest paths when
the topology changes, the computation complexity of Dijkstra-
Green is O(|E||V |+ |V |2 log |V |) in the worst case.



E. Discussion on Green-HR and QoS Requirements

We now study the problem of hop-by-hop green routing
with limited degrading on general QoS parameters. Naturally,
the goal is to find the paths which minimize the power
consumption, subjected to some QoS constraints. We study
a simple case when only one QoS parameter is considered.
Formally, for a path p from node s to node d, let w1(p) be the
weight of path p which reflects the QoS parameter, and w2(p)
be the path weight which reflects the power consumption. Let
pl be the path with the lightest QoS weight w1(pl). Given a
threshold value ζ, our objective is to find a path p∗ from s to d,
such that for any path p from s to d, we have w2(p

∗) ≼ w2(p)
and w1(p

∗) ≼ w1(pl)⊕ ζ.
However, we find that it is impossible to design an isotonic

path weight structure that meet the above conditions. More
generally, if we combine two path weights in order to optimize
one while bounding the other, the result path weight structure
will never be isotonic. We find that this is due to the intrinsic
nature of routing algebra. We summarize the conclusion in the
following lemma.

Lemma 5.2: Given two isotonic path weight structures
(S1,⊕1,≼1, w1) and (S2,⊕2,≼2, w2), path weight structure
(S,⊕,≼, w) defined as follows is not isotonic: path p∗ from
s to d is the lightest for (S,⊕,≼, w) if and only if
(1) w1(p

∗) ≼1 w1(pl) ⊕1 ζ for a given ζ, where pl is the
lightest path from s to d for (S1,⊕1,≼1, w1);
(2) w2(p

∗) ≼2 w2(p), where p is a path from s to d and
w1(p) ≼1 w1(pl)⊕1 ζ.

Proof:
We prove the lemma by contradiction. Assume that (S,⊕,≼

, w) is isotonic. Then, according to [25], there exists at least
one lightest path from s to d such that all its subpaths with
destination d are also lightest paths. Such a lightest path is
called a D-lightest path. Now, we will show a counter example
where we can find no lightest path that is a D-lightest path.

The example is shown in Fig. (6), where w1(p1) = w1(p2)
and w1(q) = ζ and w1(p3) ≼1 w1(p2)⊕1ζ, and w2(q◦p3) ≺2

w2(q ◦ p2) ≺2 w2(p1).
There are three paths from s to d: p1, q ◦ p2, and q ◦ p3.

q ◦ p3 is not a lightest path because

w1(q◦p3) = w1(q)⊕1w1(p3) ≻1 ζ⊕1w1(p2) = w1(p1)⊕1 ζ,

which does not meet condition (1) of Lemma 5.2. Similarly,
p1 is not a lightest path because

w2(p1) ≻2 w2(q ⊕2 p2),

which does not meet condition (2) of Lemma 5.2.
Thus, the lightest path from s to d is q ◦ p2. However,

the lightest path from s′ to d is not p2 but p3, because
w1(p3) ≺1 w1(p2) ⊕1 ζ and w2(p3) ≺2 w2(p2). This means
that the lightest path from s to d is not a D-lightest path, and
we conclude that (S,⊕,≼, w) is not isotonic.

Note that in Lemma 5.2, the QoS parameter is bounded by
w1(pl)⊕1 ζ. Sometimes, we may wish to bound the parameter

s d

s'

p1

q p3

p2

Fig. 6: An example of routing loops.

by a scale factor. For example, let Len(p) be the length of path
p, then we want Len(p) ≤ ζ ·Len(ps) where ζ > 1. However,
in such a case, the same conclusion as Lemma 5.2 can still be
deduced.

Lemma 5.2 implies that a QoS parameter can not be
bounded if we minimize a path weight for energy conser-
vation by using a hop-by-hop routing that is guaranteed to
be loop-free. This is also true for multiple QoS parameters.
Thus, we have to study the intrinsic relationship between a
particular QoS parameter and a green path weight structure
when combining them.

VI. PERFORMANCE EVALUATION

A. Methodology

We use both synthetic and real topologies in the simulations.
For the synthetic topologies, we use BRITE [27] to generate
network topologies and the parameters follow [28]. Each dot
in the figures is an average of 1000 random and independent
simulations. We have two real topologies: 1) the Abilene
backbone with 12 nodes and 15 two-directional links, and
2) the China Education and Research Network (CERNET)
backbone, which has 8 nodes and 12 two-directional links (9
links are trunk-links).1

The link capacities of the synthetic topologies are deter-
mined based on the fact that a node with a big degree is
likely to hold links with large capacity [29]. We set a link’s
capacity to 9953.28Mbps (OC192-1 port) if both end nodes
of the link have a degree larger than 5. The capacity is set to
2488.32Mbps (OC48-1 port) if one end node has a degree
larger than 5 and the other has a degree less than 6 but
larger than 2. Finally, the other links’ capacities are set to
622.08Mbps (OC12-1 port).

For synthetic topologies and CERNET, we create traffic
matrices according to the gravity model [24]. The traffic
volume from node s to d, namely f(s, d), is proportional to
the total output capacity of s and the total input capacity of
d, and is inverse proportional to the square of the hop number
of the shortest path from s to d, as shown in Eq. (10)

f(s, d) =
η ·

∑
v∈N(s) c(s, v) ·

∑
u∈N(d) c(u, d)

(Hops(ps(s, d)))2
(10)

where η is a scale factor by which we can create different
levels of traffic volume, c(s, v) the capacity of link (s, v),
N(s) the set of neighbors of s, and ps(s, d) is the shortest path
from s to d. For Abilene, we use real traffic matrices which

1We remove the stub nodes which have only one link to the backbone.



can be found in [30] and one traffic matrix is summarized each
five minutes. The traffic volume on an Abilene link is hundreds
of Mbps and the link utilization ratio is around 10%.

For the synthetic topologies, a link is designated to be a
trunk-link with probability λ. For Abilene, seven links are
randomly selected to be trunk-links.

We assume that a trunk-link is consisted of four physical
links with a lower rate than this link’s original capacity. The
traffic volume thresholds for state changes are set to the
operation rates of the links, shown in Table I. The power
consumptions per unit traffic volume (ρl) of different operation
rates are set as constants, referring to the measurement results
given by [11] and [31]. The idle power consumptions of
different operation rates are set according to [32], shown in
Table I.

TABLE I: Power consumptions of line cards
line card operation

rate(Mbps)
maximum
power(W)

ρl
(W/Mbps)

calculated idle
power(W)

1-Port OC3 155.52 60 0.01 58.4
1-Port OC12 622.08 80 0.008 75.0
1-Port OC48 2488.32 140 0.006 125.1
1-Port OC192 9953.28 174 0.004 134.2

Some default values are set as follows. The node number of
a synthetic topology is 100 and the link density is 2 (i.e. total
200 links). Trunk-link ratio λ is 0.5. Synthetic traffic matrices
are set to create an average link utilization ratio of 25%. For
Dijkstra-Green-B and Dijkstra-Green-Adv, xv

0(d) is 1/800 of
the sum of the input capacity of node d, β is 1.5.

We compare our algorithms with the standard shortest path
routing. We will evaluate the power saving ratio, defined as
(Ps − Pg)/Ps, where Ps is the total power consumed by line
card under shortest path routing, and Pg is the total power
under our algorithms. We will also evaluate path stretch ratio
and average hop number.

B. Results In The Synthetic Topologies

1) Results On Different Traffic Levels: Fig. 7 shows the
power saving ratio as against of traditional Dijkstra. We see
that the power saving can be as much as 55%, when the
average link utilization is low. The power saving ratios decease
when the average link utilization ratio increases. This is not
surprising as our algorithm is closely related to traffic volume;
and the more traffic there is, the less trade-off can be found.
Yet we still see a power saving ratio of 38% when the average
link utilization ratio is 65%. Dijkstra-Green-Adv is better
than Dijkstra-Green-B as its design takes more factors that
affect power consumption into consideration. We also see that
Green-Dijkstra is only slightly worse than Green-Dijkstra-Adv,
mainly when the network is in high utilization.

Fig. 8 shows the average path stretch of our algorithms.
We see that the average the path length of Green-Dijkstra-
Adv is about 1.22 times to that of the shortest path and the
path length of Green-Dijkstra is only 1.04 times. This is not
surprising as Dijkstra-Green-Adv focuses on energy conserva-
tion and Green-Dijkstra co-considers path length when saving

energy. Fig. 9 shows the average hop number. Dijkstra-Green-
B has the least hop number (about 3.3), because it saves
energy mainly by choosing the paths that traverse less routers.
Dijkstra-Green-Adv and Dijkstra-Green have a hop number
around 3.8 and 3.7, respectively. We also see that traditional
Dijkstra has the largest hop number, which implies that the
shortest paths do not always traverse the least number of
routers.

2) Results On Different trunk-Link Ratios: Fig. 10 shows
the power saving ratio as a function of trunk-link ratio λ.
We can see that the more trunk-links are deployed, the more
power is saved. When all the links are trunk-links, a 65%
power-saving can be achieved. However, the curves increase
in a sub-linear manner. This implies that the majority of the
power saving comes from avoiding trunk-links, so the gain
is intrinsically limited when trunk-links are too many (we
cannot find a path avoiding trunk-links). Dijkstra-Green-Adv
and Dijkstra-Green save more power than Dijkstra-Green-B
when λ is near 0.5, because their designs can avoid trunk-
links more easily.

Fig. 11 and 12 show the path stretch and the hop num-
ber, respectively. We can see the result of Dijkstra-Green-B
changes little, because Dijkstra-Green-B considers trunk-links
little and the routing changes little with trunk-link ratio λ.
The result of Dijkstra-Green-Adv and Dijkstra-Green increases
when λ < 0.7 and decreases a little when λ > 0.7, because
these two algorithms use the paths of more hops to avoid
trunk-links.

3) Results On Different Link Densities: Fig. 13 shows the
power saving ratio as a function of link density. We find that
the higher the link density is, the more the power is saved for
Dijkstra-Green-Adv and Dijkstra-Green. This is not surprising
as there are more trunk-links when the link density is higher.
The power saving ratio of Dijkstra-Green-B decreases when
the link density increases from 4 to 5. This may be because
Dijkstra-Green-B can choose a path with less hops easily and
cannot avoid trunk-links when there are too many links in the
network.

Fig. 14 shows the average path stretch, which increases with
the increment of link density. This may be mainly because the
shortest path has less length when the link density is higher.
Fig. 15 shows the number of hops. We can see the result
decreases with the increment of link density.

C. Results In The Real Topologies

Fig. 16 shows the average link utilization, using the Abilene
topology and the traffic matrices collected on March 8, 2004.
We can see the value is around 5% to 10%. Fig. 17 shows
the power saving ratio as a function of time. The results using
the data in other time periods are similar. We can see the
result changes with time, because the traffic matrix is always
changing. However, the average power saving ratios of the
algorithms are all around 57%. The results of the three algo-
rithms are similar because the traffic in the network is small
(recall the results in Fig. 7). Furthermore, we find Dijkstra-
Green-Adv performs worse than the other two algorithms.
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Fig. 7: Power saving ratio as a function
of average link util. ratio (synthetic topol-
ogy).

Fig. 8: Average path stretch as a func-
tion of average link util. ratio (synthetic
topology).

Fig. 9: Average path hop number as a
function of average link util. ratio (syn-
thetic topology).
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Fig. 10: Power saving ratio as a function
of trunk-link ratio (synthetic topology).

Fig. 11: Average path stretch as a func-
tion of trunk-link ratio (synthetic topol-
ogy).

Fig. 12: Average path hop number as
a function of trunk-link ratio (synthetic
topology).
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Fig. 13: Power saving ratio as a function
of link density (synthetic topology).

Fig. 14: Average path stretch as a func-
tion of link density (synthetic topology).

Fig. 15: Average path hop number as a
function of link density (synthetic topol-
ogy).

However, the difference is within 0.2%. This may be because
Abilene has less nodes and links than the synthetic topologies
and less paths can be found. Dijkstra-Green-Adv may choose
a longer path, but no more power can be saved.

Fig. 18 shows the power saving ratio as a function of
average link utilization ratio, using the CERNET topology.
Like the results in synthetic topologies, the power saving ratio
decreases with the increment of traffic volume. The perfor-
mance of the algorithms are similar. When the link utilization
raito is 50%, Dijkstra-Green-Adv and Dijkstra-Green can save
29.5% of the energy, about 7% more than Dijkstra-Green-B.
However, sometimes Dijkstra-Green-B performs better. Like
in Abilene, this is because CERNET has small numbers of

nodes and links.

VII. CONCLUSION

In this paper, we studied to incorporate energy conservation
into Internet routing design. We presented a power model
to quantify the relation between traffic volume and power
consumption; and validated our model using real experiments.
We proposed a hop-by-hop approach and developed algorithms
that guarantee loop-freeness and substantially reduce energy
footprint in the Internet.

As a very first work, we admit that there are many unan-
swered questions. First, we believe our algorithms have much
room to be improved on energy conservation. Second, we are
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Fig. 16: Average link utilization ratio as
a function of time (Abilene).

Fig. 17: Power saving ratio as a function
of time (Abilene).

Fig. 18: Power saving ratio as a function
of average link util. ratio (CERNET).

interested to further investigate a centralized scheme; this is
useful when MPLS can be applied, and also provide theoretical
bounding on the maximum possible power conservation.
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