
Simulation of a Multi-agent Protocol for Task Allocation in Cooperative Design

Kwang Mong Sim, Simon Chi Keung Shiu, and Martin Bun Lam
Department of Computing,

Hong Kong Polytechnic University,
Hung Horn, Kowloon, Hong Kong.

E-mail: {cskmsim, csckshiu}@comn.Dolvu.edu.hk, martinlam@usa.net
Fax: (852) 2774-0842

ABSTRACT

To achieve high performance in agent-based cooperative
design, the effective allocation of design agents to
distributed and cooperative design tasks becomes a crucial
issue. This research extends the well-known contract net
protocol for decentralized task allocation in cooperative
engineering design. Since the contract net protocol only
provides a generic framework for agents to exchange and
evaluate information, it does not prescribe any specific
coordination policies for cooperative engineering design.
By adding a set of agent selection and task selection
policies, this research addresses issues in agent-based
cooperative engineering design such as: How an agent is
selected to carry out a design task? How can an agent
select from among a list of design tasks which to bid for?
Through a series colored petri-net simulation experiments,
the performance of these selection policies are measured
and evaluated. Smith has noted that the contract net
protocol is particularly suitable for executing different
(sub-)tasks simultaneously while ensuring effective
resource allocation and focused decision. Results from the
coloured petri-net simulations have shown that these
properties are preserved in the proposed protocol.

1. INRODUCTION

The information and expertise required in designing large-
scale and complex artifacts are usually distributed among
different (teams of) engineers throughout and perhaps
outside an enterprise. Projects in large-scale design
industries often require the cooperation among multi-
disciplinary design teams using incompatible software
tools to support different aspects (or phases) of a design.
To prevent any impediment to cost-effective engineering
design due to fragmentation of information and expertise,
and incompatibilities of software tools, it is essential to
provide an integrated computerized environment to bolster
design collaboration. In an earlier work [l], an agent-
based approach [2] was proposed to control and
coordinate the interactions of heterogeneous design
software and to enable distributed design tasks to be
performed by different software. In particular, this
research extends the well-known contract net protocol [3]
for decentralized task allocation in cooperative
engineering design (section 2). By adding a set of agent
selection and task selection policies (sections 3 and 4)

adapted from [4], the proposed protocol that allows design
agents to cooperate by requesting and providing services
to other agents through mutual selection. Through colored
petri-nets [5, 61 simulations, the performance of the
proposed protocol under different conditions is measured
and evaluated in section 5.

2. A MULTI-AGENT PROTOCOL

In this research, an agent is an encapsulated design
support software that has its own local database, it can
communicate with other agents and have some design
problem solving expertise. The expertise of an agent is
represented by a set of task operators. Each task operator
consists of a list of conditions responding to requests and
the corresponding methods for executing a task. To
facilitate the inter-operations of (design) agents, an agent-
based infrastructure for design collaboration was defined
[I]. The agent-based infrastructure provides an
environment that bolsters (i) information exchange among
agents and (ii) allocation, control and coordination of
decentralized design tasks.

To allow effective coordination and control of design
(sub-)tasks, Sim [l] employs an extension of the contract
net protocol [3] for allocating agents to design tasks. In
this approach, agents coordinate their activities through
contracts to accomplish a design (sub-)goal. Contracting
involves an exchange of information between agents, an
evaluation of the information and a final agreement based
on mutual selection. When an agent needs the services of
other agents, it plays the roles of a manager and contract
out the task to other contractor agents. Since several
agents may be eligible to carry out a task, they may bid for
the same task. Moreover, contractor agents who wish to
provide services may choose from among a list of tasks to
bid for. The stages of the proposed multi-agent protocol
[l] for cooperative design are given as follows:

During a cooperative design process, if an agent (the
manager) requires the services of other agents, it will
formulate a list of tasks that will be allocated to a
group of contractor agents.

The manager agent announces the list of tasks to all
other agents via a blackboard [7] (a global database
serving as a common repository to all agents). A task

0-7803-5731-O/99/$10.00 01999 IEEE m-95

3.

4.

5.

6.

7.

8.

announcement consists of descriptions of the task be studied by observing and measuring the throughput and
(such as task id and task type), the expertise required the balanced of loading. This claim is supported by a
to carry out the task, an estimated execution time and series of colored petri-net simulations presented in section
a deadline for receiving bids. 5.

Each contractor agent evaluates the list of task
announcements and determines its eligibility for the
tasks. Eligibility is computed by taking the ratio of
the cardinality of agent’s expertise matching the
required expertise (to carry out the task) and the
cardinal&y of the required expertise.

3. TASK SELECTION

Contractor agents select from a list of tasks to submit
bids. Tasks are selected based on the criteria
described in section 3.
The manager agent evaluates the bids put up by all
eligible contractor agents. The criteria for evaluating
bids are explicated in section 4.

Using a set of selection policies the manager agent
assigns the task to the most appropriate contractor
agent. Details are given in section 4.

While the manager agent waits for the results, the
agent that is assigned the task matches the request to
the list of conditions of its task operators to search for
the appropriate methods for carrying out the task.
Based on the task specifications given in the task
assignment, the task is executed using the relevant
methods in the agent’s tasks operator.

Design agents who wish to provide services to other
agents can choose among a list of tasks to bid for. The
task selection policies prefer tasks that (i) the agent has
expertise to carry out (ii) require the least amount of
computational time. While the first criteria help determine
whether an agent can perform a task, the second criteria
considers whether it is desirable to bid for a task. If a task
requires considerable amount of computation time, an
agent may be prevented from executing other tasks. To
ensure high throughput, an agent prefers tasks that
consume less of its computational time. Given a list of
requests (tasks), a contractor agent uses algorithm 1 to
determine which task(s) to place bids. A bid consists of
the expertise and experience of an agent together with its
loading factor (number of tasks assigned to an agent). The
Evaluate Task procedure in algorithm 1 determines the
eligibility of an agent to carry out a task as described in
stage 3 of the protocol. E is an arbitrary number
determined through a series of colored petri-net
simulations.

Receive a list of task requests R = (req,, req2, . . . , req,);
Set response-list = 0;

For each request reqi E R do
Evaluate Task(reqi, eligibility);
If eligibility > E then

response-list = response-list V reqi;
End-for;
Sort the response list in ascending order by
estimated_execut~on_time;

For every reqi E response-list do
Generate a bid bi;
Transmit bi to reqi.manager via the outqort;

End-for;

Generic (domain independent) algorithms for the manager
and contractor agents to exchange and evaluate
information at the various stages of the proposed protocol
closely resemble those of the contract net protocol [3].
The algorithms for stages 4, 5 and 6 such as the task
selection and agent selection algorithm are domain
specific. While space limitation precludes the inclusion of
domain independent algorithms, expositions of the task
and agent selection policies together with the
corresponding algorithms are given in sections 3 and 4.

Desirable Properties: In [3], it was noted that the contract
net protocol is particularly suitable for executing different
(sub-)tasks simultaneously while ensuring effective
resource allocation and focused decisions. While effective
resource allocation is essential for achieving a balancing
of computational load among agents, focused decision
ensures that the most appropriate agent is selected to
perform a given (sub-)task. These two properties are
essential in ensuring high performance in distributed
problem solving. In this research, having a balanced of
loading among a society of agents as well as achieving
high throughput are viewed as achieving high
performance. The rationale is to accomplish a large-scale
design task at the quickest possible time by effectively
allocating sub-tasks to the most appropriate set of agents.
It is argued that the effectiveness of coordination among a
society of agents for cooperative engineering design can

Algorithm 1. The Bidding algorithm

4. AGENT SELECTION

When an agent requires a service from others, the agent
selection policies determines how to assign the task to the
most appropriate contractor agent. The agent selection
policies (adapted from [4]), prefer agents that (1) have the
expertise to perform the task, (2) have previously
performed a similar type of task and (3) have been
allocated the least number of tasks. Both the first and the
second criteria accentuate the statement “design problem
solving often requires many skills and much knowledge”
[S]. While the first criteria searches for agents that has the
most matching expertise, the second criteria focuses the
search by preferring agents that have experience in

III-96

carrying out similar type of tasks. Both the first and the
second criteria provide focused decisions [3] to select

agents with the most appropriate skills and experience to
perform the task. The third criteria is to ensure a balanced
of loading (effective allocation of computational
resources) in the task distribution and hence it prefers
agents with the least number of tasks. As mentioned in
section 2, to solve the connection problem [3] (allocating
agents to tasks), both focused decision and effective
resource allocation are essential in ensuring high
performance of the protocol.

In this research the connection problem for cooperative
design is addressed by algorithm 2, the Evaluate Bids
(Agent Selection) algorithm. It compiles a list of bids and
determines how to assign the task to the most appropriate
contractor agent. In algorithm 2, criteria 1 and 2 are
determined using the Compute Skill Utility and Evaluate
Experience procedure respectively (these procedures are
omitted due to space limitation). The Compute Skill
Utility procedure determines the utilities of agents bidding
for a task based on the number of their expertise matching
the required expertise (utility is similar to the eligibility in
section 3). The Evaluate Experience procedure verifies if
an agent has previously performed a similar task. Criteria
1, 2 and 3 are integrated into algorithm 2 with the
following interpretations:

If an agent has a utility that is clearly higher than
all other agents bidding for a task, then it is
assigned the task
If there are more than one agent having the
highest utility then agents with experience in
performing similar task are given higher
consideration
If there are more than one agent with the highest
utility and possessing experience in carrying out
similar task then the agent with the lowest
loading factor is assigned the task

Let reqi be a task request, u,, Uj, and uk be utilities and b,, bj, bk,
and b, be bids.
Let bid_listi = (bid,, bid2, . . ., bid,,) and skill_utility_listi be a list
of bids and a list of utilities.
Set bid_listi = 0;
Set skill-utility listi = 0;
While system-me < reqi.deadline do

Receive a bid bj from inputqort;
Set bid-list, = bid listi u bj;
Compute Skill U&ty(reqi, bj, uj);
Set skill_utili~_listi = skill_utility_listi u Uj;

End-while;
Sort skill utility-list, in descending order;
Sort bid_& according to the order of skill_utility_listi;
If {u, > uk 1 u, is the first element of bid_lis$ and uk E bid-list, -

{u,} 1,
Then Assign Task(reqi, b=);

Else
Set selected-bid listi = 0;
Set unselected-bid listi = 0;
For {U, = Uk 1 Uk E bid-list, - { u, } }do

If Evaluate Experience(bk.agent_id.experience,
reqi.task_type) = true

Then selected-bid listi = selected_bid_listi U bk;
Else unselected_bid_listi = unselected_bid_list; u bk;
End-if;

End-for;
If selected_bid_listi = 0 Then

Sort {unselected_bid_list; u b,} in ascending order by
loading;

Select b, such that b, E {unselected_bid_listi u b,};
Assign Task(reqi, b,);

Else
Sort selected_bid_listi in ascending order by loading;
Select b, such that b, E selectedbidlisti;
Assign Task(reqi, b,);

End-if;
End-if;

Algorithm 2. The Evaluate Bids (Agent Selection)
algorithm

5. COLORED PETRI-NET SIMULATION

To capture the behavior of the multi-agent task allocation

protocol, color perti net (DESIGN/CPN’) is used to
construct the simulation experiment. The overall
architecture of the protocol process is shown in Figure 1,
and the major variables and color sets used are as follows:

(* GLobal Value *)
val EligilityPara = 0.5;
val NumTask = 5;
val NumGoal = 5;
val NumSkill = 5;
val NumExpe = 5
val NumOfContractor = 1;
val NumOfManager = 1;
val MaxLoadFactor = 10;

(* Color Set *)
color ID = int;
color AgentID = int;
color TaskID = int;
color ManagerID = int;
color ContractorID = int;
color Role = with MANAGER 1 CONTRACTOR;
color SkillType = with sl 1 s2 1 s3 1 s4 1 s5 1 s6;
color TaskType = with tl 1 t2 1 t3 I t4 1 t5;
color GoalType = with gl 1 g2 I g3 I g4 I g5;
color Condition = with cl I c2 I c3 I c4 I c5;
color Action = with al I a2 I a3 I a4 I a5;
color ResultType = with rl I r2 I r3 1 r4 I r5;
color Message = with ACCEPT I REJECT;
color ExperienceType = TaskType;
color Loading = int;
color Throughput : int;
color EstExeTime = int;
color FinishTime = TIME;
color Deadline = int;
color RandomNumber = int;
color Eligility = real;

II-97

color ListSize = int;
color Dummy = int;
color Flag = int;
color Counter = int;
color RealNum = real;
color Number = int;
color GotExperience = bool;
color Uskill = int;
color NumOfI’ask = int with 1. .NumTask;
color NumOfSkill = int with 1 ..NumSkill;
color NumOfGoal = int with 1 ..NumGoal;
color NumOfExpe = int with 1 ..NumExpe;
color Finish = product AgentID * TaskID * FinishTime;
color SkillList = list SkillType;
color GoalList = list GoalType;
color Experience = list ExperienceType;
color Task = product TaskID * TaskType * GoalList *
SkillList * EstExeTime * ManagerID;
color ContractedTask = Task;

Figure 1 Overall Architecture

The overall architecture consists of one main CPN page
and seven sub-pages. The main page consists of the
overall major protocol, and this is decomposed into sub-
pages for detail executions. The main page is shown in
Figure 2. Due to space limitation, only the bidding and the
evaluate bid sub-page are shown.

Figure 2 Main page of the multi-agent task allocation
process

The major transition in the Bidding CPN sub-page is
Generate Bid which is activated by the response list and
contractor agent. CPN coding is also attached in this
transition based on Algorithm 1, described in section 3. In
Figures 4a and 4b, the major transitions declared in the
sub page consist of Select Bid, Compute Skill Utility,
Assign Task and Evaluate Experience. Algorithm 2,
described in section 4 was implemented in this CPN
through the construction of various transitions and places
declared in this sub-page.

A total of 8 CPN pages, 52 color sets, 25 types of
variables, 5 global functions, 30 embedded functions, 150
places and 70 transitions have been constructed. The
experiments were conducted using a Sun Ultra machine
with Solaris OS 2.5 and DESIGNKPN version 3.1. The
programming effort is around 500 man hours. The results
are shown in Table 1.

III-98

cpn3_1
i,, /.

I ’

I m

Figure 4b Evaluate Bid
Figure 3 Bidding

The simulation result is shown in Table 1. By varying the
eligibility, a series of experimental results were obtained.
Based on the result, it seems that an eligibility of 0.8 leads
to a relatively balanced of task assignments among the
contractor agents. The experimental result shown in Table
1 was obtained based on the selection policies in sections
3 and 4. While the selection policies were implemented
using CPN in Figures 3,4a and 4b, the balacing of loading
in the protocol was determined in CPN simulation.

1

6. CONCLUSION

With the current proliferation of agent technology [2], it
seems natural to adopt multi-agent techniques to bolster
cooperative engineering design activities and other
applications. In this paper, a protocol for task allocation in
cooperative engineering design is proposed. The proposed
protocol extends the well-known contract net protocol
with a prescribed set of agent selection and task selection
policies suitable for cooperative design. Since the contract
net protocol only provides a generic framework for agents
to exchange information, it does not prescribe any specific
coordination policies for agents. While the contract net
has been extended to deal with task allocation in
manufacturing [9] and job shop scheduling [lo], the
criteria for task allocation in cooperative engineering
design is different. What distinguishes this research from
previous approaches based on contract net is that by

Figure 4a Evaluate Bid

III-99

simulating the interaction protocol using colored petri net, 2. Through colored petri-net simulations, it was shown
the performance and properties of the protocol can be that desirable properties in the contract net protocol
measured and verified without actual implementations. In such as effective resource allocation and focus
large scale software systems involving multiple agents, attention were preserved in the proposed protocol.
considerable amount of time and money can be saved if
design flaws can be detected early. Although there has been previous work [l l] in using

colored petri net as a tool for specifying and simulating
In summary, the contributions of this research are listed as multi-agent systems, research in this area is still in its
follows: infancy. It is hoped that the approach presented can shed

new light in designing and engineering multi-agent
1. By extending the contract net protocol, a multi-agent systems.

protocol for task allocation in cooperative engineering
design was devised.

Agent 1 Agent 2 Agent 3 (Contractor) Agent 4 (Contractor) Agent 5 (Contractor)
(Manager) (Manager)

1 1 1 634) 1 I 0 I 0 I
2 1 1294 1 1 1 734 0 0 0
1 I 522 I 1 1 645 2 2 1479

.,_ , 1 1 843 1 1 753

0
Table 1

ACKNOWLEDGEMENT

This research is funded by a grant (grant number S844)
from the Department of Computing at the Hong Kong
Polytechnic University. The authors gratefully
acknowledge the financial support and research facilities
from the Department.

REFERENCES

[l] K. M. Sim. A Multi-agent Testbed for Cooperative
Design. AI Technical Report AI-TR-98-1, ISIR, Osaka
University, Japan.
[2] M.N. Huhns and M.P. Singh. Readings in Agents.
Morgan Kauffman Publisher, 1997.
[3] R. G. Smith. The Contract Net Protocol: High-level
Communication and Control in Distributed Problem
Solver. IEEE Transaction on Computers, volume C-29,
number 12, pages 1104-l 113,198O.
[4] G. Kappel, S. Rausch-Schott, and W. Retschitzegger.
Coordination in Workflow Management Systems: A Rule-
Based Approach. In W. Conen and G. Neumann (Eds),
Coordination Technology for Collaborative Applications:
Organization, Processes and Agents, pages 99 - 119,
Springer-verlag, 1998.
[5] K. Jensen. Colored Petri Nets: Basic Concepts,
Analysis Methods and Practical Use, Volume 1 in 1992.

oIoIoIoIoI 0 1 0 1 0 1
Simulation Results

Volume 2 in 1995 and Volume 3 in 1997. Springer-
Verlag.
[6] Simon C.K. Shiu, Eric C.C. Tsang, Daniel S. Yeung
and Martin B. Lam, “Evaluation of Printed Circuit Board
Assembly Manufacturing Systems Using Fuzzy Colored
Petri Nets,” in Proceedings of 1998 IEEE International
Conference on Systems, Man, and Cybernetics, Hyatt
Regency La Jolla, San Diego, California, USA, Ott 11-14,
Vol. 2, pp. 1506-1511, 1998.
[7] D. Corkill. Blackboard Systems. AI Expert, September
1991, pages 41-47.
[8] S. Shapiro. Encyclopedia of artificial intelligence, 2”d
ed., page 331, Wiley, New York,1992, p 331.
[9] H. van Dyke Parunak. Manufacturing Experience with
the Contract Net. In Research Notes in Artificial
Intelligence: Distributed Artificial Intelligence, Vol. 1,
pages 285 - 3 10, Morgan Kaufmann Publishers, 1987.
[lo] Liu and Sycara. Multi-agent Coordination in Tightly
Coupled Task Scheduling. In [2], pages 164 - 171.
[1 l] Moldt and Wienberg. Multi-agent Systems Based on
Colored Petri Nets. Application and Theory of Petri Nets,
Springer-verlag, 1997.

m-100

	MAIN MENU
	Sessions
	Authors

	Search
	Print

