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ABSTRACT 

 

With increasingly complex, sophisticated and changing real-world situations, it 

has been recognized over recent years that Expert Systems which combine one or 

more techniques greatly increase the problem solving capability and help 

overcome some of the shortcomings associated with any single technique. The 

verification of these Expert Systems requires methods that could tackle the 

multiple knowledge representation paradigms and integrated inference 

mechanisms used. This thesis presents a formal description technique for 

verifying the correctness, consistency, and completeness of Hybrid Expert 

Systems (HES) that emphasizes an integration of object hierarchy, property 

inheritance and production rules. 

 

Four important research contributions arise from this investigation: (1) A formal 

approach based on State Controlled Coloured Petri Nets was developed in 

modelling and analyzing Hybrid Rule/Frame-based Expert Systems. (2) Errors 

and anomalies due to the integration of the object-hierarchy and production rules 

in HES are defined and explained. (3) A set of propositions is formulated to 

verify errors and anomalies in Rule/Frame-based HES defined in (2), and (4) 

Rigorous mathematical proofs of all of these propositions are developed. 

 

The main idea of this formal technique is to convert the HES into a State 

Controlled Coloured Petri Net (SCCPN) where the object hierarchy, property 

inheritance and production rules are modelled as separated components in the 

same SCCPN. The detection and analysis of the anomalies in the system are done 

by constructing and examining the reachability tree spanned by the knowledge 

inference. This provides a formal basis for automating the deduction process and 

a means of verifying HES.  

 

A complexity analysis is conducted to investigate the performance of the 

methodology. The complexity includes the effort to transform the rules and 

object hierarchy into places and transactions, the calculation of the size of the 

Occurrence Graphs, and the time required searching such Occurrence Graphs for 
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anomalies. This is followed by the discussion and suggestions on the potential 

and direction of the developed model for future research. 
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CHAPTER 1. INTRODUCTION AND MOTIVATION 

 

1.1. Introduction 

 

Expert Systems (ES) incorporate human expertise in computer programs to allow 

these programs to perform tasks which normally involve human experts. 

Showing that an ES is 'correct' is a critical task. An incorrect system may make 

costly errors, or may not perform up to expectations. In either case the decisions 

generated by the system may be inappropriate or wrong, if used, considerable 

damage such as financial loss or human suffering may result. 

 

Knowledge verification can be broadly defined (Gupta, U. G., 1993) as the 

process of analyzing and establishing that an ES is robust, reliable, accurate, 

complete, and consistent. The process of verifying a knowledge base is made up 

of three main activities: 

 

• Checking if the knowledge is complete, consistent and correct. 

• Determining if the reasoning mechanism accurately and consistently 

interprets and applies the knowledge in the knowledge base to solve 

system problems. This process is referred to as certification. Quite 

frequently, when off-the-shelf shells are used in the development 

process, inference engine certification is simply assumed. 

• Analyzing and grading the performance of the system by comparing it 

with that of its human counterpart. 

 

Traditionally, attention has been concentrated on using verification techniques to 

tackle rule-based systems (Gupta, U. G., 1991; Gamble R. F. et al., 1994; Liu N. 

K. & Dillon T., 1995; Nurrell, S. & Plant, R., 1996). However, these techniques 

exhibit a limited range of applicability. They could not cope with the kind of 

Hybrid Expert Systems (HES), e.g. Rule-based plus Frame-based, which many of 

the current Expert Systems are being developed (Aikins, J. S., 1993; O'Keefe, R. 

E. & O'Leary, D. E., 1993; Durkin, J., 1994; Vranes, S. & Stanojevic, M., 1995). 

The use of this hybrid approach integrates the power of organizing data objects 
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in a class hierarchy and reasoning about the objects through user pre-defined 

logical associations. This advantage accounts for many popular Expert System 

development software (or shells), such as ADS, ART, EXSYS EL, KAPPA-PC, 

KBMS, NEXPERT OBJECT, LEVEL5 OBJECT, PRO-KAPPA, REMIND, 

which combine some sort of Frame-based representation with a Rule-based 

inference engine. 

 

The verification of these Hybrid Expert Systems requires methods that could 

tackle the multiple knowledge representation paradigms and integrated inference 

mechanisms used. This thesis presents a formal description technique based on 

State Controlled Coloured Petri Nets for verifying the correctness, consistency, 

and completeness of Hybrid Expert Systems (HES) that emphasizes an 

integration of object hierarchy, property inheritance and production rules. 

 

1.2. Motivation of the Research 

 

There are a whole range of problems and difficulties hindering the development 

of Expert Systems. Typically, the bottleneck is knowledge acquisition, 

representation of surface and deep knowledge, creativity modelling, temporal 

reasoning, causal and common sense reasoning, uncertainty reasoning, 

combinatorial explosions, conflict resolutions, and the like. The use of large 

amounts of domain knowledge to solve real world problems raises some 

concerns for the creation and maintenance of such systems. (Geissman, J. R. & 

Schultz, R. D., 1988; Duchessi, P. & O'Keefe, R. M., 1995). Furthermore, since 

these systems tend to grow in an evolutionary manner, constant maintenance of 

knowledge is necessary to ensure correct system performance. The importance of 

validating and verifying Expert Systems are well documented (Gupta, U. G., 

1991, 1993; O'Keefe, R. M. & O'Leary, D. E., 1993; Coenen, F. & Bench-Capon, 

T., 1993; Liu N. K. & Dillon T., 1995; Nurrell, S. & Plant, R., 1996). One of the 

major criticisms of the above techniques is that none or very little consideration 

is given to allow for the dynamic checking (i.e. the verification is carried out in 

the process of the system reasoning (Matsumoto, K. et al., 1991; Preece, A. D., 

1996)) of Hybrid Expert Systems.  
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In a traditional pure Frame-based Expert System, reasoning is by comparing 

descriptions of incoming facts with the frames in the knowledge base, and 

retrieving the class frame that best matches the situation. The main inference 

mechanism or strategy for applying general information to specific instances is 

inheritance. This reasoning mechanism is rather limited in practical situations. In 

a traditional pure Rule-based Expert System, reasoning is by firing a sequence of 

rules using incoming facts. Although this method is simple and useful, complex 

domain knowledge could not be represented. The use of a Hybrid Rule/Frame-

based approach integrates the power of organizing data objects in a class 

hierarchy and reasoning about the objects through user pre-defined logical 

associations. 

 

A Hybrid Expert System combines multiple representation paradigms into a 

single integrated environment for modelling and reasoning of complicated real 

world phenomena. For a Rule- and Frame-based integration, it models the 

problem domain using the concepts of Classes and Rules together. The essential 

key modelling features are: Object Classes, Slot Attributes, Inheritance 

Relations, Demons, Methods, Rules and Reasoning Strategies.  

 

In order to allow for the automation of the verification of the HES process, to 

tackle the mathematical problems associated with the method, and to provide 

accurate detection of anomalies in the HES, a more formal approach (i.e. 

methods which are based on mathematical techniques) of the HES model is 

necessary. Thus, there are two major problems for HES verifications: 

 

• Expert Systems are developed using hybrid techniques, yet very little 

fundamental research work has been done for their verifications. 

• A need to formalize the verification process to allow for automatic 

detection of anomalies in the HES. 

 

In view of the lacking of proper understanding within this subject, i.e. Hybrid 

Expert System verification, this thesis seeks to address the issues of knowledge 

description, formulation and verification in HES. It examines the problem of 
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demonstrating a hybrid knowledge base to be correct, consistent and complete in 

terms of more global issues and provides a framework for verifying hybrid 

knowledge based systems. 

 

1.3. Aim of the Research 

 

The aim of this research is to develop a formal methodology (i.e. Mathematical 

Model) for specifying and verifying Hybrid Expert Systems. A broader 

categorization of anomalies pertaining to knowledge verification is provided. 

Representation schemes are examined for adequacy of representation, ability to 

detect anomalies and at reasonable cost. The schemes adopted in this analysis are 

based on the notion of State Controlled Coloured Petri Nets (SCCPNs). Predicate 

transitions, object-hierarchy, inheritance relations are formulated to establish 

correspondence between anomalies in the hybrid knowledge base and their 

manifestation in the transformed representation. Proofs for these transitions are 

derived. Algorithms are developed to detect the anomalies listed. The 

methodology should exhibit the following characteristics: 

 

• provide a graphical representation of the relationships among the object 

hierarchy, object instances, methods, demons and the production rules. 

 

• allow for the dynamic checking of HES which yields information on how the 

system achieves its goals. 

 

• provide information about the current state of transition predicates as well as 

the states of the object instances. 

 

• provide a clear semantics which allow for the formal analysis (i.e. methods 

which are based on mathematical representations and proof techniques) of the 

behaviour of the modelled HES. 

 

• has the ability to maintain or update both the state of predicates and slot 

values of the object instances during transition firings.  
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• has a potential to tackle situations with relatively higher complexity and 

variant conditions like temporal space, probabilistic and fuzzy reasoning. 

 

1.4. Scope of Research 

 

This research will focus on the development of formal description techniques for 

the detection of anomalies attributed to the integration of production rules with 

the inheritance of object properties within the object hierarchy. If Domain 

knowledge (concepts) is related by production rules and frame hierarchy, then 

anomalies may arise among these knowledge (concepts) due to the existence of 

two mutually independent formalism of relations. The anomalies include the 

checking of the Correctness, Consistency and Completeness in Hybrid Expert 

Systems.  

 

Correctness refers to the accuracy of the hybrid knowledge base. It includes the 

checking of Redundancy, Subsumption, Ambiguity and Circular rule sets that 

applied to the parent object class and child object classes within the HES. 

Consistency refers to the relationship between the information in the knowledge 

base and the ability of the inference engine to process the knowledge base in a 

consistent manner. It includes the checking of Contradiction, Deadend and 

Unnecessary IF Conditions that applied to the parent object class and child object 

classes within the HES. Completeness refers to the amount of knowledge built 

into the knowledge base. It includes the checking of Unreachability of the HES. 

 

1.5. Contributions of the Research 

 

(1) A formal approach based on State Controlled Coloured Petri Nets was 

developed in modelling and analyzing Hybrid Rule/Frame-based Expert 

Systems. The result was published in (Shiu, S. C. K. et al., 1997;1996b) 

  

(2) Errors and anomalies due to the integration of the object-hierarchy and 

production rules in HES are defined and explained. The result was published 

in (Shiu, S. C. K. et al., 1995a,b; 1996a) 
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(3) A set of propositions is formulated to verify errors and anomalies in 

Rule/Frame-based HES defined in (2). Our result is to be published in a 

Journal paper in the Special Issue on Intelligent Hybrid Systems of Expert 

Systems with Applications. 

  

(4) Rigorous mathematical proofs of all of these propositions are developed. 

 

1.6. Outline of Thesis 

 

Chapter One describes the traditional methods adopted in verifying Expert 

Systems which exhibit a limited range of applicability. They could not cope with 

the kind of Hybrid Expert Systems (HES), e.g. Rule-based plus Frame-based, 

which many of the current Expert Systems are being developed. In view of the 

lacking of proper understanding within this subject, i.e. Hybrid Expert System 

verification, the motivation of this research is to address the issues of knowledge 

description, formulation and verification of HES. 

 

Chapter Two examines the issues of knowledge, Expert Systems and their 

verifications. Prior works in the area of knowledge verification are reviewed and 

their limitations assessed. This is used to guide the search for alternative 

approaches in modelling and analyzing of HES. 

 

Chapter Three highlights the importance of seeking a formal description 

technique for modelling knowledge representations in HES. In particular, 

Coloured Petri Nets paradigm is adopted as the candidate methodology to 

support a formal description of the anomalies in terms of predicate calculus and 

object oriented concepts. 

 

Chapter Four introduces a methodology for modelling HES based on State 

Coloured Coloured Petri Nets (SCCPNs). The general properties of a HES are 

described and their corresponding representations in the SCCPNs given. A 

Taxonomy of the anomalies in the HES is defined and explained. 
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Chapter Five formally presents the formulation and representation schemes for 

various components in a HES using SCCPNs. The scheme derived is for the 

purpose of knowledge verification. 

 

Chapter Six applies the formal verification method to a practical personnel 

selection system and illustrates the strength and potential of the methodology. An 

algorithm for generating the reachability graph is provided. Through the 

reachability analysis, various anomalies can be revealed in this personnel 

selection system. 

 

Chapter Seven formulates a set of propositions concerning verification in the 

transformed HES. Rigorous mathematical proofs of the correctness, consistency 

and completeness of HES are developed.    

 

Chapter Eight gives a complexity analysis of the SCCPN methodology. The 

evaluation criteria and assessment of the utility of the approach are addressed. 

 

Chapter Nine discusses the findings from this thesis. Possible extensions of the 

methodology include Hybrid Expert Systems involving uncertainty, temporal 

knowledge, case-based reasoning and common sense reasoning are suggested as 

the direction for future research work. 

   

1.7. Publications resulted from this research 

 

1.7.1. Refereed Journal Papers 

 

 (1). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "Formal 

Description and Verification of Hybrid Rule/Frame-based Expert 

Systems," to appear in the Special Issue on Intelligent Hybrid Systems of 

Expert Systems with Applications. 

 

(2). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "Detection of 

Anomalies of Hybrid Rule/Frame-based Expert Systems Using Coloured 
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Petri Nets," Australian Journal of Intelligent Information Processing 

Systems, Vol. 3, No. 3, pp. 59-76, Spring, 1996.  

 

1.7.2. Refereed Conference Papers 

 

(3). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "Formal 

Verification of the Correctness in Hybrid Expert Systems." In Proceedings 

of The First International Conference on Conventional and Knowledge-

Based Intelligent Electronic Systems, KES' 97, 21st - 23rd May, 1997, 

Adelaide, Australia, Vol. 2, pp. 419-428, 1997.  

 

(4). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "An Approach 

Towards the Verification of Fuzzy Hybrid Rule/Frame Based Expert 

Systems". In Proceedings of ECAI-96 Workshop in Validation, Verification 

and Refinement of KBS, Budapest, 12-16 August, pp. 105-113, 1996. 

 

(5). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "An Approach 

Towards the Verification of Hybrid Rule/Frame-based Expert Systems 

using Coloured Petri Nets". In Proceedings of  1995 IEEE International 

Conference on Systems, Man and Cybernetics, Vancouver, pp. 2257-2262, 

1995. 

 

(6). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "Modelling 

Hybrid Rule/Frame based Expert Systems Using Coloured Petri Nets".  In 

Proceedings of the 8th International Conference on Industrial & 

Engineering Applications of Artificial Intelligence and Expert Systems, 

Melbourne, Australia, June 6-8, pp. 525-532, 1995. 
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CHAPTER 2. LITERATURE SURVEY AND CRITICAL 

EVALUATION 

 

2.1. What is Knowledge? 

 

According to the Webster's New World Dictionary of the American Language, 

Knowledge is: "a clear and certain perception of something; understanding; 

learning; all that has been perceived or grasped by the mind and organized 

information applicable to problem solving". "Knowledge encompasses the 

implicit and explicit restrictions placed upon objects (entities), operations, and 

relationships along with general and specific heuristics and inference procedures 

involved in the situation being modeled" (Sowa, J. F., 1984). "Knowledge is an 

abstract term that attempts to capture an individual's understanding of a given 

subject" (Durkin, J., 1994).  

 

One of the major research areas of Artificial Intelligence has been the study of 

the nature of knowledge, it's formal properties and it's use in reasoning, planning 

and interpretation. Another aspect of the research in 'knowledge' concerns the 

study of particular kinds of knowledge, such as spatial, temporal, uncertain, 

fuzzy or causal knowledge. A major difficulty in describing knowledge is that an 

expert's knowledge is largely implicit. There is widespread agreement that the 

most difficult, time consuming, and expensive task in constructing an Expert 

System is extracting knowledge (e.g. in the form of production rules) from a 

human expert and debugging the resulting knowledge base. If noise and/or 

redundant data are present the problem is even more difficult. As Expert Systems 

are developed, modelers must provide descriptions of them for many purposes. 

They use some characterization in terms of properties that appear to be relevant 

to the knowledge base. Initial descriptions provide a central frame of reference 

allowing cooperation among designers of different parts of an Expert System. 

Descriptions also play a role in the verification process. The model must be 

checked for logical correctness and then implemented for compliance with a set 

of criteria. 
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However, when building an Expert System, it is impossible to capture all of the 

expert's knowledge. Rather, a well-focused topic from the subject area is chosen 

for modelling and representation. Cognitive psychologists (e.g. Newell, A., 

1990) have formed a number of theories to explain how humans solve problems. 

These works suggest the types of knowledge humans commonly use, how they 

mentally organize their organization, and how they use it efficiently to solve a 

problem. According to (Durkin, J., 1994), knowledge can be classified as (1) 

Procedural knowledge: this type provides direction on how to do something. 

Rules, strategies, agendas and procedures, are typical type of procedural 

knowledge. (2) Declarative knowledge: this type describes what is known about 

a problem. This includes simple statements that are asserted to be either true or 

false, a list of statements that describes some object or concept. (3) Meta-

knowledge: this type describes knowledge about knowledge. It picks other 

knowledge that is best suited for solving a problem. (4) Heuristic knowledge: this 

type describes a rule-of-thumb that guides the reasoning process. It is often 

called shallow knowledge because it is empirical and represents the knowledge 

compiled by an expert through the experience of solving past problems. If the 

experts are using fundamental knowledge to solve the problem, such as 

fundamental laws, functional relationships etc. this knowledge is referred to as 

deep knowledge. (5) Structural knowledge: this type describes knowledge 

structures. It describes an expert's overall mental model of the problem. Frames, 

concepts, subconcepts and objects are typical examples of this type of 

knowledge.     

 

2.2. Expert Systems 

 

The technology of Expert Systems is one of the few branches of Artificial 

Intelligence that has transitioned from research laboratories to the world of 

commercial and industrial applications. Expert Systems incorporate human 

expertise in a computer program to allow these programs to perform tasks 

normally requiring a human expert. An Expert System has been defined as "An 

intelligent computer program that uses knowledge and inference procedures to 

solve problems that are difficult enough to require significant human expertise 

for their solution" (Feigenbaum, E. A., 1982). "Expert Systems are systems 
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which are capable of offering solutions to specific problems in a given domain or 

which are able to give advice, both in a way and at a level comparable to that of 

experts in the field" (Lucas, P., 1991), and "A computer program designed to 

model the problem-solving ability of a human expert" (Durkin, J., 1994).  

 

The first noteworthy Expert System was DENDRAL (Buchanan, B. & 

Feigenbaum, E. A., 1978). The system was designed to perform chemical 

analyses of the Martian soil. The success of DENDRAL marked the beginning of 

the so-called Expert System industry. Later successful systems include: 

MACSYMA, INTERNIST, CASNET, MYCIN, HARPY, HEARSAY, PUFF, 

PROSPECTOR and XCON. Starting from the 1980s, the interest in the field 

gave birth to a large number of companies that marketed Expert System 

development software – Expert System Shells. Today, Expert Systems have 

reached the stage where they are implemented and used in a wide variety of 

organizations and industries, a selection of operational Expert Systems in US, 

Europe, Canada and the Far East can be found in (Liebowitz, J., 1991; Zarri, G. 

P., 1991; Stachowitz, R. A. & Chang, C. L., 1991; Lee, J. K. et al., 1991). 

  

A significant bottleneck that is frequently encountered in the use and application 

of Expert Systems technology is the lack of a rigorous and unified framework for 

testing and verifying the correctness, consistency and completeness of the Expert 

Systems. An incorrect ES may make costly errors, or may not perform up to 

expectations, may result in lawsuits, and may cause Expert Systems to be viewed 

as a non-viable technology for critical applications (Brown, D. E. & Pomykalski, 

J., 1991). 

 

2.3. Expert Systems Verification 

 

There has been an explosion of activity in the areas of Validation and 

Verification (V&V) of Expert Systems over the past 10 years. For example, one 

of the longest sequences of ongoing workshops at the AAAI (American 

Association for Artificial Intelligence) meeting has been the Workshop on 

Verification, Validation and Testing of Intelligent Systems. The first five 

workshops occurred from 1988-1992. The IJCAI (International Joint Conference 
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on Artificial Intelligence) has had workshops on V&V since 1989. Furthermore, 

the European Conference on AI (ECAI) has had a number of workshops on 

V&V.  Special Issue on Verification and Validation of Expert Systems had 

appeared in a number of Journals: International Journal of Human-Computer 

Studies, Vol. 44, 1996; International Journal of Intelligent Systems, Vol. 9, No. 

8, 1994; Internal Journal of Expert Systems, Vol. 6, No. 3, 1993 and Expert 

Systems with Applications, Vol. 1, No. 3, 1990 and Vol. 8, No. 3, 1995. Large 

projects of Validation and Verification are funded by agencies including NASA, 

DARPA, and the European Community's ESPRIT program, such as RCP (Suwa, 

M. et al., 1982), CHECK (Nguyen, T. A. et al., 1985), ESC (Cragun, B. J. & 

Steudel, H. J., 1987), COVADIS (Rousset, M. C., 1988), EVA (Chang, C. L. et 

al., 1990), KB-REDUCER (Ginsberg, A., 1988), COVER (Preece, A. D., 1989), 

SACCO (Laurent, J. P. & Ayel, M., 1989), NASA MMU-FDIR (Culbert, C., 

1994), VALID (Meseguer, P., 1994), JIPDEC (Terano, T., 1994), SYCOJET and 

SACCO (Ayel, M & Vignollet, L., 1994).  

 

This interest has driven from the need to test the large number of Expert Systems 

that have been developed since the mid-1980s. It also has derived from the 

increasing role that intelligent systems are taking in critical situations, such as 

medicine and defense. The role and importance of verifying Expert Systems is 

well documented (Gupta, U. G., 1991, 1993; O'Keefe, R. M. & O'Leary, D. E., 

1993; Coenen F. & Bench-Capon, T., 1993; Liu N. K. & Dillon T., 1995; 

Nurrell, S. & Plant, R., 1996). While there is controversy over how to define the 

terms verification and validation, there is general consensus that validation refers 

to the process of building the right system (that is, substantiating that a system 

performs with an acceptable level of accuracy), while verification refers to the 

process of building the system right (that is, substantiating that a system correctly 

implements its specifications). (Nguyen T. A. et al., 1987; Preece, A. D., 1991; 

O'Keefe, R. E. & O'Leary, D. E., 1993).  

 

Typically, Expert Systems verification approaches are based upon the concept of 

an anomaly, where an anomaly is an abuse or unusual use of the knowledge 

representation scheme. An anomaly can be considered a potential error – it may 

be an actual error that needs correcting, or may alternatively be intended. 
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Considerable research has been done on identifying rule-base anomalies (Gupta, 

U. G., 1991; Gamble R. F. et al., 1994; Liu N. K. & Dillon T., 1995; Nurrell, S. 

& Plant, R., 1996), with the result that rule anomalies are now quite well 

understood. These may include 

 

a). Correctness 

• Redundancy: Identical or chained rules succeed in the same 

situation and have some common results. 

• Subsumption: Two rules have the same results but one 

contains additional constraints on the situations in which it 

will succeed. 

• Ambiguity: Indeterminate rules. 

• Cyclicity: Circular rules (i.e. Without a satisfactory 

terminating condition. 

b). Consistency 

• Contradiction: Conflicting rules (i.e. Two sequences of rules 

offering conflicting results). 

• Deadend: Rules which are executed and no other rules can 

succeed them.  

c). Completeness 

• Unreachability: Rules whose conditions can never be satisfied. 

• Omission: Missing rules. 

 

Although there are comparatively less research work done on verifying Frame-

based Expert Systems, both (O'Keefe, R. E. & O'Leary, D. E., 1993) and 

(Coenen, F. & Bench-Capon, T., 1993) pointed out that increasingly, 

implemented Expert Systems employed some variation of object-oriented 

methods to store attributes and procedural attachments and provide inheritance. 

They defined the typical anomalies for a Frame-based Expert System are: 

 

• Redundancy, (e.g. A slot or frame is redundant if it is not used 

to establish anything that the system is designed to address). 

• Missing slots and Frames. 
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• Misplaced Slots and Frames, (e.g. given the property of 

inheritance, the location of a slot in a frame hierarchy can be 

highly significant). 

• Duplication, (e.g. Duplicated slots). 

• Inconsistency, (e.g. There exists a possible set of facts that 

would allow an entity to be instantiated to two different 

frames). 

• Incompleteness, (e.g. There exists a possible set of facts that 

an entity could not be instantiated to a frame).  

 

The earliest references to activities designed to ensure acceptable knowledge 

base system quality can be traced to efforts on the MYCIN project (Shortiliffe, E. 

H., 1976).  Some of these efforts were aimed to fix spelling errors, checks that 

rules are semantically and syntactically correct through pairwise rule 

comparison, and to some extent points out potential erroneous interactions 

among any two rules. With greater acceptance of knowledge base systems as 

viable solutions for a specific range of problems, the need for more formal 

mechanisms to assure knowledge based system quality assumed greater 

importance. Independent research streams addressing the problems of 

completeness and consistency of the domain knowledge were now identifiable. 

Strategies include the use of Normal Form Approach (Charles, E., 1991); 

Decision Table Methods (Suwa, M. et al., 1982; Nguyen, T. A. et al., 1985); 

Incidence Matrix Method (Landauer, C., 1990; Agarwal, R. & Tanniru, M., 

1991); Knowledge Base Reduction (Ginsberg, A., 1987); Generic Rule Systems 

(Chang, C. L. et al., 1990; Stachowitz, R. A. & Chang, C. L., 1988; Stachowitz, 

R. A. & Combs, J. B., 1987; Preece, A. D. & Shinghal, R., 1991a and 1991b); 

Bayesian Approach (O'Keefe, R. E. & O'Leary, D. E., 1993; O'Leary, D.E., 

1995); Statistical Investigations (Landauer, C., 1990; O'Leary, D. E., 1988a); 

Rule Clustering (Jacob, R. J. K. & Forscher, J. N., 1991; Mehrotra, M., 1991); 

Using Test Cases, (Cuda, T. V. & Dolan, C. P., 1991) and Petri-Net Systems 

(Liu, N. K., 1996, 1995, 1993, 1991; Wu, C. H. & Lee S. J., 1995; Scarpelli, H & 

Gomide, F., 1994a, 1994b; Yao, Y., 1994; Zhang, D. & Nguyen, D., 1994; 

Nazareth, D. L., 1993; Agarwal, R. & Tanniru, M., 1992; Meseguer, P., 1990). 
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In modelling studies, nobody solves the problem - rather, everybody solves the 

model of the problem. Since an Expert System represents human reasoning and 

knowledge, we must justify its representation level through some kinds of 

checking and testing, basically, the verification. While 'verification' and 

'validation' might have separate definitions, we can derive the maximum benefit 

by using them synergistically treating both as an integrated definition. 

 

In this thesis, the process of verification involves the checking of correctness, 

consistency and completeness in Hybrid Expert Systems. The approach adopted 

by this research illustrates the use of dynamic analysis that involves the 

execution of the system using a variety of inputs and scrutiny of the output for 

correct behavior. In general, correctness refers to the accuracy of the knowledge 

in the knowledge base. Consistency refers to the relationship between the 

information in the knowledge base and the ability of the inference engine to 

process the knowledge base in a consistent manner. It includes the checking for 

and reporting of built-in discrepancies, ambiguities, and redundancies in the 

contents of the knowledge base. Completeness refers to the amount of knowledge 

built into the knowledge base. It means that a knowledge base is prepared to 

answer all possible situations that could arise within its domain. It is hence one 

measure of robustness. Completeness checking is a debugging aid which finds 

logical cases that have not been considered, in other words, missing knowledge. 

As the input parameters increase, the potential number of cases increases 

exponentially, resulting in great human difficulty determining which situations 

have not been considered. 

 

As such the verification of an Expert System attempts to show that the software 

programs of the system are correct in relation to the criteria. Verification tries to 

prove this correctness by formal means, whose correct application may again be 

examined by formal means. This provides greater reliability of the statement as 

to the correctness of a system than can be achieved by other, non-formally 

controllable validation means. In an effort to preclude confusion of other 

definition, verification in an Expert System will be constructed to be the 

demonstration of logical correctness, consistency, and completeness of the 
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knowledge base. The view that verification is a process of ensuring these logical 

qualities does not necessarily imply enforcement of semantically correct 

performance. It should also be stressed that these qualities are not restricted to 

the theorem proving usage of the construct. 

 

2.4 Major Approaches for Expert Systems Verification 

 

2.4.1. Normal Form Approach 

 

(Charles, E., 1991) considered that knowledge based systems can be checked at 

the clausal level. The rules in an ES are translated into clausal form using logical 

equivalence. The most common types of clausal forms are Disjunctive Normal 

Form (DNF) and Conjunctive Normal Form (CNF). Checking for anomalies 

requires comparing the individual clauses. E.g.  

 Rule 1:  IF B OR C THEN A 

 Rule 2: IF (B AND D) OR E THEN A 

These then translate into the following clauses: 

 Clause 1: B ⇒A 

 Clause 2: C ⇒A 

 Clause 3: B∧D ⇒A 

 Clause: 4: E ⇒A 

Here clause 1 subsumes clause 3. Meta-rules can be used to identity subsumed 

clauses, e.g. A clause is subsumed by another if all literals in the second clause 

are also contained in the first, i.e. a clause (A∧B∧C) will be subsumed by a 

clause (A∧B). If all the clauses derived from a rule are eliminated then the rule is 

declared to be redundant. If only some clauses are eliminated then the rule is 

declared to contain redundant premises or conclusions. Although this Normal 

Form approach is quite straightforward, the decision of how to resolve anomalies 

detected is based on the view as to how the rule-base should be structured 

together with expert view of the domain. Another problem of this approach is its 

inability to deal with complicated Hybrid Expert Systems.  

 

2.4.2. Decision Table Methods 
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A decision table is a tabular representation of a procedural decision situation, 

where the state of a number of conditions determines the execution of a set of 

actions (Coenen, F. & Bench-Capon, T., 1993). Conditions are given along the 

X-axis and actions along the Y-axis. The aim is to demonstrate the results of an 

exhaustive set of mutually exclusive combinations of conditions. More 

succinctly, decision tables can be said to be a method of organizing and 

documenting logic in a manner that allows easy inspection and analysis. This 

approach, widely used in conventional software specification to determine the 

effect of conditional statements, has been used to facilitate the testing of a set of 

rules for conditions of ambiguity redundancy and completeness (Cragen, B. J. & 

Steudel, H. J., 1987; Vanthienen, J., 1991). A number of variations on the 

decision table approach have also been developed, examples include Suwa's rule 

checking program (Suwa, M. et al., 1982) and Nguyen's CHECK (Nguyen, T. A. 

et al., 1985). 

 

The main idea of decision table techniques is as follows: 

 

• Separate rules into sub-tables so they have logical isolation from other 

rules i.e. the rules in the set have at least one condition (attribute) in 

common, and no other rules uses that attribute. 

• Further separate the sub-table so that no rule in a sub-table allocates 

the value for a condition in another rule in the same table. 

• A master table is created to display all possible combinations for 

condition parameters and resulting action parameters. 

• The master table is used to check for conflicts, redundancies, 

subsumptions and missing rules. (e.g. A missing rule is identified if 

there is a possible combination of values of attributes appear in the 

antecedent set but no corresponding output action.) 

 

The problem of decision table techniques is that in any realistically sized 

application the table will grow to unmanageable proportions unless some form of 

partitioning is implemented whereby only a finite number of condition-action 
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combinations need be considered. A further problem of decision table techniques 

is that only static checks are involved, i.e. no consideration is given to dynamic 

checking.  

 

2.4.3. Incidence Matrix Method 

 

The incidence matrix method of Expert System verification and validation 

involves the construction of matrices to determine the number of rules containing 

a certain variable or combination of variables or the number of variables 

common to a set of rules. A number of knowledge base system verification and 

validation systems exist that are based on the development of incidence matrices 

(Landauer, C., 1990; Agarwal, R. & Tanniru, M., 1991). Structurally an 

incidence matrix is very similar to a transposed decision table (i.e. Conditions are 

given along the Y-axis and Actions along the X-axis).   

 

The main idea of incidence matrix technique is as follows: 

 

• Convert the rules into a incidence matrix by 

1. Assign negative numbers to possible values for attributes in 

the antecedent of the rules. 

2. Assign positive numbers to possible values for attributes in the 

consequent of the rules. 

3. Assign zero to attributes not appear in either antecedent or 

consequent of the rules. 

E.g. The incidence matrix of the following rules is:   

Rule 1: IF A=1 AND B=1 THEN C=1 

Rule 2: IF A=2 THEN C=2 

  

  A=1, A=2, B=1, C=1, C=2 

Rule 1     -1       0    -1    1    0  

   Rule 2       0   -1     0    0    1 
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• Multiply the incidence matrix by the transpose of itself. The resulting 

matrix shows the common elements contained in the rules in the 

knowledge base. 

• If a rule (e.g. Rule X) does not share an element with one other rule in 

the knowledge base (KB), we can consider it to be redundant. (i.e. If 

we multiply the incidence matrix of the knowledge base (KB) with 

the transpose of the incidence matrix for the rule (Rule X), the 

resulting matrix contains only zeroes). 

• Similar steps as above can also check other anomalies such as 

subsumption and incompleteness. 

 

The problem of incidence matrix techniques is very similar to decision table 

techniques, i.e. any realistically sized application the matrix will grow to 

unmanageable proportions unless some form of partitioning is implemented 

whereby only a finite number of condition-action combinations need be 

considered. A further problem of incidence matrix techniques is that only static 

checks are involved (i.e. no consideration is given to dynamic checking).  

 

2.4.4. Knowledge Base Reduction Systems 

 

The concept of knowledge base reduction, as advocated by (Ginsberg, A., 1987) 

is based upon ideas concerned with solving problems associated with truth 

maintenance as advanced by de Kleer amongst others, particularly those concepts 

underlying de Kleer's Assumption-Base Truth Maintenance System (ATMS) (de 

Kleer, J., 1986). Ginsbery defines KB Reduction as: 

  

"A technique whereby for every assertion H that a KB can make one has 

calculated all possible logically independent and minimal sets of inputs 

under which the KB will be led to assert H." 
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The technique requires that the rules in a KB form a hierarchical network that 

can be partitioned into levels starting at the leaf nodes. Labels are then computed 

for every hypothesis and default hypothesis in the KB. A hypothesis is any literal 

in the consequent of a rule and default hypothesis is any literal in the antecedent 

of a rule that negates a hypothesis. A label is thus the set of all minimal logically 

consistent inputs to establish a hypothesis. This set of inputs is referred to as an 

environment and the individual inputs as findings. The latter are defined as 

antecedent literals that are not negated in the consequent of any rule. By 

comparing labels we can then identify anomalies such as inconsistency, 

redundancy, auxiliary rules and subsumptions. For example, consider the 

following four rules: 

 

 Rule 1:  IF P OR Q THEN R 

 Rule 2: IF A THEN B 

 Rule 3: IF B AND R THEN S 

 Rule 4: IF NOT S AND C THEN T 

 

 Findings: P, Q, A, C 

 Hypotheses: R, B, S, T 

 Default Hypothesis: ¬S 

 

 The labels are then:  

 Label R: P∨Q 

 Label B: A 

 Label S: (A∧P)∨(A∧Q) 

 Label T: ¬A∧C∨(¬P∧¬Q∧C) 

 Label ¬S: ¬A∨(¬P∧¬Q∧C) 

 

If the rule label R consists solely of inconsistent environments (e.g. P∧¬P) the 

rule R can be eliminated because it can never be fired. If the rule label is implied 

by the current partial label of H, (e.g. Every environment of H is a super-set of 

some environment in the rule label of R) this may suggest the existence of a 

subsumed rule. 
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The basic advantage of the KB reduction is its ability to treat multiple, mutually 

contradictory, states at once. In addition, it has an advantage when dealing with 

problems that require many solutions, since it avoids all dependency directed 

backtracking and context switching. The advantage of the KB reduction is less 

clear when there is only one solution. It all depends on how much dependency-

directed backtracking is required to find the single solution. The more there are, 

the better the KB reduction is likely to be. For some problems with many 

solutions, the basic KB reduction may contribute to inefficiency because all 

solutions will be explored when only one or a few may be necessary. 

 

2.4.5. Generic Rule Systems 

 

Generic rule systems are designed to allow knowledge based systems, using any 

representation, to be verified and validated by first translating the rules or frames 

into a generic representation. Two outstanding examples are the EVA (Chang, C. 

L. et al., 1990; Stachowitz, R. A. & Chang, C. L., 1988; Stachowitz, R. A. & 

Combs, J. B., 1987) and COVER (Preece, A. D. & Shinghal, R., 1991a and 

1991b). EVA is written in PROLOG and consists of a wide range of validation 

tools that enable the user to check the redundancy, consistency, completeness 

and correctness of a KBS. EVA can be viewed as a metashell consisting of a 

unifying architecture that uses a single inference strategy, a single meta-KB and 

a common language for specifying requirements, constraints and models for 

domain knowledge. This makes EVA independent of any specific shell. COVER 

is implemented in PROLOG and C, and runs on SUN workstations. COVER 

checks for a number of types of anomaly such as deficiency, ambivalence, 

redundancy and circularity. 

 

The major criticism of using Generic Rule Systems is that specific languages 

used in particular Expert System shells must be translated into this generic form, 

which is not a trivial task.  

 

2.4.6. Bayesian Approach 
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In systems which attempt to measure uncertainly or strength of association, using 

certainty factors, Bayesian probabilities or any other method, it is also important 

to verify that the weights are consistent, complete, correct and not redundant. 

(O'Keefe, R. E. & O'Leary, D. E., 1993; O'Leary, D. E. 1995). This can be done 

by ensuring that each rule that is supposed to have a weight does have one and 

that the weights are developed in concert with the theory on which they are 

based. For example, given the following rule: 

 

 Rule 1:  IF E THEN H (to degree S, N) 

 

 where S and N are numeric values that represent the strength of 

association between E and H. S is a sufficiency factor, since a large value 

of S means that a high probability for E is sufficient to produce a high 

probability for H, and N is a necessity factor, since a small value of N 

indicates that a high probability of E is necessary to produce a high 

probability of H. S and N can be specified directly, or they can be 

developed by establishing the likelihood ratios. The relationships between 

these ratios could take any of a number of functional forms, including 

linear, quadratic, etc. Anomalies exist if these are violated. 

 

Finding anomalies in the weights in an ES is a process that has received limited 

attention, probably due to the limited number of implemented ES that make 

extensive use of uncertainty measures.  

 

2.4.7. Statistical Investigations 

 

Statistical methods can be a useful static or dynamic verification test. (Landauer, 

C., 1990; O'Leary, D. E., 1988a) suggest that various aspects of rules, such as 

attributes and conclusions, be analyzed statistically as part of the verification 

process. This can be done statically or dynamically. The frequency that rules are 

fired or paths are traversed can be statistically analysis to reveal some anomalies. 

For example, a priori, it may be expected that a particular rule or sequence of 

rules should fire frequently. If analysis of actual or simulated use of the system 

provides data that indicates that this is not the case, then it would be appropriate 
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to examine those rules in more detail. In applying the statistical technique, the 

biggest problem is the identification of criteria for analysis. This may require 

expert's input, again, it is time consuming and error prone.  

 

2.4.8. Rule Clustering 

 

Grouping rules can be performed by: (1) measuring the distance between two 

rules based on their relatedness, and (2) clustering rules with a minimum 

distance. Rule grouping has been advocated for improving the modularity of rule 

bases, consequently enhancing their maintainability (Jacob, R. J. K. & Forscher, 

J. N., 1991; Mehrotra, M., 1991). In terms of knowledge base verification, by 

decomposing the rule base into a number of meaningful units, the pair-wise 

comparisons among rules within the groups can be minimized. The main idea is 

as follows: 

• Calculate the distance metric between rules using the formula 
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where D(ri,rj) is the distance metric 

• Rules are clustered with a minimum distance 

• Construct a rule connection graph in each cluster of rule sets 

• Represent the rule sets using adjacent matrix 

• Apply pair-wise comparisons and detect for anomalies 

 

The advantage of this method is the reduction of the total number of pair-wise 

comparisons with the assumption that errors will occur between pairs or limited 

sets of rules. Consequently, this approach fails to recognize that some knowledge 

systems are not simple classification systems, but could involve a network of 

inferences, and errors in chained inference are a definite possibility, even if 

pairwise comparisons indicate no errors. 

 

2.4.9. Using Test Cases 
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Using test cases may be considered as an informal method, however, some 

authors (Cuda, T. V. & Dolan, C. D., 1991) claim that many of the properties 

checked by formal means may be better dealt with by relatively informal 

techniques based on a particular method of constructing a knowledge base. A test 

case consists of a set of inputs for a particular problem and the correct outputs. 

The knowledge base is given the inputs of a test case, and the outputs it 

generated are checked against the known correct outputs. A test case descriptor 

allows a possible range of values to be entered for each input parameter and then 

forms cases by taking the cross product. 

 

An unfulfillable goal is detected if, as a result of running the test cases a goal 

does not have a value. Unreachable attribute values and if-conditions are detected 

in a similar way. Illegal input sets are identified by presenting the expert with 

input sets produced by the test case descriptors. Illegal output sets are checked 

for by running the widest possible range of test cases and checking the system's 

output against them. Although using test cases is straightforward and easy to use, 

it requires expert's evaluation and interpretation of the tests' results. Again, it is 

time consuming and error prone.  

 

2.4.10. Petri-Net Systems 

 

Suggestions for the use of Petri Nets (Liu, N. K., 1996, 1995, 1993, 1991; Wu, C. 

H. & Lee S. J., 1995; Scarpelli, H & Gomide, F., 1994a, 1994b; Yao, Y., 1994; 

Zhang, D. & Nguyen, D., 1994; Nazareth, D. L., 1993; Agarwal, R. & Tanniru, 

M., 1992; Meseguer, P., 1990) to model the interaction and temporal 

relationships between individual events represented in production-based Expert 

Systems appear promising. The model's behaviour can be expressed in Algebraic 

form, thus supplying the basis for automating algorithms, capable of proving 

properties of the modelled system.  

 

Petri-net models are abstract, formal representations of information flow. They 

describe the input/output relationship between objects using a graphical 

representation. Using Petri nets for verification purposes, each rule is translated 

into a transition by allocating a place to each condition and each action in the 
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rule. The detection and analysis of the anomalies in the system are done by 

constructing and examining the reachability tree spanned by the knowledge 

inference. A more detailed description and evaluation of Petri Nets systems as 

the appropriate methodology for this research project will be discussed in the 

next Chapter.  

 

2.5. Summary 

 

A number of issues about the description and verification of knowledge being 

applied in Expert Systems has been discussed. To obtain a conceptual basis for 

the theme of verification in this thesis, we have defined the process of 

verification as the checking of the appropriateness of a model. This involves the 

checking of correctness, consistency and completeness in Expert Systems. A 

number of major approaches to the verification of Expert Systems have been 

reviewed. These include the use of Normal Form Approach, Decision Table 

Methods, Incidence Matrix Method, Knowledge Base Reduction, Generic Rule 

Systems, Bayesian Approach, Statistical Investigations, Rule Clustering, Using 

Test Cases, and Petri-Net Systems. However, these techniques exhibit a limited 

range of applicability. They could not cope with the kind of Hybrid Expert 

Systems (HES), e.g. Rule-based plus Frame-based, which many of the current 

Expert Systems are being developed. The verification of these Hybrid Expert 

Systems requires methods that could tackle the multiple knowledge 

representation paradigms and integrated inference mechanisms used. 
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CHAPTER 3. CHOICE OF METHODOLOGY 

 

3.1. Logic-based Techniques 

 

This set of techniques includes the use of Normal Form Approach (Charles, E., 

1991); Decision Table Methods (Suwa, M. et al., 1982; Nguyen, T. A. et al., 1985); 

Incidence Matrix Method (Landauer, C., 1990; Agarwal, R. & Tanniru, M., 1991); 

Knowledge Base Reduction (Ginsberg, A., 1987); Generic Rule Systems (Chang, C. 

L. et al., 1990; Stachowitz, R. A. & Chang, C. L., 1988; Stachowitz, R. A. & Combs, 

J. B., 1987; Preece, A. D. & Shinghal, R., 1991a and 1991b). The major problem of 

logic-base technique is that it does not provide explicit and complete 

interrelationship of knowledge structure. Therefore, it cannot reflect a network of 

possible inference in a knowledge base. Consequently, anomalies due to any 

semantic gap will unlikely be detected and verified. Furthermore, logic-based 

techniques is incapable of supporting the investigation of any concurrent and 

dynamic behaviour exhibiting in the knowledge systems. Lastly, logic-based 

techniques cannot support the descriptions of complex data types such as object-

oriented concepts. 

  

3.2. Statistics-based Techniques 

 

This set of techniques includes the use of the Bayesian Approach (O'Keefe, R. E. & 

O'Leary, D. E., 1993; O'Leary, D. E., 1995); Statistical Investigations (Landauer, C., 

1990; O'Leary, D. E., 1988a); Rule Clustering (Jacob, R. J. K. & Forscher, J. N., 

1991; Mehrotra, M., 1991).  In systems that attempt to measure uncertainty or 

strength of association, statistical methods can be a useful static or dynamic 

verification test. Nevertheless, these techniques employ meta-knowledge from the 

domain to examine the statistical results from the tests. Thus, it is not easy to 

identify a generic approach in representing anomalies based on statistics. 

Furthermore, the assumptions made when carrying out the statistics has to be 

examined together with the results. Finally, this kind of techniques is only good at 
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proving 'the system is good as long as not proven bad'. The correctness, consistency 

and completeness of the system cannot be formally established. 

      

3.3. Test Cases-based Techniques 

 

This set of techniques mainly use Test Cases (Cuda, T. V. & Dolan, C. P., 1991). 

The problems of using test cases includes: (1) Difficulty in establishing criteria for 

testing; (2) Difficulty in comparing results generated from the test cases; (3) How to 

maintain Objectivity; (4) How to determine the reliability of the Expert Systems if 

only test cases are used, and (5) The availability of the test cases. Another major 

problem with using test cases is an assumption that the expert against which the 

system is being compared is always correct, i.e. if the system differs from the expert 

then it is 'wrong'. Using synthetic cases is dangerous, and demands considerable 

objectivity on behalf of the developers. Finally, there is always a temptation to make 

the test cases reflect the known strengths of the system.  

 

3.4. Petri Nets-based Techniques 

 

Petri Nets based techniques (Liu, N. K., 1996, 1995, 1993, 1991; Wu, C. H. & Lee 

S. J., 1995; Jensen K., 1995, 1996; Scarpelli, H & Gomide, F., 1994a, 1994b; Yao, 

Y., 1994; Zhang, D. & Nguyen, D., 1994; Nazareth, D. L., 1993; Agarwal, R. & 

Tanniru, M., 1992; Meseguer, P., 1990) is now in widespread use for many different 

practical purposes. The main reason for the great success of these kinds of net 

models is the fact that they have a graphical representation and a well-defined 

semantics allowing formal analysis. The simplest Petri nets are those without colours 

and called Place/Transition Nets (PTN). In PTNs there is only one kind of token and 

this means that the state of a place is described by an integer or by a Boolean value 

(e.g. 1 or 0). In high level nets, such as Coloured Petri Nets (CPNs), each token 

carries complex information or data which may be used to describe the entire state of 

a process. A Petri net model is a description of the state and action of a system – it 

gives an explicit description of both the states and actions of the system. This allows 
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the user to determine freely whether, at a given moment of time, he wants to 

concentrate on states or on actions. In a typical Petri Net diagram (Figure 3.1.), 

states of the system are indicated by means of cycles (or ellipses) which are called 

places. Each place may contain a dynamically varying number of small black dots, 

which are called tokens. An arbitrary distribution of tokens on the places is called a 

marking. An initial distribution of tokens on the places is called the initial marking 

and it is usually denoted by M0. The actions of the system is indicated by means of 

rectangles, which are called transitions. The places and transitions of a Petri net are 

collectively referred to as the nodes. The Petri net also contains a set of directed 

arrows, which are called arcs. Each arc connects a place with a transition or a 

transition with a place – but never two nodes of the same kind. Each arc may have 

an expression attached to it (e.g. A positive integer), this expression is called an arc 

expression. The above gives the syntax of a Petri net. 

 

With reference to the semantics of a Petri Net, each transition represents a potential 

move. A move is possible if and only if each input place of the transition contains at 

least the number of tokens prescribed by the arc expression of the corresponding 

input arc. If this happens, the transition is enabled. When a transition is enabled the 

corresponding move may take place, this means the transition occurs. The effect of 

an occurrence is that tokens are removed from the input places and added to the 

output places. The number of removed/added tokens is specified by the arc 

expression of the corresponding input/output arc. Tokens are removed from the input 

places, and completely new tokens are added to the output places. This means that 

there is no relationship between the token removed and the token added. The 

execution of a transition T transforms marking M0 to the marking M1, therefore, M1 

is reachable from M0 by T. If two or more transitions are concurrently enabled in a 

marking M, this means the enabled transitions may occur at the same time (or occur 

in parallel). A transition may even occur concurrently to itself, if there are sufficient 

tokens deposited in its input places. 
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Figure 3.1. A Petri Net 

In Figure 3.1., there are five places, P1 to P5; four transitions, T1 to T4 and ten arcs, 

A1 to A10. There are two tokens in place P1, one token in place P2 and another 

token in P5. 

 

3.4.1. Coloured Petri Nets 

 

In order to describe complex systems in a manageable way, the development of high 

level Petri Nets constitutes a very significant improvement in this respect. Coloured 

Petri Nets belong to the class of high level nets. The main advantages of Coloured 

Petri Nets (CPNs) over PTNs is the introduction of the data type concept. In CPN, 

each token is attached a data value, called the token colour. The data value may be 

of arbitrarily complex type. (e.g. A record where the first field is a real number, the 

second is a text string, while the third is a list of integer pairs). For a given place all 

tokens must have token colours that belong to a specified type. This type is called 

the colour set of the place. Colour sets determine the possible values of tokens 

analogously to the way in which types determine the possible values of variables and 

expressions in programming languages. 

 

Attaching a colour to each token and a colour set to each place allows the use of 

fewer places than would be needed in a PTN. Intuitively, the introduction of colours 

has allowed the folding of places into a single place without losing the ability to 
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distinguish between various states and actions of the system. Similarly, to get 

transitions which can represent many different actions, the arc expressions 

surrounding a given transition can contain a number of variables. This variable can 

be bound to different values and this means that the expressions evaluate to different 

values. Therefore, in order for the transition to occur, the variables in the arc 

expressions surrounding the given transition have to be bound to colours (data) of 

the corresponding type (data type). When a transition is enabled for a certain 

binding, it may occur, and it then removes tokens from its input places and adds 

tokens to its output places. 

 

The introduction of colours into PTNs have the following advantages: 

 

• Description and analysis of systems become more compact and 

manageable. 

• It is possible to describe data manipulations in a direct way. 

• It becomes easier to see the similarities and differences between similar 

systems. 

• It is possible to create hierarchical descriptions. 

 

3.4.2. Choice of Coloured Petri Nets to model Hybrid Expert Systems 

 

3.4.2.1. Requirements of the modelling language 

 

In the design and analysis of Expert Systems, questions of correct behaviour is very 

important since they may be used to control traffic systems, telecommunication 

systems, medical diagnostic systems, etc. Their incorrect behaviour could lead to 

disasters. Moreover, dynamic analysis of Expert Systems is more difficult to 

understand due to their combinatorial complexity. Therefore, a proper formal 

methodological framework for the verification of knowledge bases is needed.  
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Formal approaches to software specification and development have been a topic of 

active research for a long time. Formal methods are introduced (Graigen, D. et al, 

1993) as "mathematically based techniques, often supported by reasoning tools, that 

can offer a rigorous and effective way to model, design and analyze computer 

systems."  At the specification level, a formal method provides a notation for 

software specification and development with some mathematical meaning which 

each specification is associated a mathematical entity. Moreover, there is a formal 

deduction system which makes it possible to perform some symbolic computations 

or proofs. This formal system is consistent with the mathematical meaning. One of 

the main interests of formal techniques is the possibility to perform proofs. Such 

proofs have different aims: (1) they can be used to verify a specification, (i.e. by 

verifying that some properties are consequences of the specification, or by refuting 

some other properties which correspond to undesirable situations; (2) They can be 

used to verify that a design step is correct, (i.e. that a detailed specification is 

compatible with a less detailed one; (3) They can be used to check that a system 

satisfies a specification, (i.e. by proofing the properties of the system).  

 

A formal description technique (Broy, M., 1991) comprises of the following two 

components:   

 

• Syntax: the forms of descriptions are precisely defined, this can be done 

by graphical forms as well as by textual forms or mixtures of both of 

them. 

 

• Semantics: the meaning of the syntactic forms has to be uniquely defined, 

this can be done by mapping the syntactic forms onto appropriately 

chosen semantic models as well as by logical calculi. 

 

Without a mathematically properly defined semantics, a description technique 

cannot be called formal but at most semiformal. Semantic models are helpful in the 

understanding of the concepts of a formal description technique. Logical calculi are 
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of methodological importance when developing, transforming, and verifying 

systems descriptions. In general, an available formal framework serves two 

important purposes. First of all, it gives a proper foundation such that it is clear what 

is meant that a system is correct or that it can be verified. Second, support tools that 

should give substantial support aid have to be based on formal methods. This is why 

formal description methods get more and more into practical use, at least, if systems 

with high reliability are required. 

 

As the major aim of this Ph.D. research is to develop a formal methodology for 

specifying and verifying Hybrid Expert Systems, the most important requirement is 

whether the modelling language used has a sound, solid and well defined semantics 

for formal analysis. In addition, the methodology chosen should exhibit the 

following potentials: 

 

• provide a graphical representation of the relationships among the object 

hierarchy, object instances, methods, demons and the production rules in the 

Hybrid Expert Systems. 

 

• allow for the dynamic checking of HES which yields information on how the 

system achieves it goals. 

 

• provide information about the current state of transition predicates as well as 

the states of the object instances. 

 

• provide a clear semantics which allow for the formal analysis of the 

behaviour of the modelled HES. 

 

• has the ability to maintain or update both the state of predicates and slot 

values of the object instances during transition firings.  
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• has a potential to tackle situations with relatively higher complexity and 

variant conditions like temporal space, probabilistic and fuzzy reasoning. 

 

3.4.2.2. Reasons of choosing Coloured Petri Nets as the modelling language 

 

First of all, a CPN model is a description of the modelled system, and it can be used 

as a specification of a system which is to be built, or a representation of a system 

which we want to understand and communicate with others. Secondly, the behaviour 

of a CPN model can be analyzed, either by means of simulation or by means of 

formal analysis method. Detail reasons for using it for this research project are as 

follows: 

 

3.4.2.2.1. Graphical Representation 

 

It is extremely easy to understand and grasp the meaning of the modelled systems by 

CPN because of its graphical representation. This is due to the fact that CPN 

diagrams resemble many of the informal drawings which designers and engineers 

make while they construct and analyze a system. The notion of states, actions and 

flow are particularly appealing, when they are used to model the states of the 

predicates of the rules, the inference mechanisms in the Expert Systems. Many 

concepts in Expert Systems can be represented by places, transitions, and arcs of 

CPN directly. 

 

3.4.2.2.2. Well Defined Semantics  

 

It is the presence of the semantics which makes it possible to implement simulators 

for CPNs, and it is also the semantics which form the foundation for the formal 

analysis methods that this research project seeks to develop. 

 

3.4.2.2.3. Concurrent Systems 
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Transitions in CPN can be concurrently enabled and occurred, they can be used to 

model systems which required descriptions of concurrently behaviours. This means 

that the notions of conflict, concurrency and causal dependency can be defined in a 

very natural and straightforward way. In Hybrid Expert Systems, the dynamic 

behaviour (e.g. Inference strategies, inheritance among the object classes in the 

hierarchy) can be modelled explicitly using these concurrently enabled transitions.     

 

3.4.2.2.4. Few, but Powerful Primitives 

 

The definition of CPN is rather short and it builds upon standard concepts which are 

based on mathematics and programming languages. This means that it is relatively 

easy to learn to use CPN. In addition, the small number of primitives also means that 

it is much easier to develop strong analysis methods. 

 

3.4.2.2.5. Explicit Description of both States and Actions 

 

Since CPN is a system description language which explicitly describe both states 

and actions, it is easy for the user to change the point of focus from state to actions, 

or from actions to states. In the case of HES modelling and analysis, at some 

instance, it may be convenient to concentrate on the states of the predicates, and the 

states of the object instances while at other instances it may be more convenient to 

concentrate on the inferences or inheritance of the object properties. 

 

3.4.2.2.6. Hierarchical Descriptions 

 

This means that large CPN can be constructed from relating smaller CPNs in a well 

defined manner. Therefore, the modelling of very large systems can be carried out in 

a manageable and modular way. 

 

3.4.2.2.7. Data Manipulation 
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This means that from a CPN, it can be seen what the environment, enabling 

conditions and effects of an action are. The data manipulation is carried out by the 

net expressions, which may be built from a number of variables, constants, 

operations and functions. The manipulation is similar to applying the operation and 

functions to the binded variables. The operations and functions take a number of 

arguments and return a result. 

 

3.4.2.2.8. Formal Analysis Techniques 

 

Formal analysis techniques are available for CPNs, such as the construction and 

analysis of occurrence graphs (representing all reachable markings); calculation and 

interpretation of system invariants (place and transition invariants); reductions 

(which shrink the net without changing a certain selected set of properties) and 

checking of structural properties (which guarantee certain behavioural properties). 

 

3.5. Summary 

 
As the major aim of this Ph.D. research is to develop a formal methodology for 

specifying and verifying Hybrid Expert Systems, the most important requirement is 

whether the modelling language used has a sound, solid and well defined semantics 

for formal analysis. In addition, the method chosen should be able to model both the 

Frame-based and Rule-based knowledge representation characteristics. Such a 

technique is chosen as a possible candidate among logic-based, statistics-based, test-

cases based and Petri nets-based methods. The analysis of these choices suggests the 

use of the Petri Nets paradigm as the candidate methodology for modelling 

knowledge representations in Hybrid Expert Systems. The distinguished network 

characteristics and the concept of coloured tokens can be used to establish formal 

description and verification of Hybrid Expert Systems. This will require semantic 

extensions of the nets to provide sufficient descriptive and expressive power for the 

purpose of verification of hybrid knowledge bases. 

 



 36 

CHAPTER 4. MODELLING AND VERIFICATION 

PROBLEMS IN RULE/FRAME-BASED 

HYBRID EXPERT SYSTEMS (HES) 

 

4.1. A Hybrid Expert System  

 

A Hybrid Expert System combines multiple representation paradigms into a single 

integrated environment. For a Rule- and Frame-based integration, it composes of the 

following key features: Object Classes, Slot Attributes, Inheritance Relations, 

Demons, Methods, Rules and Reasoning Strategies. These features can be analyzed 

using three conceptual views (French, S. W. & Hamilton, D., 1994) of an Expert 

System, they are: (1) An Object View which encapsulates a module of knowledge 

(or a concept). These knowledge modules (concepts) are represented by Object 

Classes. Inheritance Relations describe how these knowledge modules are related. 

(2) A Function View which specifies the functional behaviour of the objects within 

the Expert System. These functions are represented using Methods and Demons. (3) 

A Control View which specifies the sequence of knowledge inference in the Expert 

System. These controls are represented in terms of Rules and Reasoning Strategies. 

 

In practical HES development (Shiu, S. C. K. et al., 1995a, 1995b), Frames are used 

to represent domain objects, various kinds of Demons are used to implement 

procedures attached to specific slots, Inheritance is used to inherit Class properties, 

Methods and Demons among Object Classes, Message Passing is used for the 

interaction among different objects and Methods are used to perform algorithmic 

actions or some array manipulation within an object. Rules are used to describe 

heuristic problem-solving knowledge, Forward and Backward chains are commonly 

used to reason using rules. Therefore, in HES, the Frame base can be seen as being 

used to define the vocabulary for the Rule base, i.e. the possible values that slots can 

be defined and so specified, and the literal used to construct rules must conform to 

the restrictions imposed by what is available from the class hierarchy. The Frame 
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base is married together with the Rules designed to manipulate it. The specific 

integration mechanisms of HES are as follows: 

 

• Rules with Message Passing: Rules send or receive messages to and from objects 

for testing the Rules' premises. 

 

• Rules with Inheritance: Rules directly read and write data into slots in a parent 

object and through inheritance of this slot's value to its children objects, trigger 

other rules to fire. 

 

• Rules with Demons: Rules directly read and write data into slots and cause the 

execution of the associated Demons, which then trigger other rules to fire. 

 

• Rules with Methods: Rules are embedded as part of an object's methods. Since 

methods are arbitrary pieces of code attached to an object, they can access the 

rules through function calls. 

 

• Rules with Instances: Rules can be used to create/delete an instance of a specific 

Object Class. 

 

Usually, Object class has a set of attributes, demons and methods. Each attribute is 

of a simple data type: e.g. string or integer. Each specific object element is called an 

instance of the Object Class and will have different attribute values.  

 

A Demon is a function which is executed when the associated slot value is either 

updated, or needed. Sometimes, a Demon can also act like a validation trigger which 

checks the cardinality and/or constraints imposed on a particular slot. The effects of 

a Demon are confined always locally to the same Object Class. 

 

Methods are procedures attached to some Object Class, that will be executed 

whenever a signal is passed through. This way of executing a method is known as 
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Message Passing. Rules will interact with the information contained in the slots of 

the various Object Classes within the HES. 

 

Finally, in HES, there should be a set of reasoning strategies. Some common ones 

are: 

 

• Backward Chain with Inheritance: Goal directed search with inheritance as one 

of the means to establish the rule chains linking up different Object Classes. 

 

• Forward Chain with Inheritance: Data directed search with inheritance as one of 

the means to establish the rule chains linking up different Object Classes. 

 

Other important inference strategies include: Pattern Matching, Unification, 

Resolution and Heuristic Search. 

 

4.2.  Modelling Hybrid Expert System using State Controlled Coloured Petri 

Nets (SCCPNs) 

 

4.2.1. Object Classes 

 

Each object class's data structure is represented by a compound colour set, and each 

object instance is represented by a token in that set. For instance, if there are fifteen 

sets of non-empty types or colour sets being used to represent one object class's data 

structure, i.e. Σ = AA,BB,....OO; Color AA may be defined as text strings; Color BB 

may be as Boolean; ...and Color OO may be defined from some already declared 

coloured sets, e.g. Color OO = Product AA * BB * CC. Each object class instance is 

declared as a variable of a particular colour set, i.e. var Instance-1 : OO (var denotes 

variable declaration which introduces one or more variables). Here we have one 

variable, Instance-1, which is with colour OO. We may use var Instance-1, Instance-

2, Instance-3 : OO for declaring three different instances of the same object class 

with colour OO. In the following sections, we will use three variables, object "a", 
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which is a particular instance of a Super Class A, object "a1", which is a particular 

instance of Class A. (i.e. "a" IS-A superclass instance while "a1" IS-A class 

instance) and State "s" which is the state token. State "s" is used to carry the 

information that identifies which object instance had fired from which transition. 

(i.e. var a : OO, var a1 : OO and var s : text string) 

 

4.2.2. Rules with Inheritance 

 

In SCCPN, the transition operations are represented by the arc expression functions. 

By defining the arc expression functions differently, it can help us model different 

events in the HES. Therefore, places in the SCCPN are taken to correspond to two 

different elements in the HES. First, places are taken to correspond to predicates of 

the production rules which are pre-defined earlier by the user. Secondly, places are 

taken to correspond to the Objects class in the HES's Frame hierarchy. Similarly, 

transitions in the SCCPN correspond to two different events in the HES. First, the 

transitions correspond to the implications of the rules. Secondly, the transitions 

correspond to the inheritance of the properties from Classes.  

 

 
Figure 4.1a. Rule R with Inheritance (before firing) with an input token "a" & "s" in 

Super Class A. 
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The transition operations are represented by the arc expression functions. (e.g. A 

Rule R can be represented in SCCPN as shown in Figures 4.1a, 4.1b and 4.1c) 

 

 
Figure 4.1b. Rule R with Inheritance (after firing Inheritance T) with an input token 

"a" & "s" in Super Class A. 

 

 
Figure 4.1c. Rule R with Inheritance (after firing both Rule R and Inheritance T) 

with output token "a" & "s" in State R and output token "a1" & "s" in Class A1. A 

state token "s" is also created in Super Class A. 
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Super Class A is a SCCPN Place with colour set that was used to represent the data 

structure of all object instances in Super Class A. Class A1 is a SCCPN Place with 

colour set that was used to represent the data structure of all object instances in Class 

A1. Rule R is a SCCPN Transition which is enabled iff the input arc expression fR(x) 

is evaluated to be true (i.e., the premise X IS-A member of super class A AND X's 

slot-1 is 'Y' is true). If fR(x) is true then Rule R is fired, it implies that Rule R is 

executed. All tokens will be removed from Super Class A and a new token "a" will 

be created in State R with new data values determined by the output arc expression 

fR(y) (i.e. fR(y) will assign 'Y' to X's slot-2). Inheritance T is a SCCPN Transition 

which is enabled whenever there is an "a" token in Super Class A, after firing this 

transition, a token "a1" is created in Class A1 with all the attributes inherited from 

A. (i.e. a child token is created with the same attributes of its father). These two 

tokens ("a", "a1") can be used for further inference (if any) in the HES. In this way, 

we can trace the execution path of these two tokens by examining the information 

carried by the state tokens created within the SCCPN network. Moreover, we can 

also examine the contents of these two tokens to see if any attributes are in conflict 

with each other. These could serve as an indication of the existence of anomalies 

within the HES. (Note that in order to preserve the state of the predicate in Rule R, a 

state token is created in Super Class A via the self-loop of Rule R and an "a" token is 

created in Super Class A via the self-loop of inheritance T.) 

 

4.2.3. Rules with Message Passing 

 

Places in the SCCPN are taken to correspond to predicates of the production rules 

and the transitions in corresponding to the implications of the rules. Since the object 

class instance's data structure is represented by the token of a particular colour set, 

we can define arc expression such that they directly read and write data in the 

token's data slots. This can be illustrated by the following simple example: Pass the 

message "OK" to the object Class A's slot-promotion. 
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Colour sets: 

 

 Color Classes = with ClassA | Class B; 

 Color Promotion = String; 

 Color Objects = product Classes * Promotion; 

 var x : Classes; 

 

Arc expression: 

 

 IF x=ClassA THEN 1`(ClassA, "OK") ELSE empty. 

   

This will serve the purpose of sending or receiving messages (data value) to and 

from object instance for testing the rules' premises.  

 

4.2.4. Rules with Demons 

 

 
Figure 4.2a. Rule R with Demon (before firing) with an input token "a" and a state 

token "s" in Super Class A. 
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Similarly, a Rule with Demon can also be represented by a Places/Transition tuple, 

e.g. if a demon is attached with object X's slot-overtime, whenever the value of slot-

overtime is updated to 'Y' then the demon will execute and compute the slot-salary 

value by the formula 1.2*basic salary. This can be represented by Figures 4.2a and 

4.2b. 

 

The demon function, dR(y), is represented as an arc expression. The firing of Rule R 

will trigger the demon function to execute. 

 

 

Figure 4.2b. Rule R with Demon (after firing) with output token "a" & "s" in State R 

and output token "a1" & "s" in Class A1. A state token "s" is also created in Super 

Class A. 

 

4.2.5. Rules with Methods 

 

Methods are procedures attached to an Object class, they can be represented by the 

Functions and Operations declarations in SCCPN. The function takes a number of 

arguments and returns a result. The arguments and the result have a type which is a 

declared colour set, the set of all multi-sets over a declared colour set. A declared 
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function can be used in arc expressions, guards and initialization expressions in the 

SCCPN. For example, a typical function which tells whether the argument is even or 

not might be:  

 

 fun Even(n:integers)=((n mod 2)=0). 

 

Operations can also be used to represent Methods. In both Functions and Operations 

declarations, different kinds of control structures can be built. e.g. CASE statements; 

IF b is true THEN statement 1 ELSE statement 2; WHILE b is true DO; REPEAT 

statement 3 UNTIL b is true. The Rules with Methods can thus be represented by 

SCCPN as follows (Figures 4.3a-4.3.d, the self-loops are omitted for clarity reason) 

 

 
Figure 4.3a. Rule with Method (before firing) with an input token "a" and a state 

token "s" in P1. 
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Figure 4.3b. Rule with Method (Rule is called by the Method). The token "a" was 

passed to P2 and a state token "s" was created in P1, P2 and P3 respectively.  

 

 
Figure 4.3c. Rule with Method (After firing). The token "a" is in P4 and a state token 

"s" in P1, P2 and P3 and P4 respectively. 
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Figure 4.3d. Rule with Method (Method resumes control). The token "a" was passed 

to P5. A state token "s" was subsequently created in P1, P2, P3, P4 and P5 

respectively. 

 

The modelling of methods is divided into two parts. First the state of the method: (1) 

executed some of the program codes and waiting to pass the control to the Rule; (2) 

waiting for the Rule to pass back the control; (3) executed all the program codes and 

waiting to pass the control to other process.   

 

Secondly, the actual program codes of the method itself (i.e. Represented by the arc 

expression functions). In Figures 4.3a-4.3d, P1 to P3 to P5 represents three states of 

the Method described above. P2 to P4 represents the Rule embedded within the 

Method. Arc expression function F1 is the first part of the Method which executes 

first, then control is passed to the Rule by F2 which will create the "a" in P2. After 

firing of the Rule (T2 is enabled and fired), P3 and P4 will allow T3 to be fired. F8 

represents the remaining part of the Method which will act on Object A 

correspondingly. After execution of this Rule with Method, a state token "s" is 

deposited in all the Places, P1, P2, P3, P4 and P5 for preservation of the states. 
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4.2.6. Rules with Instances 

 

This is represented in SCCPN by the arc expressions because the number of 

removed/added tokens and the colours of these tokens are determined by the value 

of the corresponding arc expressions. 

 

4.3. A Taxonomy of Anomalies 

 

Although the integration of a Rule- and Frame-based Expert System can take the 

advantages of both representation paradigms, the systems are not free from errors 

and anomalies. In a pure Rule-based system, errors and anomalies could include 

redundancy, dead-end rules, subsumption, duplication, circular rule sets, 

unsatisfiable conditions, missing rules..etc. Their verification are well documented 

in the literature (Gupta, U., 1991; Coenen, F. & Bench-Capon, T., 1993; Gamble R. 

F. et al., 1994; Liu N. K. & Dillon T., 1995; Nurrell, S. & Plant, R., 1996).  

 

In a pure Frame-based system, errors and anomalies may occur due to the problems 

of message passing and concurrency, problems of inheritance (including simple, 

repeated and multiple inheritance) and problems of polymorphism. Instead of 

covering all the possible errors and anomalies caused by the integration of the above 

two representation paradigms, we would like to focus ourselves on the additional 

errors and anomalies attributed to the integration of rules with the inheritance of 

object properties.  

 

Given that in a closed world situation in which a common concept is derived by a 

HES. The anomalies that are relevant to the correctness, consistency, and 

completeness of the HES, take the following forms: 

 

4.3.1. Correctness 

 

4.3.1.1. Redundancy 
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Case I. Conditions and Actions identical between Parent Class and Child Classes. 

 

In the case of rules which have identical conditions and actions applied both to the 

parent object class and child object classes, this implies the existence of redundant 

rules. 

 

   Rule 1 : A∧B⇒C 

   Rule 2 : A'∧B'⇒C' 

 

(A, B & C are slots in the parent object, A', B' and C' are slots in the child object and 

A'=A, B'=B, C'=C because of inheritance). 

 

Case II. Chained inference 

 

   Rule 3 : A⇒C 

   Rule 4 : A'⇒B' 

   Rule 5 : B'⇒C' 

 

In the case of a chained inference, some rules could become redundant if the same 

result could be inferred by alternative transitions even the same input facts are given. 

(A'=A and C'=C because of inheritance and B' is not ascertainable through other 

rules). Rule 3 could become redundant as C' could be inferred by an alternative 

transition, Rule 5, via Rule 4.  

 

4.3.1.2. Subsumption 

 

Case I.  Rule 6 is subsumed by Rule 7 (Condition part) between Parent Class and 

Child Classes. 
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   Rule 6 : A∧B⇒C∧D 

   Rule 7 : A'⇒  C'∧D' 

 

Case II.  Rule 8 is subsumed by Rule 9 (Action part) between Parent Class and 

Child Classes. 

 

   Rule 8 : A∧B⇒C∧D 

   Rule 9 : A'∧B'⇒  C' 

 

Case III.  Rule 10 is subsumed by Rule 11 (Both Condition and Action) between 

Parent Class and Child Classes. 

 

   Rule 10 : A∧B⇒C∧D 

   Rule 11 : A'⇒ C' 

 

In a complex frame hierarchy which allows for multiple inheritance, checking for 

subsumption becomes more difficult because the problem becomes what 

characteristics the child inherits, and from which parent? The HES has to follow 

some sort of default orderings in inheritance, and this may lead to sets of conflicting 

traits which are even more complicated to verify. 

 

4.3.1.3. Ambiguity  

 

Case I.  Rule with inclusive disjunction of IS-A conditions from different Object 

Classes. 

 

   Rule 12:  A IS-A member of ClassX ∨  A IS-A member of ClassY⇒B 

 

Case II. Rule with inclusive disjunction of IS-A Actions for different Object Classes. 

 

  Rule 13:  B⇒A IS-A member of ClassX ∨  A IS-A member of ClassY 
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In general, when a HES enters into this indeterminate situation, some sort of 

selection tactics would have to be executed by the system to choose the best 

alternative it could have. This requires a greater degree of strategy evaluation.     

 

4.3.1.4. Circular Rule Sets 

 

If a circular loop can occur when a set of rules among different object classes are 

fired, then these rules are considered as a circular rule set within the object 

hierarchy. 

 

Case I. Self-reference rule 

 

   Rule 14: A'⇒A∧B 

 

Case II. Self-reference chain of inference 

 

   Rule 15:  A⇒B⇒ • • • • • • ⇒P 

   Rule 16: P'⇒A 

 

If more than one level of class hierarchy is involved, an implicit cycle may exist 

where the loop is formed from several rules and different frames' slots in the frame 

hierarchy. 

     

4.3.2. Consistency 

 

4.3.2.1. Contradiction 

 

If two rules have duplicate antecedents but in the consequents a clause is both 

affirmed and denied, we refer this as inconsistency. In an object hierarchy, 
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inconsistency may occur if a rule applied to the Parent object class but denied to the 

Child object classes.  

 

Case I. Self-contradictory rule 

 

   Rule 17: A⇒¬A' 

 

Case II. Self-contradictory chain of inference 

 

   Rule 18: A⇒B⇒  • • • • • • ⇒¬A' 

  

Case III. Contradictory pairs of rules 

 

   Rule 19: A∧B⇒C 

   Rule 20: A'∧B'⇒¬C 

 

Case IV. Contradictory chains of rules 

 

   Rule 21: A⇒B⇒  • • • • • • ⇒P 

   Rule 22: A'⇒¬P 

 

4.3.2.2. Deadend 

 

A value, slot or frame is missing if it appears as the premise or conclusion in the 

rules but is not defined in the Frame hierarchy. In this case, the antecedent part of 

the rule cannot be satisfied because it contains a literal which cannot be matched to a 

fact or a literal in the consequent part of any other rule. 

 

   Rule 23: A⇒B 

 

A is not defined in the slot of the class hierarchy. 
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4.3.2.3. Unnecessary IF condition 

 

   Rule 24: A∧B⇒C 

   Rule 25: A'∧C⇒D 

 

When rule 25 is backward chained to rule 24, (i.e. in order that C is true, we have to 

check whether A is true and B is true). Rule 25 is equivalent to the testing of A', A 

and B, (Rule 26): 

 

   Rule 26: A'∧A∧B⇒D 

 

Since A' and A are in inheritance relation, we may want to remove either the 

condition IF A' or IF A. 

 

4.3.3. Completeness 

 

4.3.3.1. Unreachability 

 

Case I. Mutually exclusive classes, (a rule with two or more IS-A condition 

statements in its antecedent part) 

 

   Rule 27: ClassA ∧  ClassA'⇒C 

   Rule 28: ClassB ∧  ClassC⇒D 

 

In Rule 27, if Class A is the Parent and Class A' is the Child, it is not possible for an 

object instance to be both belonging to Class A and Class A'. Similarly, in Rule 28, 

Class B and Class C are both children of Class A, it is not possible for any object 

instance to be both belonging to two different mutually exclusive classes. 
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Case II. Mutually exclusive classes chains 

 

   Rule 29: ClassA∧B∧C⇒P 

   Rule 30: ClassA'∧P⇒Q 

 

If rule 30 is backward chained to rule 29, this causes an unreachable condition 

because rule 29's condition part and rule 30's condition parts are having mutually 

exclusive class instantiation. 

 
 
A broad categorization of anomalies pertaining to knowledge verification of HES 

was given. This was classified in terms of sub-problems related to correctness, 

consistency and completeness in hybrid knowledge base. The anomalies take the 

form of Redundancy, Subsumption, Ambiguity, Circular Rule Sets, Contradiction, 

Deadend, Unnecessary IF condition and Unreachability. It is noted that significant 

effect stems from the chained inference in the hybrid knowledge base. 

Consequently, a mechanism for the detection and location of these anomalies 

appears to be essential, which is part of the subjects for knowledge verification. 

 
 
4.4. Summary 

 

An informal description of the method to model Hybrid Expert Systems is described. 

(The formal definitions of the method will be given in the next chapter). This is 

based on the notion of State Controlled Coloured Petri Nets (SCCPNs). The object 

classes are represented by the compound colour set; the production rules' transition 

operations are represented by the arc expression functions; the inheritance of the 

properties from classes are represented by another type of transitions operations; 

message passing is modelled by defining arc expression such that they directly read 

and write data to token's data slots; Demon is represented by a Places/Transition 

tuple and Methods are procedures attached to an Object class, they are represented 
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by the Functions and Operations declarations in SCCPN. In HES, there should be a 

set of reasoning strategies. Two common ones are: (1) Backward Chain with 

Inheritance (i.e. Goal directed search with inheritance as one of the means to 

establish the rule chains linking up different Object Classes); (2) Forward Chain 

with Inheritance (i.e. Data directed search with inheritance as one of the means to 

establish the rule chains linking up different Object Classes). 
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CHAPTER 5. A FORMAL METHODOLOGY FOR 

MODELLING RULE/FRAME-BASED HES 

USING STATE CONTROLLED COLOURED 

PETRI NETS (SCCPNs) 

 

5.1. Fundamental Principles 

 

A Hybrid Expert System combines multiple representation paradigms into a single 

integrated environment for modelling and reasoning of complicated real world 

phenomena. For a Rule- and Frame-based integration, it models the problem domain 

using the concepts of classes and rules together. The essential key modelling 

features are: Object Classes, Slot Attributes, Inheritance Relations, Demons, 

Methods, Rules and Reasoning Strategies. The Frame base is married together with 

the Rules designed to manipulate it. The specific integration mechanisms of HES are 

as follows: 

 

• Rules with Message Passing: Rules send or receive messages to and from objects 

for testing the Rules' premises. 

 

• Rules with Inheritance: Rules directly read and write data into slots in a parent 

object and through inheritance of the slot's value to its children objects, trigger 

other rules to fire. 

 

• Rules with Demons: Rules directly read and write data into slots and cause the 

execution of the associated Demons, which then trigger other rules to fire. 

 

• Rules with Methods: Rules are embedded as part of an object's methods. Since 

methods are arbitrary pieces of code attached to an object, they can access the 

rules through function calls. 
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• Rules with Instances: Rules can be used to create/delete an instance of a specific 

Object Class. 

 

Based on the above concepts of integration, a Hybrid Expert System, therefore, can 

be formally defined as follows. 

 

DEFINITION 5.1. A HES is defined as a tuple given by: HES = (C, A, D, M, I, H, 

R, S) satisfying the requirements below: 

 

C = a finite set of object classes, where each object class is a Cartesian product of 

(A x D x M). 

A =  a finite set of attributes. Each attribute is of a simple data type. 

D = a finite set of demon functions. Each function is defined from A into an 

expression such that: ∀a∈A:D(a)∈A. (This means the demon functions can 

only change a slot's value within the same object instance. Besides, this demon 

function: D(a) generates only one output from each given input "a"). 

M = a finite set of methods. Each method is defined as a function which takes a 

number of arguments from an object∈C and returns a result to the object∈C. 

I = a specific object element from an object class C. 

H = an inheritance relation. It is defined from the partially ordered relations in C. 

R = The rules are composed of predicates which are used as functions that map 

object arguments into TRUE, FALSE values represented by binary truth 

values 1,0, respectively. (One of the predicates is the IS-A predicate which is 

used to specify the class of objects which a particular rule can be applied). All 

literals used in both the condition and action predicates must come from the 

attribute set A. 

S = a finite set of reasoning strategies. The two common HES reasoning strategies 

are: Backward Chain with Inheritance and Forward Chain with Inheritance. 

 

Explanations: Object class here is defined as having a set of attributes, demons and 

methods. Each attribute is defined as of a simple data type: e.g. string, integer or 
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real. Each specific object element is called an instance of the Object Class and will 

have different attribute values of the variables. Inheritance is defined as a partial 

order on the set Object Class, it is a relation that is reflexive, antisymmetric and 

transitive: 

 

• Reflexive : For every Object Class, it inherits the properties from itself. 

 

• Antisymmetric : For every Object Class, if A inherits from B and if B inherits 

from A, it implies that A is B. 

 

• Transitive : For every Object Class, if A inherits from B and if B inherits from C, 

it implies that A inherits from C. 

 

The above definition only covers simple inheritance. In the case of multiple 

inheritance, the problem becomes what characteristics the child inherits, and from 

which parent? The HES has to follow some sort of default orderings on inheritance 

(Dori, D. & Tatcher, E., 1994; Willis, C.P., 1996), and this may lead to sets of 

conflicting traits which are even more complicated to verify. Therefore, our present 

analysis is concentrated on simple inheritance only. 

 

A Demon is defined as a function which is executed when the associated slot value 

is either updated, or needed. Sometimes, a Demon can also act like a validation 

trigger which checks the cardinality and/or constraints imposed on a particular slot. 

The effects of a Demon are confined always locally to the same Object Class. 

 

Methods are functions attached to some Object Class, that will be executed 

whenever a signal is passed through. Each method is defined as a function which 

takes a number of arguments and return a result. 

 

Rules will interact with the information contained in the slots of the various Object 

Classes within the HES. 
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Finally, in HES, there should be a set of reasoning strategies. The two common ones 

are : 

 

• Backward Chain with Inheritance: Goal directed search with inheritance as one 

of the means to establish the rule chains linking up different Object Classes. 

 

• Forward Chain with Inheritance: Data directed search with inheritance as one of 

the means to establish the rule chains linking up different Object Classes. 

 

As HES is modelled by SCCPN, a mapping between the two structures is necessary, 

and is given in Table 5.1. 

 

Hybrid Expert System 
 

State Controlled Coloured Petri Net 

Frame-based part  
Object Classes Places  
Object Class Types Colour Sets  
Object Instances Tokens  
Slots Variables in Tokens  
Facts in Slots Binding of Variables with Constants 
Inheritances Transitions 
Demon Arc Expressions 
Methods Arc Expressions  

  
Rule-based part  

Predicates Places 
Predicates States Tokens 
Rules Transitions 
Facts Binding of Variables with Constants 
Transition Operations Arc Expressions 

  
Table 5.1. Conceptual interpretation of HES in SCCPNs. 

 

As shown in Table 5.1 the components of the HES are separately represented, which 

can be modelled explicitly by the SCCPN. The places are taken to correspond to 

predicates and object classes, and transitions to represent rules implications as well 

as inheritance. There are two major types of tokens, one is the state token which 
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records the state of the predicate and the class type information. (i.e. Since rules may 

be fired by either parent class instance or child class instances). The second type of 

token is the object instance token which represents a particular object instance of a 

particular class within the object hierarchy. Transitions are fired to represent rules 

being executed or inheritance is being carried out. The maximum number a rule can 

be executed is equal to the total number of different class types. (i.e. each class type 

object instance can fire a particular rule once at most). Each input place of a rule has 

a self-loop arc for maintaining the state of the predicate. Similarly, the input place of 

an inheritance also has a self-loop arc for recording the inheritance execution. 

Methods and Demons are represented by functions in the arc inscription of the 

SCCPN. The net result is the exchange of colour tokens from places to places and a 

new marking, which is defined as the distribution of tokens over the places of the 

SCCPN, is obtained.  

 

The SCCPN notation employed in this thesis is an extension of State Controlled 

Petri Nets proposed by (Liu, N. K. & Dillon T., 1995), and Coloured Petri Nets 

proposed by (Jensen, K., 1995, 1996) and is specified as follows.  

 

DEFINITION 5.2. A SCCPN can be defined as a 10-tuple given by = (Σ, P, T, D, 

F, A, N, C, E, I), where satisfying the requirements below: 

 

Σ = { ω1,ω2,...,ωi }, a finite set of non-empty types, called colour sets, i≥1, 

P = {Pc, Pr} a finite set of places, 

Pc = { pc1, pc2, ..., pcj },  a finite set of places that model the classes of the HES, 

called class places, j≥1, 

Pr = { pr1, pr2, ..., prk },  a finite set of places that model the predicates of the 

production rules, called predicate places, k≥1,  

Pc∩Pr :  the intersection of Pc∩Pr represents those IS-A predicates of the rule 

sets attached to the specific classes, 

T = { Tc, Tr }, a finite set of transitions , 
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Tc = { tc1, tc2, ..., tcl },  a finite set of transitions that are connected to and from 

class places, called inheritance transition, l≥1, 

Tr = { tr1, tr2, ..., trm },  a finite set of transitions that are connected to or from 

predicate places, called predicate transition, m≥1,  

Tc∩Tr=∅, 

D = { d1, d2, ..., dn }, a finite set of predicates, |Pr| = |D|, n≥1, 

F =  { f1, f2, ..., fn }, a finite set of classes, |Pc| = |F|, n≥1, 

A = { a1, a2, ..., ak }, a finite set of arcs, k ≥ 1, P ∩ T = P ∩ A = T ∩ A = ∅, 

N : A → P×T∪T×P,  a node function, it maps each arc into a pair where the first 

element is the source node and the second is the destination 

node, the two nodes have to be of different kinds. The node 

functions can be further classified into the following eight 

different types: 

Inheritance : { Ãc, Äc, Ãs, Äs} where 

Ãc : Tc→(Pc)MS  is an input class function for inheritance, a mapping 

from inheritance transitions to the bags of class places. 

MS stands for multi-set (or bags). 

Äc : Tc→(Pc)MS  is an output class function for inheritance, a mapping 

from inheritance transitions to the bags of class places. 

Ãs : Tc→(Pc)MS  is an input state function for inheritance, a mapping from 

inheritance transitions to the bags of class places. 

Äs : Tc→(Pc)MS   is an output state function for inheritance, a mapping 

from inheritance transitions to the bags of class places. 

Predicate : {Õ c, Öc, Õs, Ös} where 

Õc : Tr→(Pr)MS   is an input class function for predicates, a mapping from 

predicates transitions to the bags of predicates. 

Öc : Tr→(Pr)MS  is an output class function for predicates, a mapping 

from predicates transitions to the bags of predicates. 

Õs : Tr→(Pr)MS   is an input state function for predicates, a mapping from 

predicates transitions to the bags of predicates. 
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Ös : Tr→(Pr)MS   is an output state function for predicates, a mapping 

from predicates transitions to the bags of predicates. 

C : P→Σ, a colour function, it maps each place into a colour set,  

E : A→expression,  an arc expression function, It is defined from A into expressions 

such that ∀a∈A : [Type(E(a))=C(p(a))MS∧Type(Var(E(a)))⊆Σ ] 

where p(a) is the place of N(a), where MS stands for multi-set 

(or bags), 

I : P→expression,  an initialization function. It is defined from P into closed 

expressions such that: ∀p∈P:[Type(I(p))=C(p)MS]. 

 

DEFINITION 5.3. For each transition tj∈T in a net N,  

Õs(tj)∩Ös(tj)≠∅, 

Õc(tj)∩Öc(tj)=∅, 

Ãc(tj)∩Äc(tj)≠∅, 

Ãs(tj)∩Äs(tj)=∅, 

such that 

pi∈Õs(tj)⇒  pi∈Ös(tj), 

pi∈Õc(tj)⇒pi∉Öc(tj), 

pi∈Ãc(tj)⇒pi∈Äc(tj), 

pi∈Ãs(tj)⇒  pi∉Äs(tj), 

 

DEFINITION 5.4. A binding of a transition t is a function b defined on Var(t), such 

that: ∀v∈Var(t):b(v)∈Type(v) where Var(t) denotes the set of variables in a 

transition and B(t) denotes the set of all bindings for t.  

 

DEFINITION 5.5. A token element is a pair (p,c) where p∈P and c∈C(p), while a 

binding element is a pair (t,b) where t∈T and b∈B(t). The set of all token elements 

is denoted by TE while the set of all binding elements is denoted by BE. 
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DEFINITION 5.6. A marking M is a multi-set over TE while a step is a non-empty 

and finite multi-set over BE. The initial marking M0 is the marking which is 

obtained by evaluating the initialization expressions: ∀(p,c)∈TE:M0(p,c)=I(p)(c). 

The markings of a SCCPN can be further classified into the following two different 

types: (Mc,  Ms) where Mc represents markings of the class tokens, and Ms represents 

markings of the state tokens. 

 

DEFINITION 5.7. A step Y is enabled in a marking M iff the following property is 

satisfied: ∀p∈P: ∑
∈

>≤<
Ybt

pMbtpE
),(

)(),(  where E(p,t) is the expression of (place, 

transition) and E(t,p) is the expression of (transition, place). The summation 

indicates the addition of expressions. Expression<b> denotes the binding of the 

specific expression with a set of constants b. When (t,b)∈Y, this denotes that t is 

enabled in M for the binding b. When (t1,b1), (t2,b2) ∈Y and (t1,b1) ≠ (t2,b2), this 

denotes that (t1,b1) and (t2,b2) are concurrently enabled. 

  

DEFINITION 5.8. When a step Y is enabled in a marking M1 it may occur, 

changing the marking M1 to another marking M2, defined by: ∀p∈P:M2(p) = ( M1(p) 

- ∑
∈

><
Ybt

btpE
),(

),( ) + ∑
∈

><
Ybt

bptE
),(

),( . The first sum is the removed tokens while 

the second is the added tokens. M2 is directly reachable from M1 by the occurrence 

of the step Y, which can be denoted as M1[Y>M2. 

 

DEFINITION 5.9. A finite occurrence sequence is a sequence of markings and 

steps: M1[Y1>M2[Y2>M3……Mn[Yn>Mn+1 such than n ∈ Natural Number and 

Mi[Yi>Mi+1 for all i∈1…..n. The marking M1 is called the start marking of the  

occurrence sequence, while the marking Mn+1 is called the end marking. The non-

negative integer n denotes the number of steps in the occurrence sequence, or the 

length of it. 
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DEFINITION 5.10. A marking M" is reachable from a marking M' iff there exists a 

finite occurrence sequence having M' as start marking and M" as end marking, i.e. 

iff for some n∈N there exists a sequence of steps Y1,Y2…..Yn such that: 

M1[Y1>M2[Y2>M3……Yn>M". M" is reachable from M' in n steps. A firing or 

occurrence sequence is denoted by σ=(Y1,Y2……Yn) 

The set of markings which are reachable from M' is denoted by [M'>. 

 

DEFINITION 5.11. The full occurrence graph of a SCCPN is the directed graph 

OG=(V, A, N) where: 

a. V=[M0> 

b. A={(M1,b,M2)∈VxBExV|M1[b>M2}. 

 c. ∀a=(M1,b,M2)∈A: N(a)=(M1,M2). 

 

In OG, a node is a particular marking reachable from M0. The set of markings which 

are reachable from M0 is denoted by [M0>. An arc a with N(a)=(M1,M2) is said to go 

from the source node M1 to the destination node M2. An arc with the binding 

element b is denoted by (M1,b,M2).  

 

The occurrence graph (O-graph) has a node for each reachable marking and an arc 

for each step that occurs - with a single binding element. The source node of the arc 

is the start marking of the step, while the destination node is the end marking. 

 

5.2. Description and Properties 

 

The logical predicate becomes true by the presence of a state token and the transition 

associated with this predicate will become active by the presence of the 

corresponding object class token (instance) and provided that the slots attributes in 

the object class instance satisfies the transition condition. The transition is enabled 

and is ready for firing. For simplicity reasons, without taking any transition 

conditions or transition operations into consideration, we can minimally enable a 

specific transition and then check the reachability set for any irregularities of 
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predicate places. In this representation, a marking M is composed of Mc that depicts 

the marking for the class places and Ms that depicts the marking for the state places 

in the SCCPN. A transition tj is represented by a t-vector. For verification purposes, 

we define that: 

 

DEFINITION 5.12. A transition tj is minimally active if  

 

Mc = 






 ∪∈

otherwise

ttpif jcjcci

0

))(Õ)(Ã(1
 

 

DEFINITION 5.13. A transition tj is minimally enabled if tj is both minimally 

active and that 

 

Ms = 






 ∪∈

otherwise

ttpif jsjssi

0

))(Õ)(Ã(1
 

 

and 

 

))()((),( siscicji pMpMbtpE ∪>≤<∑  

 

DEFINITION 5.14. Tk that contains a group of transitions {tn} is said to be 

minimally active if ∀j=1,2,..n, tj ∈ Tk, ∃ pi ∈(Ãc(tj)∪Õs(tj)) ⊆ (Ãc(Tk)∪Õs(Tk)), such 

that  

 

Mc = 







∪∉

∪∈

otherwise

ttpand

ttpif

jcjcci

jcjcci

0

))(Ö)(Ä(

))(Õ)(Ã(1

 

 

Note that the self-loop arc corresponding to each input place does not cause a 

repeated firing of transitions. In the absence of any self-reference rule, the set of 
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input places and that of output places with respect to the transition in SCCPN are 

always disjointed. 

 

DEFINITION 5.15. Tk that contains a group of transitions {tn} is said to be 

minimally enabled if ∀j=1,2,..n, tj ∈ Tk, ∃ pi ∈(Ãc(tj)∪Õs(tj)) ⊆ (Ãc(Tk)∪Õs(Tk)), 

such that  

 

Ms = 








∪∉

∪∈

otherwise

ttpand

ttpif

jsjssi

jsjssi

0

))(Ö)(Ä(

))(Õ)(Ã(1

 

 

and 

 

))()((),( siscicji pMpMbtpE ∪>≤<∑  

 

5.3. Modelling HES with SCCPNs 

 

It is important to understand how to make use of State Controlled Coloured Petri 

Nets to model the knowledge structure and inference in HES. SCCPNs inherit most 

of the mathematical properties from Coloured Petri Nets (Jensen, K., 1995, 1996), 

which enable the storage and recall of past and present states of machine problem 

solving processes and the precalculation of results. Storage of states helps to 

implement high level problem solving by allowing the system to back-track through 

its problem solving process, resolve goal conflicts, and then resume the process from 

the last successfully completed design step. Precalculation of results allows the 

expert system to bypass some or all of the steps required during problem solving 

when it comes across previously encountered or predetermined situations. 

 

In addition to the representation advantages, SCCPNs can provide a clear indication 

of data dependencies, which would make it possible for us to exploit parallelism in 

the problem domain. The analysis of SCCPNs can reveal bottlenecks or other 
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possible anomalies in the procedural flow associated with the hybrid knowledge 

base. The following schema is used to represent some typical rules which attached to 

the object hierarchy. The self-loop arc is omitted for clarity reason.    

 

5.3.1. Correctness 

 

5.3.1.1. Redundancy 

 

Case I. Conditions and Actions identical between Parent Class and Child Classes. 

 

   Rule 1 : A∧B⇒C 

   Rule 2 : A'∧B'⇒C' 

 

(A, B & C are slots in the parent object, A', B' and C' are slots in the child object and 

A'=A, B'=B, C'=C because of inheritance). 

 

The SCCPN representation of Rule 1 and Rule 2 is Figure 5.1. 

 

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

 
Figure 5.1. SCCPN showing Redundancy Case I 
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Initially, if we have a Parent token in Parent Class with both A and B being True, 

then Rule 1 will fire, and a Parent token will be created in State C with A, B and C 

being True. At the same time, a Child token will be created in Child Class, having 

both A' and B' being True, because of inheritance. This enables Rule 2, and after 

firing, a Child token is also created in State C with C' being True. 

 

Case II. Chained inference 

 

   Rule 1 : A⇒C 

   Rule 2 : A'⇒B' 

            :         : 

   Rule N : N'⇒C' 

 

In general the chain inference can be represented by the following SCCPN in Figure 

5.2. 

State token
Parent token
Child token

Rule 1

Rule 2.......................Rule N

State C

Parent Class

Child Class

Inheritance

 
Figure 5.2. SCCPN showing Redundancy Case II 
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Initially, if we have a Parent token in Parent Class with both A and B being True, 

then Rule 1 will fire, and a Parent token will be created in State C both A, B, and C 

being True. After the chain inference from Rule 2 to Rule N, a Child token will be 

created in State C with A', B'… and C' being True.  

 

5.3.1.2. Subsumption 

 

Case I.  Rule 1 is subsumed by Rule 2 (condition part) between Parent Class and 

Child Classes. 

 

   Rule 1 : A∧B⇒C∧D 

   Rule 2 : A'⇒C'∧D' 

 

State token
Parent token
Child token

Rule 1Parent Class

Child Class

Inheritance
State D

State C
Rule 2

 
Figure 5.3. SCCPN showing Subsumption Case I 

 

Initially, if we have a Parent token in Parent Class with both A and B being True, 

then Rule 1 will fire, and a Parent token will be created in State C and State D with 

A, B, C and D being True. At the same time, a Child token will be created in Child 

Class, having both A' and B' being True, because of inheritance. This enables Rule 
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2, and after firing, a Child token is also created in State C and State D with C' and D' 

being True. 

 

Case II.  Rule 1 is subsumed by Rule 2 (action part) between Parent Class and 

Child Classes. 

 

   Rule 1 : A∧B⇒C∧D 

   Rule 2 : A'∧B'⇒  C' 

 

Case III.  Rule 1 is subsumed by Rule 2 (condition and action) between Parent Class 

and Child Classes. 

 

   Rule 1 : A∧B⇒C∧D 

   Rule 2 : A'⇒  C' 

 

State token
Parent token
Child token

Rule 1Parent Class

Child Class

Inheritance
State D

State C
Rule 2

 
Figure 5.4. SCCPN showing Subsumption Case II and III 

 

Subsumption Case II and Case III are both represented by Figure 5.4. Initially, if we 

have a Parent token in Parent Class with both A and B are True, then Rule 1 will 
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fire, and a Parent token will be created in State C and State D with A, B, C and D 

being True. At the same time, a Child token will be created in Child Class, and 

having both A' and B' being True, because of inheritance. This enables Rule 2, and 

after firing, a Child token is also created in State C with C' being True. 

 

5.3.1.3. Ambiguity  

 

Case I. Rule with inclusive disjunction of IS-A conditions from different Object 

Classes. 

 

   Rule 1 :  A IS-A member of ClassX ∨  A IS-A member of ClassY⇒C 

 

State token
Class X token
Class Y token

Rule 1a

Rule 1b

State C

Class X

Class Y

Class X Rule 1a

Rule 1b

State C

Class Y

Rule 1a

Rule 1b

State C

Class X

Class Y

 

Figure 5.5. SCCPN showing Ambiguity Case I 

 

Rules with inclusive disjunction of IS-A conditions from different Object Classes 

can be represented in a slight different fashion. In Figure 5.5, assertion of either IS-

A Class X or IS-A Class Y or both will result in State C being asserted. Owing to the 

ambiguous condition of the rule involved, the rule can be unfolded into three 

optional sub-rules, each of which is represented by an alternative set of markings. 

i.e. 
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  Rule 1a : A IS-A member of ClassX ⇒C 

  Rule 1b : A IS-A member of ClassY ⇒C 

 

Case II. Rule with inclusive disjunction of IS-A Actions for different Object Classes. 

 

  Rule 1 :  C⇒A IS-A member of ClassX ∨  A IS-A member of ClassY 

 

State token
Class X token
Class Y token

Rule 1a

Rule 1c

Rule 1b

Class X

Class Y

State C

 

Figure 5.6. SCCPN showing Ambiguity Case II 

 

Rules with inclusive disjunction of IS-A actions from different Object Classes can 

be represented by the alternative sets of marking as shown in Figure 5.6. Firing of 

the rule will infer the assertion of either IS-A Class X or IS-A Class Y or both. In 

general, when a HES enters into this indeterminate situation, some sort of selection 

tactics would have to be executed by the system to choose the best alternative it 

could have. This requires a greater degree of strategy evaluation. i.e.     

 

  Rule 1a : C⇒A IS-A member of ClassX 

  Rule 1b : C⇒A IS-A member of ClassX ∧ A IS-A member of ClassY 

  Rule 1c : C⇒A IS-A member of ClassY 
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5.3.1.4. Circular Rule Sets 

 

Case I. Self-reference rule 

 

   Rule 1 : A'⇒A∧B 

 

State token
Parent token
Child token

State C

Parent Class

Child Class

Inheritance Rule 1

 
Figure 5.7. SCCPN showing Circular Rule Sets Case I 

 

A SCCPN representation of this self-reference rule using a typical example (e.g. If X 

is a University Student THEN X is a Student AND X has a Student Identity Card) as 

in Figure 5.7. Here, Student includes the Sub-Class University Student, therefore, 

the firing of Rule 1 will continue to create Parent tokens in Parent Class, and this 

forms a circular loop.  
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Case II. Self-reference chain of inference 

 

   Rule 1: B'⇒C' 

   Rule 2: C'⇒D' 

            :         : 

   Rule N: N'⇒B 

 

In general the Self-reference chain of inference can be represented by the following 

SCCPN in Figure 5.8. 

 

State token
Parent token
Child token

Rule 1

Rule N.......................Rule 2

State C

Parent Class

Child Class

Inheritance

 
Figure 5.8. SCCPN showing Circular Rule Sets Case II 

5.3.2. Consistency 

 

5.3.2.1. Contradiction 

 

Case I. Self-contradictory rule 

   

  Rule 1 : A⇒C 

  Rule 2 : A'⇒¬C 
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State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

 
Figure 5.9. SCCPN showing Contradiction Case I 

 

Initially, if we have a Parent token in Parent Class A is True, then Rule 1 will fire, 

and a Parent token will be created in State C with both A and C being True. At the 

same time, a Child token will be created in Child Class, having A' being True, 

because of inheritance. This enables Rule 2, and after firing, a Child token is also 

created in State C but with C' being FALSE. 

 

Case II. Self-contradictory chain of inference 

 

   Rule 1: B'⇒¬C 

   Rule 2 : C'⇒D 

            :         : 

   Rule N: N'⇒B 
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State token
Parent token
Child token

Rule 1

Rule N.......................Rule 2

State C

Parent Class

Child Class

Inheritance

 
Figure 5.10. SCCPN showing Contradiction Case II 

 

Initially, if we have a Parent token in State C with C is True, then Rule 2 will fire, 

after the chain inference from Rule 2 to Rule N, a Parent token will be created in 

Parent Class with B being True. After inheritance, a Child token will be created in 

Child Class with B' being True, and this will enables Rule 1 to fire. This time, the 

State C is asserted to be FALSE by Rule 1 contradicting to the initial fact C which is 

TRUE. 

 

Case III. Contradictory pairs of rules 

 

   Rule 1 : A∧B⇒C 

   Rule 2 : A'∧B'⇒¬C 
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State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance State B

 
Figure 5.11. SCCPN showing Contradiction Case III 

 

If we have a Parent token in Parent Class with A is TRUE, and a State token in State 

B indicating State B is TRUE, State C will be asserted to be TRUE by Rule 1 but 

FALSE by Rule 2 indicating contradictory state of inference. 

  

Case IV. Contradictory chains of rules 

 

   Rule 1: A'⇒¬P 

   Rule 2 : A⇒B 

            :         : 

   Rule N : N⇒P 
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State token
Parent token
Child token

Rule 1

Rule 2.......................Rule N

State C

Parent Class

Child Class

Inheritance

 
Figure 5.12. SCCPN showing Contradiction Case IV 

 

5.3.2.2. Deadend 

 

A value, slot or frame is missing if it appears as the premise or conclusion in the 

rules but is not defined in the Frame hierarchy. In this case, the antecedent part of 

the rule cannot be satisfied because it contains a literal which cannot be matched to a 

fact or a literal in the consequent part of any other rule. (Figure 5.13.) 

 

   Rule 1 : A⇒B 

 

A is not defined in the slot of the class hierarchy. 

 

Rule 1State A State B

 
Figure 5.13. SCCPN showing Deadend 

 

Since A is not defined, no tokens will be created in State A. 
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5.3.2.3. Unnecessary IF condition 

 

   Rule 1: X∧A⇒B 

   Rule 2: X'∧B⇒C 

 

When rule 2 is backward chained to rule 1, (i.e. in order that C is true, we have to 

check whether B is true and X' is true). Rule 2 is equivalent to the testing of X', X 

and A, (Rule 2): 

 

   Rule 1 + Rule 2 : X'∧X∧A⇒C 

 

Since X' and X are in inheritance relation, we may want to remove either the 

condition IF X' or IF X. (Figure 5.14.) 

 

State token
Parent token
Child token

Parent Class

Child Class

Inheritance

State C

State A

State B

Rule 1

Rule 2

 
Figure 5.14. SCCPN showing Unnecessary IF condition 

 

5.3.3. Completeness 

 

5.3.3.1. Unreachability 
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Case I. Mutually exclusive classes, (a rule with two or more IS-A condition 

statements in its antecedent part) 

 

  Rule 1 : ClassA ∧  ClassA'⇒C (applied to Parent Class) 

  Rule 2 : ClassA ∧  ClassA'⇒C (applied to Child Class) 

 

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

 
Figure 5.15. SCCPN showing Unreachability Case I.a 

   

Rules with mutually exclusive classes can be represented by the alternative sets of 

rules in Figure 5.15. Rule 1 will check all Parent tokens deposited in the Parent 

Class to see if they are also Child tokens. Similarly, Rule 2 will check all Child 

tokens deposited in the Child Class to see if they are also Parent tokens. This will be 

unsuccessful, and State C will never be asserted TRUE. In general, when a HES 

enters into this unreachable state, some sort of selection tactics would have to be 

executed by the system to choose the best alternative it could have or the modeller 

have to review which class instantiation is more appropriate for the system.     
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  Rule 1 : ClassA ∧  ClassB⇒C (applied to Class A) 

  Rule 2 : ClassA ∧  ClassB⇒C (applied to Class B) 

 

State token
Parent token
Child token

Rule 1

Parent Class

Child A

InheritanceInheritance

Rule 2

State CChild B

 

Figure 5.16. SCCPN showing Unreachability Case I.b 

 

Similar to the previous case, Child Class A and Child Class B are both children of 

the Parent Class, it is not possible for any object instance to be both belonging to 

two different mutually exclusive classes. 

 

Case II. Mutually exclusive classes chains 

 

   Rule 1 : ClassX∧A∧B⇒C 

   Rule 2a : ClassX'∧C⇒D (applied to Class X') 

   Rule 2b : ClassX'∧C⇒D (applied to State C) 
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State token
Parent token
Child token

Parent Class

Child Class

Inheritance Rule 1

Rule 2a

State A State B

State C

Rule 2b

State D  
Figure 5.17. SCCPN showing Unreachability Case II 

 

If Rule 2b is backward chained to Rule 1, this causes an unreachable condition 

because Rule 2b's condition part and Rule 1's condition parts are having mutually 

exclusive class instantiation. 

 

5.4. Knowledge Inference in SCCPN Modelling 

 

Basically, the methods for knowledge inference comprise of event driven and goal 

driven reasoning. The reasoning strategy for dynamic knowledge inference in 

SCCPN is event driven reasoning, because the reasoning process is based on the 

occurrences of events. The goal of the reasoning for SCCPN is to determine the 

subsequent events (activities) based on current events. 

 

The initial marking and colours of the net determines the initial state of the system. 

Subsequent markings and colours of the tokens contribute to a reachability set which 

can reflect the degree of inference at different level, stemming from the initial event. 

The transitions of SCCPN model are structured to be in one direction only with the 

exception for the self-loop that is associated with each input places. When a 
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transition t (either representing a rule or a inheritance relation) becomes active and 

fired, the inference proceeds in a forward direction. Subsequently, SCCPNs support 

a forward chaining (events driven) paradigm of inference. In order to model and 

allow for simulating the backward chaining (goal driven) behaviour, a concept for 

backward enabled transition (Liu, N.K., 1991) have been introduced. It is defined 

that a transition t for P→Q is backward enabled if its inference proceeds in a 

backward direction as if it were for P←Q. Input places and output places are 

interchanged accordingly to accomplish the changes. 

  

5.5. Summary 

 

The factual and inference knowledge in a HES can be formulated in SCCPNs. State 

tokens are used to indicate the validity of a fact which is maintained by the presence 

of a self-loop in the net. A methodology for modelling a variety situations including 

Redundancy, Subsumption, Ambiguity, Circular Rule Sets, Contradiction, Deadend, 

Unnecessary IF Condition and Unreachability of rule sets attached to the object 

hierarchy is given. This allows for the checking of alternative markings at any level 

of inference. SCCPN is a event driven inference paradigm. This is to facilitate the 

generation and analysis of the knowledge inference in a HES being modelled by the 

net.   
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CHAPTER 6. AN APPLICATION OF THE FORMAL 

VERIFICATION METHOD  

 

6.1. A Personnel Selection Hybrid Expert System 

  

To illustrate the HES modelling by our proposed SCCPN methodology, we adopt a 

simplified version of a Personnel Selection Expert System currently being used in 

Hong Kong (Huen, H.S.M., 1993). This system is used to find out, among all the 

clerks in the organization, who should be promoted to senior clerk. The 

organization's employee data structure is represented in a Frame-based hierarchy as 

shown in Figure 6.1 and details of relevant frames in the hierarchical structure are 

given below. 

 

Junior staff

Junior office staff

ClerkTypistOffice Boy

 

Figure 6.1. The Frame Hierarchy 

 

A Junior Staff Frame: 

Slot Name Value Type Demon 
Job Grade Junior Staff String  
Office Hours 9 am – 5 pm Time  
Qualification Requirement Five passes in HKCEE String  
Salary Pay Scale Point 1 to Point 10 String  
Department General Secretariat String  
Annual leave 21 days Integer  
Father Frame -   
Son Frame Junior Office Staff    

Table 6.1. A Junior Staff Frame 



 77 

A Junior Office Staff Frame: 

Slot Name Value Type Demon 
Job Grade Junior Office Staff String  
Name  String  
Address and Telephone  String  
Hong Kong Identity Card 
Number (HKID) 

 String IF possess HKID 
THEN Privilege is 
Local ELSE 
Privilege is 
Overseas 

Privilege  Local / 
Overseas 

 

Sex  M/F  
*Office Hours 9 am - 5 pm Time  
*Qualification Requirement Five passes in HKCEE String  
*Department General Secretariat String  
*Salary Pay Scale Point 1 to Point 10 String  
Present Salary Point  Integer Present Salary 

Point must 
between 1 to 10 
inclusive. 

Years of Service  Integer  
*Annual leave 21 days Integer  
Leave taken   Integer  
Leave balance  Integer Leave balance = 

Annual leave - 
Leave taken 

Knowledge of Work  G/M/L 
(Good, 
Medium, 
Low) 

 

Acceptance of Responsibility  G/M/L   
Organization of Work  G/M/L   
Initiative  G/M/L   
Relations with Colleagues  G/M/L   
Relations with Public  G/M/L   
Expression on Paper  G/M/L   
Oral Expression  G/M/L   
Supervisory Skills  G/M/L   
Leading Skills  G/M/L   
Performance  G/M/L   
Experience  G/M/L   
Ability  G/M/L   
Quality of Services  G/M/L   
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Seniority  G/M/L   
Promotion  Yes 

/Wait 
/Reject 

 

Father Frame Junior Staff   
Son Frame Clerk, Typist and 

Office boy  
  

* denote slots inherited from parent frame 

Table 6.2. A Junior Office Staff Frame 

 

A Clerk frame is similar to a Junior Office Staff frame except that more detailed 

information about the various types of Clerk duties are included such as Purchasing 

Clerk, Book Keeping Clerk, Sales Clerk, Inventory Clerk, Customer Services Clerk, 

Data Entry Clerk...etc. For the purpose of this modelling exercise, we can treat the 

Class Junior Office Staff as the common job grade in the organization, and the Class 

Clerk, Office Boy and Typist as specific job categories all belonging to the same job 

grade. Any new employment regulations and promotion rules that apply to Junior 

Office Staff grade will be applicable to all Clerks, Office Boys and Typists in the 

organization. The major problems of verifying this HES is due to the fact that some 

rules are applicable to the general class (Super Class: Junior Office Staff) and 

through inheritance these rules are applicable to specific classes as well (Classes: 

Clerks, Office Boy and Typists). Anomalies exist whenever rules specifically 

applied to a class are in conflict with those rules that are applied to their superclass. 

Furthermore, these rules may be in a subsumed situation and some of them may be 

unreachable. We will illustrate how to detect them in the following sections.  

  

First, we model the above example using our proposed methodology described in 

previous chapters. It is noted that a frame is equivalent to a data structure with 

various type declarations (or an object with different attributes). Demons are 

declared as methods or procedures within some frame. In the above Expert System 

example, the two frames are Class frames. Each individual clerk's information is 

inferred by the creation of a clerk frame instance. The data value of Clerk Name, 

Sex, Address...etc are input via the user interface. The data values and demons in the 
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slots with a * are inherited from the parent frame; the data value of Privilege and 

Leave balance are updated by firing the demons in HKID and Leave balance. The 

data values for slots between Knowledge of Work and Leading Skills inclusively are 

input by the individual clerk's supervisor at the beginning of the inference process. 

The data value of Performance, Experience, Ability, Quality of Services and 

Seniority are being inferred by the execution of the rules pre-defined earlier by the 

personnel manager of the organization. The goal is to find out the data value of the 

slot Promotion, which can be inferred by forward chaining or backward chaining 

within the rule sets. (Over 100 rules were constructed for the original Expert System 

based on the Multiple Criteria Decision Model). Detail data structure of a clerk 

token and some typical rules are given as follows: 

  

A clerk token's colour is: 

 

Color AA =  string; (all text strings) 

Color BB =  with Local | Overseas; (colours explicitly specified)  

Color CC =  with Male | Female; 

Color DD =  time; (date) 

Color EE =  integer with 0..10; (between 0&10) 

Color FF =  integer; 

Color GG =  with Good | Medium | Low; 

Color HH =  with Yes | Wait | Reject; 

Color II =    list AA with 4; (a list of four strings)   

Color JJ =    list AA with 3; 

Color KK =  list FF with 5; 

Color LL =  list GG with 15; 

Color MM =  with Clerk | Typist | Office Boy;  

Color NN =  product II * BB * CC * DD * JJ * KK * LL * HH; (all tuples 

(i,b,c,d,j,k,l,h) where i∈II, b∈BB,....h∈HH)  

Color OO =  with Yes | No;  
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Color PP =  product OO * KK; (for state token, the first variable o∈OO is 

the state of the predicate, (i.e. if the value is Yes, it denotes 

that the predicate is true, else if the value is No, the negation 

of the predicate is true. The second variable k∈KK is to 

record which class object has fired the rule)) 

  

Var i:II; var b:BB; var c:CC; var d:DD; var j:JJ; var k:KK; var l:LL; var h:HH; var 

clerk: NN; (var denotes variable declaration which introduces one or more variables. 

Here we have one variable, clerk, which is with colour NN. We may use var clerk1, 

clerk2, clerk3: NN for declaring three different clerks for example.)  

 

Some typical rules are : 

 

Rule 1:  IF X is a junior office staff 
    AND X's quality of service is Good 
    AND X's seniority is High 
   THEN X's promotion is Yes. 
 
Rule 2:  IF X is a clerk 
    AND X's quality of service is Good 
    AND X's seniority is High 
   THEN X's promotion is Yes. 
 
Rule 3:  IF X is a clerk 
    AND X's quality of service is Good 
    AND X's seniority is High 
    AND X is a local citizen 
   THEN X's promotion is Yes. 
 
Rule 4:  IF X is a clerk 
    AND X's year of service is greater than Five 
   THEN X's seniority is Not High. 
 
Rule 5:  IF X is a junior office staff 
    AND X's year of service is greater than Five 
   THEN X's seniority is High. 
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Rule 6:  IF X is a clerk 
    AND X's knowledge of work is Not Good 
    AND X's English is Not Good 
   THEN X needs to attain training course. 
 
Rule 7:  IF X is a junior office staff 
    AND X needs to attain training course 
   THEN X's experience is Low. 
 
Rule 8:  IF X is a clerk 
    AND X is a junior office staff 
   THEN X is entitled to 14 days annual leave. 
 
Rule 9:  IF X is an office boy 
    AND X needs to attain training course 
   THEN X is on Probation. 
 
Rule 10: IF X is a junior office staff 
   THEN X is required to do typing. 
 
Rule 11: IF X is required to do typing 
   THEN X is a clerk. 
 
Rule 12: IF X is a clerk 
   THEN X is a junior office staff. 
 

These rules can be rewritten as: 

 

Rule 1: A∧∧ B∧∧ C⇒⇒ X 

Rule 2: A1∧∧ B∧∧ C⇒⇒ X 

Rule 3: A1∧∧ B∧∧ C∧∧ D⇒⇒ X 

Rule 4: A1∧∧ E⇒⇒ ¬¬C 

Rule 5: A∧∧ E⇒⇒ C 

Rule 6: A1∧∧ ¬¬F∧∧ ¬¬G⇒⇒ Y 

Rule 7: A∧∧ Y⇒⇒ H 

Rule 8: A1∧∧ A⇒⇒ K 

Rule 9: A2∧∧ Y⇒⇒ Z 

Rule 10: A⇒⇒ L 

Rule 11: L⇒⇒ A1 
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Rule 12: A1⇒⇒ A 

 

Where the meanings of the literals used in the above rules are as follows:  

 

A = Junior Office Staff 

A1 = Clerk 

A2 = Office Boy 

B = Quality of service is Good 

C = Seniority is High 

¬¬C= Seniority is Not High 

D = Local citizen 

E = Years of service is greater than Five 

¬¬F = Knowledge of work is Not Good 

¬¬G= English is Not Good 

H = Experience is Low 

K = Entitled to 14 days annual leave 

L = Required to do Typing 

X = Promotion is Yes 

Y = Needs to attain training course 

Z = On Probation 

 

The Hybrid Expert System is represented by a State Controlled Coloured Petri Net 

shown in Figure 6.2, according to the methodology proposed in the previous 

chapters. Note that for simplicity, the self-loop associated with each input place is 

not shown in the net. The rules are labelled R1 to R12. The inheritance relations are 

represented by T1 to T3. S1 to S7 represent the predicates of these rules. 

 

To illustrate the application of our formal methodology, the net in Figure 6.2 are 

representing the followings: 
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Figure 6.2. SCCPN representation of the given HES 

 

Σ = { Color A, Color B, …Color P}, sixteen colour sets used, 

P = {Pc, Pr} a finite set of places, 

Pc = {Junior Staff, Junior Office Staff, Office Boy, Typist and Clerk }, five 

places that model the classes of the HES, 

Pr = { ClassA, ClassA1, S1, S2, S3,…S7}, nine places that model the 

predicates of the production rules,  

Pc∩Pr : the intersection of Pc∩Pr ={ClassA, ClassA1}, represents those IS-A 

predicates of the rule sets attached to the specific classes 

T = { Tc, Tr }, a finite set of transitions, 

Tc = {T0, T1, T2, T3}, four transitions that are connected to and from class 

places, 

Tr = { R1, R2, R3, ….R12}, twelve transitions that are connected to and from 

predicate places,  
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Tc∩Tr=∅, 

D = { d1, d2, ..., dn }, a finite set of predicates, |Pr| = |D|, n≥1, 

F =  { f1, f2, ..., fn }, a finite set of classes, |Pc| = |F|, n≥1, 

A = { a1, a2, ..., ak }, a finite set of arcs, k ≥ 1, P ∩ T = P ∩ A = T ∩ A = ∅, 

N : A → P×T∪T×P,  a node function, it maps each arc into a pair where the first 

element is the source node and the second is the destination node, the two 

nodes have to be of different kinds. The node functions can be further 

classified into the following eight different types: 

Inheritance : { Ãc, Äc, Ãs, Äs} where 

 

Ãc(t)= {ClassAA if T0, ClassA if T1, ClassA if T2 and ClassA if T3}  

Äc(t)= {ClassA if T0, ClassA1 if T1, ClassA2 if T2 and ClassA3 if T3} 

Ãs(t)= {ClassAA if T0, ClassA if T1, ClassA if T2 and ClassA if T3}  

Äs(t)= {ClassA if T0, ClassA1 if T1, ClassA2 if T2 and ClassA3 if T3} 

 

Predicate : {Õ c, Öc, Õs, Ös} where 

 

Õc(t)=


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Ös(t)=


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





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7,95,84,76
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ifSRifSRifSRifS

RifSRifSRifS
RifSRifSRifS

 

C : P→Σ, a colour function, it maps each place into a colour set, {Color N + Color 

P} for all places 

E(a) = {In0(x), In0(y), ..In3(x), In3(y); and f1(x), f1(y),…f12(x), f12(y)} 

I = The initial junior staff token and state token in ClassA. 

 

6.2. Analysis of the Personnel Selection System using SCCPNs 

 

The major analysis technique, within the context of Expert System verification, is 

the use of reachability tree which represents the reachability set of the SCCPN (or 

occurrence graph in (Jensen, K., 1995,1996)'s terminology). The basic idea behind is 

to construct a tree/graph containing a node for each reachable marking and an arc for 

each occurring binding element. In Expert System verification, it refers to 

exhaustively exploring all the useful and relevant interactions of predicates within 

the model. From a given initial state, all possible transitions are generated, leading to 

a number of new states. This process is repeated for each of the newly generated 

states until no new states are generated. Obviously such a tree/graph may become 

very large even for a small SCCPN. However, recent research (Li, X. et al., 1993; 

Christensen, S. & Petrucci, L., 1995; Kemper, P. 1996; Kondratyev, A. et al, 1996) 

has been taken to allow for a partial examination of a subportion of the reachability 

graph, therefore reduce the efforts in deriving possible solutions. For simplicity 

reason, without taking any transition conditions or transition operations into 

consideration, we concentrate our analysis by enabling a specific transition (i.e. 

corresponds to some meaningful initial facts) and then check the reachability set for 

any irregularities of the associated predicate places. The checking of the 

irregularities and anomalies can be done exhaustively or heuristically by adequately 

initiation of the sequence of transitions and closely examining the reachability 

markings. The problems can be located through the trace of the sequence of 
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transitions which may provide alternative or multiple marking effects. Therefore, we 

propose the following algorithm for generating the reachability set of a SCCPN as 

follows: 

 

 Reachability Set = {M0}, where M0 is the initial marking 
 Reachability Graph ={} 
 UnfiredMarkingList = [M0] 
  repeat 
  select some marking M in the UnfiredMarkingList 
   for each transition t which is enabled at M 
    do  begin 
       generate marking M' which results from 
       firing t at M 
      if M' is not an element of ReachabilitySet 
      then  
      begin 
       add M' to ReachabilitySet 
       append M' to UnfiredMarkingList 
       end 
       add arc (M,T,M') to ReachabilityGraph 
      end 
  until UnfiredMarkingList is empty 
 

In most automated SCCPN simulations, the first element of the UnfiredMarkingList 

is always selected, and so the reachability graph is produced in breadth-first order. 

 

In verifying the HES against the problems of correctness, consistency, and 

completeness, we use an automated computer aid for the generation of the 

reachability set. The SCCPN is initialized by placing tokens in the place and setting 

the values of data variables. The operation of the net can be investigated by the 

program either in a step by step manner or in an automatic mode. 

 

6.2.1. Detection of Errors and Anomalies in HES 
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6.2.1.1. Correctness 

 

6.2.1.1.1. Subsumption 

 

Analysis of the network will show the presence of subsumption in the HES (Figure 

6.3a). Suppose we have a Junior Office Staff with good quality of service and high 

seniority, we want to infer whether he should be promoted or not in our HES. This 

inference process will be as follow: initially, we have a Junior Office Staff token in 

the input place Class A (Junior Office Staff), and this token's slot "quality of service 

is Good" is TRUE and this token's slot "seniority is High" is also TRUE. This 

enables both R1 and T1 to be fired, as a result, a Clerk token is created in place 

Class A1 (clerk) by the T1 transition and a Junior Office Staff token is created in S1 

by f1(y). Next, R2 is also enabled since R2's antecedent is the same as R1. After 

firing the two rules, S1 consists of both a Junior Staff Token and a Clerk token. 

 

 
Figure 6.3a. SCCPN representation showing the events of subsumption, Case I 
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Figure 6.3b represents the reachability graph as the results of the execution of R1 

and R2. The graph is a directed graph from which we can see the markings M1, M2, 

M3, M4 and M5 are reachable from marking M0. In marking M5, both a Clerk token 

and a Junior Office Staff token is created in S1, by examining the slot "promotion" 

in this two tokens reveals that they have the same value, i.e. 'YES'. Since in the place 

Class A1, the Clerk token inherited all his attributes from the initial Junior Office 

Staff token, this means that R1 and R2 are using the same set of initial attributes for 

inference, therefore, we can conclude that R2 is subsumed by R1 because R2 is just 

a more specific case of R1. (i.e. Clerk is the child of Junior Office Staff). 

 

 
Figure 6.3b. Reachability graph due to the firing of R1 and R2 

 

In general, if we have two rules: 

 

 Rule X :  A∧B⇒C 

 Rule Y :  A'∧B⇒C 

 

If the value of slot A inherits to slot A' (i.e. A is the parent and A' is the child), then 

Rule Y is subsumed by Rule X because Rule Y is just a more specialized case of 

Rule X. (i.e. whenever Rule X succeeds, Rule Y will always succeed). In a complex 

frame hierarchy which allows for multiple inheritance, checking for subsumption 
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becomes more difficult because of ambiguity in the behaviour of multiple inherited 

subclasses. 

 

Next, we consider a more complicated subsumption situation as in Figure 6.4a. 

Suppose initially, we have a junior office staff token in the input place Class A 

(Junior Office Staff), with slot "quality of service is Good" is TRUE, slot "seniority 

is High" is TRUE and slot "local citizen" is also TRUE. This enables both R1 and 

T1 to be fired, as a result, a Clerk token is created in place Class A1 (Clerk) by the 

T1 transition and a Junior Office Staff token is created in S1 by f1(y). Next, R2 and 

R3 are also enabled. After firing either one of the two rules, S1 consists of both a 

Junior Staff Token and a Clerk token. 

 

 

 
Figure 6.4a. SCCPN representation showing the events of subsumption, Case II 
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Figure 6.4b represents the reachability graph as the results of the execution of Rule1 

followed either by R2 or R3. Since M5 is reachable from M4 either by R2 or R3, by 

examining the slot "promotion" in the Clerk token and Junior Office Staff Token 

reveal that they have the same value, i.e. 'YES'. Therefore, Rule 3 is subsumed by 

Rule 2 because the two transitions R2 and R3 can be enabled in A1 and their final 

marking is the same. 

 

 
Figure 6.4b. Reachability graph due to the firing of R1, R2 and R3 

 

6.2.1.1.2 Cyclicity 

 

If a circular loop can result when a set of rules are fired, then these rules are 

considered as a circular rule set. For example: 

 

 Rule X : B⇒C 

 Rule Y : C'⇒B 

 

If slot C is the parent of C', Rule X and Rule Y will form a circular loop. If more 

than one level of class hierarchy is involved, an implicit cycle may exist where the 

loop is formed from several rules and different frames' slots in the frame hierarchy. 
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Figure 6.5a. SCCPN representation showing the events of cyclicity. 

 

In our example, Rule 10, Rule 11 and Rule 12 will form such a cyclicity. In Figure 

6.5a, if we have a Junior Office Staff token in Class A then R10 is enabled and fired, 

this will further enable R11 and a Clerk token is deposited in A1 (Clerk). As a result, 

R12 will be enabled and a Junior Office Staff token will be deposited in Class A. 

This process will continue within a loop with no end. Reachability analysis (Figure 

6.5b) will show that there exists an infinite tree which has the branching pattern 

repeated after four levels. (Markings M7, M13 and M12 are repeated in cycles)  
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Figure 6.5b. Reachability graph due to the firing of R10, R11 and R12 

 

6.2.1.2. Consistency 

 

6.2.1.2.1 Contradiction 

 

If two rules have duplicated antecedents but in the consequence a clause is both 

affirmed and denied, we refer the situation as inconsistency. The following two rules 

are in conflict. 

 

 Rule X : A∧B⇒C 

 Rule Y : A'∧B'⇒¬C 
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Since both A' and B' are slots values inherited from his parent, Rule X is in conflict 

with Rule Y. In practical Expert System development, this problem is dealt with by 

the concepts of overriding (i.e. Rule Y overrides Rule X). This overriding behaviour 

is normally considered as an anomaly unless it is with the expert's true intent. In our 

example, Rule 4 and Rule 5 are in conflict. In Figure 6.6a, if we have a Junior Office 

Staff token to start off in Class A with "year of service greater than five years", after 

firing Rule 4, then his seniority is High. A token clerk will be created in Class A1 

with the same attributes, but this time after firing Rule 5, his seniority is Not High. 

This situation is revealed when we check the reachability graph in Figure 6.6b. 

Marking M5 is reachable from M0. In M5, we got both a Clerk token and a Junior 

Office Staff token in S2. When examining the state of S2 in these two tokens, we 

could see one is confirmed and the other is denied. This reflects that we have two 

conflicting rules applied to two different Object Classes. 

 

 
Figure 6.6a. SCCPN representation showing the events of contradiction 
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Figure 6.6b. Reachability graph due to the firing of R4 and R5 

 

6.2.1.2.2. Unnecessary IF condition  

 

If we have two rules which contain the same conclusion but with conflicting 

conditions, then this situation is referred to as having unnecessary IF conditions in 

the knowledge base. E.g. consider the following two rules: 

 

  Rule X : A∧B⇒C 

  Rule Y : A∧¬B⇒C 

 

These two rules can be combined to form a simple rule: 

 

  Rule X : A⇒C 
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Figure 6.7a. SCCPN representation showing the events of unnecessary IF condition 

 

The second IF condition becomes unnecessary. In our example HES (Figure 6.7a), 

additional unnecessary conditions can occur when an action in one rule becomes a 

condition of another rule and these two rules' condition parts are in an inheritance 

relationship (i.e. Rule 6 and Rule 7). 

Consider the following two rules: 

 

  Rule X : A∧B⇒C 

  Rule Y : A'∧C⇒D 

 

When Rule Y is backward chained to Rule X, (i.e. inorder that C is true, we have to 

check whether A is true and B is true.) Rule Y is equivalent to the testing of A', A 

and B: 
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  Rule Y : A'∧(A∧B)⇒D 

 

Since, A' and A are in inheritance relation, we may want to remove either the 

condition IF A' or IF A. 

 

Refer to our example, when we check the reachability graph (Figure 6.7b) generated 

by the initial Junior Office Staff token in Class A, we only have three markings 

which S6 never gets inferred with any token. It is because R6 and R7 are indirectly 

asking the variable X to be instantiated, both to Junior Office Staff and Clerk 

simultaneously. Therefore, we have an unnecessary IF condition for X. (i.e. IF X is a 

Junior Office Staff AND IF X is a Clerk.) 

 

 
Figure 6.7b. Reachability graph due to the firing of R6 & R7 

 

6.2.1.3 Completeness 

 

6.2.1.3.1 Unreachability, Case I 

 

When a rule requires an object instance to be bound with two mutually exclusive 

classes, or two classes in an inheritance hierarchy. This rule cannot be fired. E.g. 

 

  Rule X : A∧A'⇒C 

  Rule Y : A1∧A2⇒C 
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Figure 6.8a. SCCPN representation showing the events of Unreachability 

 

In Rule X, if A is the parent and A' is the Child, it is not possible for an object 

instance to be both belonging to Class A and Class A'. Similarly, in Rule Y, A1 and 

A2 are both children of A, it is not possible for an object instance to both belonging 

to two different mutually exclusive classes. Referring to our example (Figure 6.8.a), 

Rule 8 is found to be in this situation. Examining the reachability tree (Figure 6.8b), 

no token is ever deposited in S4 in all reachability Markings from M0.   

 

 
Figure 6.8b. Reachability graph due to the firing of R8 
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Furthermore, if the antecedent part of a rule cannot be satisfied because it contains a 

literal which cannot be matched to a fact or a literal in the consequent part of any 

other rule, then this case also leads to Unreachability. 

 

6.2.1.3.2 Unreachability, Case II 

 

 
Figure 6.9a. SCCPN representation showing the events of Unreachability 

 

Consider a more complicated situation which involves chain rules (Figure 6.9a), 

Rule 6's action part will forward chain to Rule 9's condition part. 

 

Now this causes an unreachable condition because Rule 6's condition part and Rule 

9's condition parts are having mutually exclusive class instantiation. 
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Figure 6.9b. Reachability graph due to the firing of R6 & R9 

 

By examining the reachability graph in Figure 6.9b it shows that S5 never has any 

token reached from Marking M0. This means this rule is unreachable. 

 

6.3. Time and Space Complexity of the SCCPN Methodology 

 

When the SCCPN methodology is used to detect anomalies of the above Personnel 

Selection Expert System, some measurements are necessary to assess the real 

performance of the methodology. Two of the most important considerations are how 

much memory (space complexity) it will use to construct the full Occurrence Graph 

and how long (time complexity) it will take to search for a particular marking in the 

nodes of the Occurrence Graph? Other important issues include the effort used to 

transform the rules and object hierarchy into places and transactions and the effects 

of choosing different search strategy. 

 

6.3.1. Derivation of the Occurrence Graphs 
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Given a SCCPN, the derivation of the Occurrence Graph depends on a number of 

parameters, such as the number of places and transactions, the arc expressions, the 

number of token types and the initial markings. Refer to the Personnel Selection 

Expert System, as can be seen from Figure 6.3 to Figure 6.9, the size and the shape 

of the Occurrence Graph only depend on the initial markings of the SCCPN. (i.e. the 

characteristics of the Junior Office Staff). It is because there are no changes of the 

production rules and the object hierarchy used.  

 

The derivation of the Occurrence Graphs of the Personnel Selection Expert System 

can be divided into the following two steps: (1) Calculate the total number of 

Occurrence Graphs generated from all possible initial markings; (2) For each initial 

marking, calculate the efforts required to derive that particular Occurrence Graph. 

Therefore, using the worst-case analysis, the total number of Occurrence Graphs 

generated in this example is equal to the total number of possible combination of slot 

values between the Slot Knowledge of Work and Leading Skills inclusively. 

 

 = (Possible values each slot could have) to the power of (total number of slots) 

 = 39 

 = 19,683 

 

Therefore, there are totally 19,683 different Junior Office Staff tokens for initial 

markings, which corresponds to 19,683 Occurrence Graphs being generated. In 

order to reduce the number of Occurrence Graphs being examined, we can use only 

those meaningful Junior Office Staff tokens. (e.g. those with at least six "GOOD"s 

between the Slot Knowledge of Work and Leading Skills. This reduced the number 

of initial markings to: 

 

 = (six "Good") + (seven "Good") + (Eight "Good") + (Nine "Good")  

 = 23*C(9,6) + 22*C(9,7) + 2*C(9,8) + 1 

 = 672 + 144 + 18 + 1 

 = 835 
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Therefore, using the above meaningful tokens as initial markings, we can reduce 

over 95.7% of our efforts in generating and examining the Occurrence Graphs.  

 

Secondly, the efforts required to derive the Occurrence Graph of the Personnel 

Selection Expert System, using the worst-case analysis, is as follows: 

 

We convert the SCCPN in Figure 6.2. into two matrices, Di, and Do, which are used 

to represent the input and output functions for the class tokens and state tokens 

respectively. 

 

The Di of the Personnel Selection Expert System SCCPN is: 

 

 T0 T1 T2 T3 R1 R2 R3 R4 
ClassAA - - - - - - - - 
ClassA [j,s] - - - - - - - 
ClassA1 - [c,s] - - - - - - 
ClassA2 - - [o,s] - - - - - 
ClassA3 - - - [t,s] - - - - 

S1 - - - - [j,s] [c,s] [c,s] - 
S2 - - - - - - - [c,s] 
S3 - - - - - - - - 
S4 - - - - - - - - 
S5 - - - - - - - - 
S6 - - - - - - - - 
S7 - - - - - - - - 

Table 6.3a. Input functions for the class tokens and control tokens (T0-R4) 

 

f = Junior Staff  j = Junior  Office Staff c = Clerk o = Office Boy 

t = Typist  
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 R5 R6 R7 R8 R9 R10 R11 R12 
ClassAA - - - - - - - - 
ClassA - - - - - - - [c,s] 
ClassA1 - - - - - - [j,s] - 
ClassA2 - - - - - - - - 
ClassA3 - - - - - - - - 

S1 - - - - - - - - 
S2 [j,s] - - - - - - - 
S3 - [c,s] - - - - - - 
S4 - - - [j/c,s] - - - - 
S5 - - - - [c/o,s] - - - 
S6 - - [j/c,s] - - - - - 
S7 - - - - - [j,s] - - 

Table 6.3b. Input functions for the class tokens and control tokens (R5-R12) 

 

Detection of any form of error in the Personnel Selection Expert System will require 

the generation of a reachability tree for close examination. All markings that are 

reachable from a given marking will need to be stored for examination. Given an 

initial marking M0, the effort, in the worst case, to derive the next marking will 

involve the following operations: 

 

Identify enabled transitions requires comparison between M0 and the Markings in 

Di.  

 

= (Number of tokens compared) * (Number of slots in each token)  

= (16 class tokens) * (16 slots) + (16 state tokens) * (2 slots) 

= 256+32 

= 288 comparisons 

 

Similarly, the creation of the next state marking requires substitutions of token 

colours with the values in the output matrix Do.  

 

The Do of the Personnel Selection Expert System SCCPN is: 
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 T0 T1 T2 T3 R1 R2 R3 R4 
ClassAA [f,s] - - - - - - - 
ClassA - [j,s] [j,s] [j,s] [j,s] - - - 
ClassA1 - - - - - [c,s] [c,s] [c,s] 
ClassA2 - - - - - - - - 
ClassA3 - - - - - - - - 

S1 - - - - - - - - 
S2 - - - - - - - - 
S3 - - - - - - - - 
S4 - - - - - - - - 
S5 - - - - - - - - 
S6 - - - - - - - - 
S7 - - - - - - - - 

Table 6.4a. Output functions for the class tokens and control tokens (T0-R4) 

   

f = Junior Staff  j = Junior Office Staff  c = Clerk o = Office Boy 

t = Typist  

 R5 R6 R7 R8 R9 R10 R11 R12 
ClassAA - - - - - - - - 
ClassA [j,s] - [j,s] [j,s] - [j,s] - - 
ClassA1 - [c,s] - [c,s] - - - [c,s] 
ClassA2 - - - - [o,s] - - - 
ClassA3 - - - - - - - - 

S1 - - - - - - - - 
S2 - - - - - - - - 
S3 - - [c,s] - [c,s] - - - 
S4 - - - - - - - - 
S5 - - - - - - - - 
S6 - - - - - - - - 
S7 - - - - - - [j,s] - 

Table 6.4b. Output functions for the class tokens and control tokens (R5-R12) 

 

Therefore, the number of substitutions required is:   

 

= (Number of tokens substituted) * (Number of slots in each token)  

= (19 class tokens) * (16 slots) + (19 state tokens) * (2 slots) 

= 304 + 38 

= 342 substitutions 
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The total number of comparisons and substitutions required in each derivation of the 

next state markings are 342 + 288 = 630 in the worst-case. 

 

6.3.2. Transformation of Rules and Object hierarchy to SCCPN 

 

Since there are 12 rules having a total of 26 conditions and 12 actions, the maximum 

number of predicate places is (26+12) = 38 (storage spaces). There are 5 object 

classes in the hierarchy, therefore, we need another 5 object places. The total number 

of storage spaces for the predicate and class places of this Personnel Selection 

System are 43. 

 

The storage spaces required for the tokens are calculated as follows: 

 

= (Number of classes) * (Number of Places) * (Number of slots in each token)  

= 5 * 43 * 16   

= 3,440 (storage spaces).  

 

Therefore the total storage spaces required are 3,483.   

 

6.3.3. Evaluation function for particular marking 

 

After generation of the Occurrence Graph, each node will be evaluated by a 

function. The purpose of this function is to check for the existence of a particular 

marking within a node. For a function that searches for Subsumption within the 

HES, it is as follows: 
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SearchSubsumption (SearchArea, StartNode) 
Begin 
 Result:=StartNode; Found:=FALSE 
  For all nodes∈SearchArea Do 
  Begin 
   If ParentToken and ChildToken Exists in Result THEN 
   Begin 
   Compare Slots Value 
   IF Parent.Slots.Value = Child.Slots.Value THEN Found:=TRUE 
   End 
  End 
End. 
  

SearchArea specifies the part of the Occurrence Graph that should be searched. It is 

often the subset that is minimally enabled by the meaningful initial markings. 

 

6.3.4. Complexity measures for the Personnel Selection Expert System SCCPN 

 

6.3.4.1. Correctness 

 

6.3.4.1.1. Subsumption 

 

Refer to the Occurrence Graph for Subsumption Case I, Figure 6.3b, the space 

required is: 

= (Total no. of nodes)*(Storage spaces for each node) 

= 6*3,483 

= 20,898 

 

The computation effort required for comparisons and substitutions is: 

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution) 

= 7*630 

= 4,410 
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Refer to the Occurrence Graph for Subsumption Case II, Figure 6.4b, the space 

required is: 

= (Total no. of nodes)*(Storage spaces for each node) 

= 6*3,483 

= 20,898 

 

The computation effort required for comparisons and substitutions is: 

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution) 

= 9*630 

= 5,670 

 

6.3.4.1.2. Cyclicity 

 

Refer to the Occurrence Graph for Cyclicity, Figure 6.5b, the space required is: 

= (Total no. of nodes)*(Storage spaces for each node) 

= 15*3,483 

= 52,245 

 

The computation effort required for comparisons and substitutions is: 

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution) 

= 29*630 

= 18,270 

 

6.3.4.2. Consistency 

 

6.3.4.2.1. Contradiction 

 

Refer to the Occurrence Graph for Contradiction, Figure 6.6b, the space required is: 

= (Total no. of nodes)*(Storage spaces for each node) 

= 6*3,483 

= 20,898 
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The computation effort required for comparisons and substitutions is: 

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution) 

= 7*630 

= 4,410 

 

6.3.4.2.2. Unnecessary IF Condition 

 

Refer to the Occurrence Graph for Unnecessary IF Condition, Figure 6.7b, the space 

required is: 

= (Total no. of nodes)*(Storage spaces for each node) 

= 3*3,483 

= 10,449 

 

The computation effort required for comparisons and substitutions is: 

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution) 

= 2*630 

= 1,260 

 

6.3.4.3. Completeness 

 

6.3.4.3.1. Unreachability 

 

Refer to the Occurrence Graph for Unreachability Case I, Figure 6.8b, the space 

required is: 

= (Total no. of nodes)*(Storage spaces for each node) 

= 2*3,483 

= 6,966 

 

The computation effort required for comparisons and substitutions is: 

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution) 
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= 1*630 

= 630 

 

Refer to the Occurrence Graph for Unreachability Case II, Figure 6.9b, the space 

required is: 

= (Total no. of nodes)*(Storage spaces for each node) 

= 5*3,483 

= 17,415 

 

The computation effort required for comparisons and substitutions is: 

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution) 

= 6*630 

= 3,780 

 

From the above calculations, the total effort involved in finding the anomalies of the 

Personnel Selection Expert System requires 149,769 storage spaces and 38,430 

computations. 

 

6.3.5. Worst Case Analysis of Occurrence Graphs 

 

The above space and time complexity analysis is based on the concept of worst-case 

analysis. As can be seen from the above calculations, the amount of work done 

cannot be described by a single number because the number of steps performed is 

not the same for all inputs. According to (Baase, S., 1988), worst case analysis of an 

algorithm is defined as: 

 

  W(n) = max {t(I) | I ∈Dn}   

 

where W(n) is the maximum number of basic operations performed by the algorithm 

on any input of size n. Dn is the set of inputs of size n for the problem under 
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consideration, and I be an element of Dn. t(I) is the number of basic operations 

performed by the algorithm on input I. 

 

Refer to the Occurrence Graphs of the Personnel Selection Expert System, Dn is the 

sets of meaningful Junior Office Staff tokens, I is a particular Junior Office Staff 

token, t(I) is the number of comparison and substitutions required on input I and 

W(n) is the maximum computations generated over the input set I. (i.e. W(n) = the 

detection of Cyclicity which requires 52,245 storage spaces and 18,270 

computations.) 

 

In practical applications of Occurrence Graphs analysis, as reported by (Jensen, K., 

1995,1997), the time and space complexity could be significantly reduced since a lot 

of the markings in an Occurrence Graph will be almost identical. The solution is to 

avoid duplication of identical parts by representing each marking as a set of pointers, 

as shown in Figure 6.10. This means each multi-set only appears once - even though 

it may appear in many different marking nodes. 

 

Markings 
Records 
 

 Page 
Records 

 Multi-Set 
Records 

M0  Page 1.1  MS1 
M1  Page 1.2   
M2  :   
:  :   
: : :  MS2 
: : :   
: : :   
: : Page 2.1   
Mk : :  : 
: : :   
:  :   
:  Page 3.1   
: : :  : 

      

Figure 6.10. Representation of a set of markings 
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The above method saves a lot of space, as well as the time required to evaluate a 

particular marking. Nevertheless, the full exploration of the time and space reduction 

methodologies of Occurrence Graph analysis is beyond the scope of this research, 

therefore, our current analysis only concentrated on the efforts required for building 

the full Occurrence Graphs of the Personnel Selection Expert System for anomalies 

detection.  

 

6.4. Summary 

 

In this Chapter, we have applied our SCCPN approach to model a practical 

Personnel Selection Hybrid Rule- and Frame-based Expert Systems. The detection 

and analysis of the anomalies of system is done by constructing and examining the 

reachability tree spanned by the knowledge inference. An algorithm is also given to 

generate such a reachability set of the nets. A complexity analysis is conducted to 

investigate the performance of the methodology. The complexity includes the effort 

to transform the rules and object hierarchy into places and transactions, the 

calculation of the size of the Occurrence Graphs, and the time required searching 

such Occurrence Graphs for anomalies. Our approach allows for formal verification 

of the correctness, consistency, and completeness of the hybrid knowledge base. 
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CHAPTER 7. FORMAL DESCRIPTION AND 

VERIFICATION OF RULE/FRAME-BASED 

HES  

 

It has been shown that Hybrid Expert Systems can be modelled by State Controlled 

Coloured Petri Nets (SCCPNs). Consequently, we have been able to dynamically 

simulate the propagation of rule inference and inherence of object properties in the 

hybrid knowledge base and identify some defined anomalies through the analysis of 

the reachability tree. To allow for accurate detection of these anomalies, a more 

formal definition and discussion of the properties of these anomalies will be given. 

Altogether, eight Propositions are derived, each Proposition represents a dynamic 

property of the SCCPN, namely: (1) Redundancy, (2) Subsumption, (3) Ambiguity, 

(4) Cyclicity, (5a) Contradiction I, (5b) Contradiction II, (6) Deadend, (7) 

Unnecessary IF and (8) Unreachability. A set of Occurrence Graph (c.f. Definition 

5.11.) properties is defined for each Proposition. These properties act as the 

necessary and sufficient conditions for the existence of the corresponding dynamic 

properties in the SCCPN.  

 

Therefore, if we want to formally verify whether a given Hybrid Expert System 

consists of, for example, Redundancy or not, we only have to investigate the HES's 

corresponding SCCPN, and thus we shall consider those Occurrence Graph 

properties under the Redundancy Proposition. If those properties exist, we can 

deduce that the SCCPN consists of Redundancy. Since the SCCPN is the model of 

the given Hybrid Expert System, therefore, we have verified the HES.    

 

7.1. Correctness: Forward Case Proof 

 

The problems of correctness about a rule set applied to an object hierarchy might 

involve redundancy, subsumption, ambiguity, and cyclicity as described in terms of 

predicate formulae in Chapter 4. These are observable either between a pair of rules 
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applied to an object hierarchy or rules that represent chains of inference in the object 

hierarchy.  

 

7.1.1. Redundancy  

 

Proposition 7.1. For a given marking M0, that minimally enables a nontrivial 

transition sequence σi, iff the HES has incorrect rules causing redundancy between 

the parent and child object classes, then ∃σj, ∃k, such that these sequences have the 

following properties:  

 

(i) σi∩σj=∅; 

(ii) Tc∩σi=∅; Tc∩σj≠∅; 

(iii) M'=δ(M0,σi), M"=δ(M0,σj); 

(iv) Msk=0, '
skM >0, "

skM >0; 

(v) Mck=0, '
ckM >0, "

ckM >0; 

(vi) ∃(prk,cck)'∈ '
ckM , ∃(prk,cck)"∈ "

ckM  

(vii)  (prk,cck)'=(prk,cck)" 

 

Explanation: Property (i) denotes that there should exist two nontrivial transition 

sequences and they are disjoint one another. Property (ii) denotes that transition 

sequence σi does not involve any inheritance while transition sequence σj involves 

inheritance. Property (iii) denotes that marking M' is reachable from initial marking 

M0 by the first sequence σi and marking M" is reachable from M0 by the second 

sequence σj. Property (iv) denotes that no state token is deposited in Place k in the 

initial marking. While in markings M' and M", there is at least one state token 

deposited in Place k. Property (v) is similar to (iv) except that the markings are 

referring to class tokens. Property (vi) denotes that there exists a class token element 

(prk,cck)' in predicate place k of M'. There is also a class token element (prk,cck)" 

which exists in predicate place k of marking M". Property (vii) tells us that the 

colour (data value) of predicate k of this two class tokens are the same. 
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If there exists incorrect rules applied to the object hierarchy of the following cases: 

 

Case (I): Conditions and Actions identical between Parent Class and Child Class. 

 

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and 

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 

 

In SCCPN representation, there should exist tr0, tr1 and tc such that  

 

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)  

E(tr0,Öc(tr0))=E(tr1,Öc(tr1)) 

 

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1), 

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1) 

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is 

minimally enabled,  

 

then Msk=1 if psk∈Õs(tr0), 0 otherwise. 

And Mck=1 if pck∈Õc(tr0), 0 otherwise. 

 

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.). 

 

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is 

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.). 

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled. 

 

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0), 

σj=(tc,tr1).  
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Therefore 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise
tpif rcck

0

)(Ö1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)' 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise
tpif rcck

0

)(Ö1 1
 

 

And the colour of the class token at Öc(tr1)=(prk,cck)" 

 

Since E(tr0,Öc(tr0))=E(tr1,Öc(tr1)), therefore (prk,cck)'=(prk,cck)" 

 

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0, 

"
ckM >0, and (prk,cck)'=(prk,cck)", implying incorrectness with σi=(tr0), σj=(tc,tr1). 

 

Case (II):  Chained inference 

 

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and 

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 
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In SCCPN representation, there should exists tr0, and σi=(tc,tr1,tr2,….trj) such that  

 

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)  

E(tr0,Öc(tr0))=E(trj,Öc(trj)) 

 

Ös(tr(m) )=Õs(tr(m+1)) for m=1,2,…..j-1. 

Öc(tr(m) )=Õc(tr(m+1)) for m=1,2,…..j-1. 

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1),  

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1),  

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. 

σi=(tc,tr1,tr2,….trj) is minimally enabled, i.e., ∀m=1,2,3,….j-1, 

 

then Msk=


 ∈

otherwise

tpif cssk

0

)(Ã1
 

 

And Mck=


 ∈

otherwise

tpif ccck

0

)(Ã1
 

 

The execution of transition sequence, σi, gives M' s.t. ∀m=1,2,3,….j, Ös(tm)∈Ös(σi) 

 

'
skM =



 ∈

otherwise

)}(),Ö(t{Õpif isssk

0

1 1 σ
 

 

And the colour of the class token at Öc(tj)=(prk,cck)' 

 

Since E(Õc(tr0),tr0)=E(Õc(tr1),tr1) - E(φ) + E(Φ), therefore tr0 is enabled. 

 

Let "
ckM =δ(M0,tr0),  
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"
ckM =



 ∈

otherwise

tpif rcck

0

)(Ö1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)" 

 

Since E(tr0,Öc(tr0))=E(trj,Öc(trj)), therefore (prk,cck)'=(prk,cck)" 

 

Since Öc(tr0)=Öc(trj)⊂Öc(σi), thus, for psk∈Ös(trj), Msk=0, '
skM >0, "

skM >0, and for 

pck∈Öc(trj), Mck=0, '
ckM >0, "

ckM >0, and (prk,cck)'=(prk,cck)", implying incorrectness 

with σi=(tc,tr1,tr2,….trj), σj=(tr0). 

 

7.1.2. Subsumption   

 

Proposition 7.2. For a given marking M0, that minimally enables a nontrivial 

transition sequence σi, iff the HES has incorrect rules causing subsumption between 

the parent and child object classes, then ∃σj, ∃k, such that these sequences have the 

following properties:  

 

(i) σi∩σj=∅; 

(ii) Tc∩σi=∅; Tc∩σj≠∅; 

(iii) M'=δ(M0,σi), M"=δ(M0,σj); 

(iv) Msk=0, '
skM >0, "

skM >0; 

(v) Mck=0, '
ckM >0, "

ckM >0; 

(vi) ∃(prk,cck)'∈ '
ckM , ∃(prk,cck)"∈ "

ckM  

(vii) (prk,cck)"⊆(prk,cck)' 

 

Case (I):  Rule X is subsumed by Rule Y (condition part) between Parent Class 

and Child Class   
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Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and  

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 

 

In SCCPN representation, there should exist tr0, tr1 and tc such that 

 

E(Õc(tr1),tr1) - E(φ)⊂E(Õc(tr0),tr0) - E(Φ) 

E(tr0,Öc(tr0))=E(tr1,Öc(tr1)) 

 

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1), 

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1) 

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is 

minimally enabled,  

then Msk=1 if psk∈Õs(tr0), 0 otherwise. 

And Mck=1 if pck∈Õc(tr0), 0 otherwise. 

 

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.). 

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is 

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.). 

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled. 

 

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0), 

σj=(tc,tr1).  

 

Therefore 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00
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'
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)' 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 1

 

 

And the colour of the class token at Öc(tr1)=(prk,cck)" 

 

Since E(tr0,Öc(tr0))=E(tr1,Öc(tr1)), therefore (prk,cck)'=(prk,cck)" 

 

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0, 

"
ckM >0, and (prk,cck)'=(prk,cck)", implying incorrectness with σi=(tr0), σj=(tc,tr1). 

 

Case (II): Rule X is subsumed by Rule Y (action part) between Parent Class and 

Child Class.   

 

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and  

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 

 

In SCCPN representation, there should exists tr0, tr1 and tc such that 

 

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ) 

E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0))  
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Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1), 

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1) 

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is 

minimally enabled,  

then Msk=1 if psk∈Õs(tr0), 0 otherwise. 

And Mck=1 if pck∈Õc(tr0), 0 otherwise. 

 

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.). 

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is 

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.). 

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled. 

 

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0), 

σj=(tc,tr1).  

 

Therefore 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)' 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11
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"
ckM =



 ∈

otherwise

tpif rcck

0

)(Ö1 1

 

 

And the colour of the class token at Öc(tr1)=(prk,cck)" 

 

Since E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0)) 

therefore (prk,cck)"⊂(prk,cck)' 

 

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0, 

"
ckM >0, and (prk,cck)"⊂(prk,cck)', implying incorrectness with σi=(tr0), σj=(tc,tr1). 

 

Case (III): Rule X is subsumed by Rule Y (condition and action) between Parent 

Class and Child Class. 

 

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and  

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 

 

In SCCPN representation, there should exists tr0, tr1 and tc such that 

 

E(Õc(tr1),tr1) - E(φ)⊂E(Õc(tr0),tr0) - E(Φ) 

E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0))  

 

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1), 

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1) 

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is 

minimally enabled, 

  

then Msk=1 if psk∈Õs(tr0), 0 otherwise. 
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And Mck=1 if pck∈Õc(tr0), 0 otherwise. 

 

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.). 

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is 

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.). 

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled. 

 

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0), 

σj=(tc,tr1).  

 

Therefore 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise
tpif rcck

0

)(Ö1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)' 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 1

 

 

And the colour of the class token at Öc(tr1)=(prk,cck)" 

 

Since E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0)) 

therefore (prk,cck)"⊂(prk,cck)' 
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Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0, 

"
ckM >0, and (prk,cck)"⊂(prk,cck)', implying incorrectness with σi=(tr0), σj=(tc,tr1). 

 

7.1.3. Ambiguity 

 

For the Hybrid Expert System (HES) to be unambiguous, there can be no 

unambiguous input to the rule set which results in having more than one object 

classes are being instantiated with subsumed conclusion. Less importantly, there can 

be no unambiguous input which will trigger a number of object classes that lead to 

the same conclusion. The problem presented by ambiguity increases as the 

redundancy and subsumption increase. Therefore, it is useful to consider the sources 

of the redundancy and subsumption in the HES. The anomalies could be specifically 

identified which might assemble the effect of having an indeterminate rule in the 

rule base, that is composed of a set of quasi-separated rules in the form of a number 

of immediate possible transitions being modeled by SCCPN. For instance, if there 

exists an ambiguous rule 

 

Rule 1: P→Q 

 

that involves disjunction of predicates, (i.e. one of the predicates is the IS-A 

predicate), according to the model transformation, the rule could have been 

represented by a number of possible immediate transitions in SCCPN, i.e. ∃Γ={tk} 

for Rule 1 in the form of: 

 

p1∨ p2∨….. pm → q1∨ q2∨….. qn 

 

where  pi∈P for i=1,2,……m, 

  qj∈Q for j=1,2,……n, 
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s.t.  Õs(Γ)=Õs(tr0)∪Õs(tr1)∪…..∪Õs(trk), 

  Ös(Γ)=Ös(tr0)∪Ös(tr1)∪…….Ös(trk). 

 

Consequently, we emphasize on the verification of incorrectness due to a number of 

redundancy and subsumption, that might also demonstrate the existence of 

ambiguity in a HES. It may not be our good practice to introduce such anomalies by 

introducing any of incorrect rules into the knowledge base. However, the importance 

of the verification, in this context, is to allow for a means of demonstrating the 

possible inference of an indeterminate rule to the rest of the rules in the HES. In 

considering with the problems of ambiguity in SCCPN representation, we will put 

our attention on the reachable effect of transition firings in the set Γ upon a given 

marking. 

 

Proposition 7.3. For a given marking M0, that minimally enables Γ={σi,σj} for a 

nontrivial transition sequence σi, σj, iff the HES has incorrect rules causing 

ambiguous conditions of events between different object classes, then ∃k, 

∀prk∈Ös(Γ), ∀prk∈Öc(Γ), such that these sequences have the following properties:  

 

(i) σi∩σj=∅; 

(ii) M'=δ(M0,σi), M"=δ(M',σj); 

(iii) Msk=0, '
skM ≥1, "

skM >1; 

(iv) Mck=0, '
ckM ≥1, "

ckM >1; 

(v) ∃(prk,cck)'∈ '
ckM , ∃(prk,cck)"∈ "

ckM  

(vi) (prk,cck)'=(prk,cck)" 

 

Case (I):  Rule with inclusive disjunction of IS-A conditions from different 

Object Classes. 
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Let E(Φa) be the arc expression function of the predicate IS-A member of Object 

Class A and 

Let E(Φb) be the arc expression function of the predicate IS-A member of Object 

Class B. 

 

In SCCPN representation, there should exists Γ={tr0,tr1} such that  

 

Õs(tr0)∩Õs(tr1)=∅, Ös(tr0)=Ös(tr1)=Ös(Γ), 

Õc(tr0)∩Õc(tr1)=∅, Öc(tr0)=Öc(tr1)=Öc(Γ), 

 

and 

 

E(Φa)∈E(Õc(tr0),tr0), E(Φb)∈E(Õc(tr1),tr1). 

 

Choose M0 s.t. tr0,  tr1 are minimally enabled, therefore, tr0, tr1 are active (i.e., Mck=1 

if pck∈Õc(Γ), 0 otherwise and Msk=1 if psk∈Õs(Γ), 0 otherwise). 

 

Without loss of generality, let M'=δ(M0,tr0). Since Õc(tr0)∩Õc(tr1)=∅, there is no 

conflict for tr0, tr1 and both transitions will be executed immediately one after the 

other. Thus 

 

'
ckM =



 ∈

otherwise

)}(t), Ö(t{Õpif rcrcck

0

1 01

 

 

and 

 

'
skM =



 ∈

otherwise

)}(t), Ö(t), Õ(t{Õpif rsrsrssk

0

1 001

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)' 
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As Öc(tr0)=Öc(tr1)=Öc(Γ), Let M"=δ(M',tr1), 

 

"
ckM =



 Γ∈

otherwise
pif ck

0

 )(Ö2 c

 

 

"
skM =








Γ∈
Γ∈

otherwise

pif

pif

sk

sk

0

)(Õ1

)(Ö2

s

s

 

 

And the colour of the class token at Öc(tr1)=(prk,cck)" 

 

Since Öc(tr0)=Öc(tr1)=Öc(Γ), and 

E(tr0,Öc(tr0))=E(tr1,Öc(tr1)) 

therefore (prk,cck)'=(prk,cck)" 

 

Thus for ∀prk∈Ös(Γ), ∀prk∈Öc(Γ), Msk=0, '
skM ≥1, "

skM >1, Mck=0, '
ckM ≥1, "

ckM >1 

and (prk,cck)'=(prk,cck)" implying incorrectness with Γ={tr0,tr1} 

 

Case (II): Rule with inclusive disjunction of IS-A actions from different Object 

Classes. 

 

Let E(Φa) be the arc expression function of the predicate IS-A member of Object 

Class A and 

Let E(Φb) be the arc expression function of the predicate IS-A member of Object 

Class B. 

 

In SCCPN representation, there should exist Γ={σ0,σ1,σ2} such that 

 

σ0=(tr1,tr2,……trm), 
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σ1=(tr(m+1),tr(m+2),……tr(m+n)), 

σ2=(tr(m+n+1),tr(m+n+2),……tr(m+n+l)), 

 

and there exist tru∈σ0, trv∈σ1, trw∈σ2, such that 

 

σ0∩σ1∩σ2=∅, 

Õs(tru)=Õs(trv)=Õs(trw), 

Õc(tru)=Õc(trv)=Õc(trw), 

Ös(tru)⊂Ös(trv), Ös(trw)⊂Ös(trv), 

Öc(tru)⊂Öc(trv), Öc(trw)⊂Öc(trv). 

 

and 

 

E(Φa)∈E(tru,Öc(tru)), E(Φb)∈E(trw,Öc(trw)), 

E(Φa)∈E(trv,Öc(trv)), E(Φb)∈E(trv,Öc(trv)), 

 

Choose M0 s.t. tr1 is minimally enabled, then Msk=1 if psk∈Õs(tr1), 0 otherwise and 

Mck=1 if pck∈Õc(tr1), 0 otherwise. 

 

Since Õs(tr1)=Õs(tr(m+1))=Õs(tr(m+n+1)) and Õc(tr1)=Õc(tr(m+1))=Õc(tr(m+n+1)), tr(m+1) and 

tr(m+n+1) are also enabled. The effect of having Ös(tru)⊂Ös(trv), Ös(trw)⊂Ös(trv), 

Öc(tru)⊂Öc(trv) and Öc(trw)⊂Öc(trv) allows for the identification of subsumption in the 

representation. We use the ideas of Subsumption (Forward Case Proof c.f. 7.1.2.) 

Case (II), and Subsumption (Converse Case Proof c.f. 7.2.2.), and prove its inference 

between σ0, σ1 and σ2 respectively, thus demonstrating the existence of 

incorrectness, having the properties of the proposition or vice versa. 

 

7.1.4. Circular Rule Sets  
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Circular Rule Sets take place as a result of the incorrect rules causing cyclicity 

between the parent and child object classes. The rules are represented by a series of 

transitions in SCCPNs, being enabled and fired in sequences. To be able to highlight 

the interinference of the transitions, the reachability set produced by SCCPN 

analysis is based on a breadth-first ordering. Given a marking M that enables tr0, if 

there exists any occurrence of cyclicity, then we can express the reachability set 

sufficiently deep enough to cover the cyclicity, in terms of a transition sequence Γ, 

as follows: 

 

Γ=(σ1,σ2,....…,σi,σi+1,…..,σn,......,σm) 

 

where σj is a sequence of alternative transitions spanned immediately by σj-1 in Γ for 

j=2,3,….m. Note that σ1 is spanned by tr0 initially.  

 

And that there exists a cyclic sequence, α=[tri,tr(i+1),….tr(n)], in Γ where tri∈σi for j=i, 

i+1,....n<m, forming a path which begins and ends with the same transition, and 

Tc∩α≠∅. 

 

Therefore an execution of any transition trk in Γ where trk∈σk for k=1,2,....n, will 

sufficiently trigger the event of cyclicity in the HES. 

 

We define M0
sk [Õs(trj)] as the marking for any psk∈Õs(trj), similarly, for M0

ck [Õc(trj)], 

as the marking for any pck∈Õc(trj). Also, we define M i
sk [Õs(trj)] as the marking for 

any psk∈Õs(trj), and M i
ck [Õc(trj)], as the marking for any pck∈Õc(trj), after an 

execution of any transition tri for i>0 in the sequence. 

 

 

Proposition 7.4. For a given marking M0, that minimally enables transition 

sequence α, iff the HES has incorrect rules causing cyclicity between the parent and 
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child object classes, then ∃j≥i, ∃k such that the sequence has the following 

properties:  

 

(i) Mi∈[M0>={M0,M1,M2,…Mi,..Mj},  

(ii) Mj=δ(M0,α) for j>0,  

(iii) Tc∩α≠∅; 

(iv) M i
sk [Õ]>0, M j

sk [Õ]>1.  

 

Case (I):  Self-Reference Rule 

 

In SCCPN representation, there should exist tr1 and tc, forming a connected path 

such that Ãc(tc)⊆Öc(tr1), Äc(tc)⊆Õc(tr1), Ãs(tc)⊆Ös(tr1) and Äs(tc)⊆Õs(tr1). Choose M0 

s.t. tr1 is minimally enabled, therefore 

 

M 0
sk =



 ∈

otherwise

)(tÕpif rssk

0

1 1

 

 

M 0
ck =



 ∈

otherwise

)(tÕpif rcck

0

1 1

 

 

i.e. M0
sk [Õs(tr1)]=1 if psk∈Õs(tr1) 

 

Since Ãc(tc)⊆Öc(tr1) and Ãs(tc)⊆Ös(tr1), tc is enabled, therefore the marking in 

Äc(tc)=1, 0 otherwise and the marking in Äs(tc)=1, 0 otherwise. 

 

Since Äc(tc)⊆Õc(tr1), Äs(tc)⊆Õs(tr1), tr1 is enabled, and M1
sk = δ(M0,tr1),  
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M1
sk =









∈
∈

otherwise

)(tÖpif

)(tÕpif

rssk

rssk

0

1

2

1

1

 

 

M1
ck =



 ∈

otherwise

)(tÕpif rcck

0

1 1

 

 

Thus for psk ∈ Õs(tr1), Mi
sk [Õs]>0, M j

sk [Õs]>1, implying incorrectness, with i=1, 

j=1, and α=(tr1) 

 

Case (II):  Self Reference Chain of Inference 

 

In SCCPN representation, there should exist α=(tr1,tr2,....tr(l-1),tc,trl,...trm) forming a 

connected path such that  

 

Õs(tr(l+1))⊆Ös(trl) for l=1,2,.....m-1, 

Õs(tr1)⊆Ös(trm). 

 

Choose M0 s.t. α=(tr1,tr2,....tr(l-1),tc,trl,...tm) is minimally enabled, i.e., ∀l=1,2,....m-1, 

 

M 0
sk =



 =∈

otherwise

)(p),where M(tÕpif ckrssk ck

0

11 0
1

 

 

i.e. M0
sk [Õs(tr1)]=1 if psk∈Õs(tr1) 

Since Õs(tr1)⊆Ös(trm), and Mm= δ(M0,αi). Therefore the execution of transition 

sequence, α, gives Mm s.t. ∀l=1,2,....m-1. 
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M m
sk =









∈
∈

otherwise

)}(t), Ö(t{Öpif

)(tÕpif

rmsrssk

rssk

0

1

2

1

1

 

 

Thus for psk ∈ Õs(tr1), M 0
sk [Õ]=1, M j

sk [Õ]>1, implying incorrectness, with i=1, j=m, 

and α=(tr1,tr2,....t r(l-1),tc,trl,...tm). 

 

7.2. Correctness: Converse Case Proof 

 

7.2.1. Redundancy  

 

Given M0 which minimally enables a transition sequence σi, and ∃k, ∃σj s.t. 

σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, M'=δ(M0,σi), M"=δ(M0,σj), with Msk=0, '
skM >0, 

"
skM >0, Mck=0, '

ckM >0, "
ckM >0, and ∃(prk,cck)'∈ '

ckM , ∃(prk,cck)"∈ "
ckM  s.t. 

(prk,cck)'=(prk,cck)", if σi and σj have the following cases: 

 

Considering that σi and σj are nontrivial transition sequences, i.e. σi≠∅, and σj≠∅. 

  

Let σi composed of a single transition tr0  

 

Since tr0 is minimally enabled in M0, ⇒ ∃(pr0,cc0)∈M0, ∃(pr0,cs0)∈M0 s.t. 

∑ >≤< 000 ),( MbtpE rr  (Definition 5.7.) where <b> is <((pr0,cc0),(pr0,cs0))>. 

 

and  

Msk=


 ∈

otherwise

tpif rssk

0

)(Õ1 0

 

 

Mck=


 ∈

otherwise

tpif rcck

0

)(Õ1 0
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and M'=δ(M0,tr0), 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

 

 

therefore ⇒  ∃(prk,cck)'∈ '
ckM  

 

Since there exists another sequence, σj, the following cases can happen 

 

Case (I): σj is composed of transitions (tc,tr1). 

 

As σj is enabled by M0, therefore, Ãs(tc)⊆Õs(tr0), Ãc(tc)⊆Õc(tr0), Äs(tc)⊆Õs(tr1) and 

Äc(tc)⊆Õc(tr1). 

 

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0, 

"
ckM >0, therefore, Ös(tr0)∩Ös(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅. 

 

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Ös(tr1). 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 1
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therefore ⇒  ∃(prk,cck)"∈ "
ckM  

 

Since (prk,cck)'=(prk,cck)", therefore 

E(tr0,Öc(tr0))=E(tr1,Öc(tr1)).  

 

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr0,Öc(tr0))=E(tr1,Öc(tr1)). This indicates a 

pair of incorrect sequences σi=(tr0) and σj=(tc,tr1), possibly having incorrect rules 

causing redundancy between the parent and child object classes. 

 

Case (II): σj is composed of transitions (tc,tr1,tr2….trj). 

 

Since σj is enabled by M0, therefore  

 

Ös(tr(m) )=Õs(tr(m+1)) for m=1,2,…..j-1, 

Öc(tr(m) )=Õc(tr(m+1)) for m=1,2,…..j-1, 

Äc(tc)=Õc(tr1), Äs(tc)=Õs(tr1).  

 

Let M1=δ(M0,tr(m+1)), 

 

M1
sk =



 ∈ +

otherwise

)(tÖpif r(msck

0

)}(tÕ,{1 1)r(ms)

 

 

M1
ck =



 ∈ +

otherwise

)(tÖpif )r(mcck

0

1 1

 

 

therefore  ⇒  ∃(prk,cck)1∈M1
ck  

 

Similarly for any tm+u in σj, where u=1,2,…..n, 
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M u
sk =



 ∈

otherwise

)(tÕ)(t),Õ(tÖpif r(m+u)s)r(m+sr(m)ssk

0

}......{1 1

 

 

M
ck

u =


 ∈ +

otherwise

)(tÖpif u)r(mcck

0

1
 

 

therefore  ⇒  ∃(prk,cck)u∈M u
ck  

 

Let M"=Mu  and (prk,cck)u=(prk,cck)", 

Since (prk,cck)'=(prk,cck)", therefore 

E(tr0,Öc(tr0))=E(tr1,Öc(trj)). 

 

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr0,Öc(tr0))=E(tr1,Öc(trj)). This indicates a 

pair of incorrect sequences σi=(tr0) and σj=(tc,tr1,tr2….trj), possibly having incorrect 

rules causing redundancy between the parent and child object classes. 

 

7.2.2. Subsumption  

 

Given M0 which minimally enables a transition sequence σi, and ∃k, ∃σj s.t. 

σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, M'=δ(M0,σi), M"=δ(M0,σj), with Msk=0, '
skM >0, 

"
skM >0, Mck=0, '

ckM >0, "
ckM >0, and ∃(prk,cck)'∈ '

ckM , ∃(prk,cck)"∈ "
ckM  s.t. 

(prk,cck)"⊆(prk,cck)' if σi and σj have the following cases: 

 

Considering that σi and σj are nontrivial transition sequences, i.e., . σi≠∅, and σj≠∅. 

 

Let σi composed of a single transition tr0 

 

Since tr0 is minimally enabled in M0, ⇒ ∃(pr0,cc0)∈M0, ∃(pr0,cs0)∈M0 s.t. 

∑ >≤< 000 ),( MbtpE rr  (Definition 4.2.) where <b> is <((pr0,cc0),(pr0,cs0))>. 
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and  

 

Msk=


 ∈

otherwise

tpif rssk

0

)(Õ1 0

 

 

Mck=


 ∈

otherwise

tpif rcck

0

)(Õ1 0

 

 

and M'=δ(M0,tr0), 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

 

 

therefore ⇒  ∃(prk,cck)'∈ '
ckM  

 

Since there exists another sequence, σj, the following cases can happen 

 

Let σj composed of transitions (tc,tr1). 

 

As σj is enabled by M0, therefore, Ãs(tc)⊆Õs(tr0), Ãc(tc)⊆Õc(tr0), Äs(tc)⊆Õs(tr1) and 

Äc(tc)⊆Õc(tr1). 

 

Let Mc be the marking after firing transition tc, since tr1 is minimally enabled in Mc, 

⇒  ∃(pr1,cc1)∈Mc, ∃(pr1,cs1)∈Mc s.t. ∑ >≤< crc MbtpE ),( 1  (Definition 5.7.) where 

<b> is <((pc,cc1),(pc,cs1))>. 
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Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0, 

"
ckM >0, therefore, Ös(tr0)∩Ös(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅. 

 

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Ös(tr1). 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 1

 

 

therefore ⇒  ∃(prk,cck)"∈ "
ckM  

 

Since (prk,cck)"⊆(prk,cck)', therefore 

E(tr1,Öc(tr1))⊆E(tr0,Öc(tr0))  

 

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr1,Öc(tr1))⊆E(tr0,Öc(tr0)). This indicates a 

pair of incorrect sequences σi=(tr0) and σj=(tc,tr1), possibly having incorrect rules 

causing subsumption between the parent and child object classes. 

 

If ∑ <>< crc MbtpE ),( 1  and E(tr1,Öc(tr1))=E(tr0,Öc(tr0)), we have the case of a pair 

of incorrect rules having conditions subsumed between Parent Class and Child 

Class. 

 

If ∑ >=< crc MbtpE ),( 1  and E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0)), we have the case of a pair 

of incorrect rules having subsumed actions between Parent Class and Child Class. 
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If ∑ <>< crc MbtpE ),( 1  and E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0)), we have the case of a pair 

of incorrect rules having both conditions and actions subsumed between Parent 

Class and Child Class. 

 

7.2.3. Ambiguity 

 

Case (I):  Rule with inclusive disjunction of IS-A conditions from different 

Object Classes. 

 

Since Γ is minimally enabled, 

 

Mck=


 Γ∈

otherwise

(Õpif cck

0

)1
 

 

Since for ∀psk ∈Ös(Γ),∀pck ∈Öc(Γ), Msk=0, Mck=0, '
skM >1, '

ckM >1, at least two 

transitions must be active, and fired immediately one after the other. These are 

designated as tr0,tr1∈Γ s.t. Õc(tr0)⊂Õc(Γ), Õc(tr1)⊂Õc(Γ), and Õc(tr0)∩Õc(tr1)=∅ due 

to nonconflict criterion. Let M0=δ(M,tr0), M'=δ(M0,tr1), s.t.  

 

M 0
ck =



 ∈

otherwise

)}(t), Ö(t{Õpif rcrcck

0

1 01

 

 

M 0
sk =



 ∈

otherwise

)}(t), Ö(t{Õpif rsrssk

0

1 01

 

 

and  

 

'
ckM =



 Γ∈

otherwise
(Öpif cck

0

)2
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'
skM =









Γ∈

Γ∈

otherwise

(Õpif

(Öpif

ssk

ssk

0

)1

)2

 

 

Thus for ∀pck ∈Öc(Γ), pck ∈Öc(tr1) and pck ∈Öc(tr0), ∀psk ∈Ös(Γ), psk ∈Ös(tr1) and psk 

∈Ös(tr0). This indicates a pair of incorrect sequences σi=(tr0) and σj=(tr1), having 

problems of ambiguity possibly due to the existence of an indeterminate rule causing 

inclusive disjunction of conditions from different Object Classes. 

 

Case (II): Rule with inclusive disjunction of IS-A actions from different Object 

Classes. 

 

Since Γ is minimally enabled,  

 

Mck=


 Γ∈

otherwise

pif ck

0

)(Õ1 c
 

 

Since for ∀psk ∈Ös(Γ),∀pck ∈Öc(Γ), Msk=0, Mck=0, '
skM >1, '

ckM >1, "
skM >1, 

"
ckM >1, at least three transitions must be active, and fired immediately one after the 

other. These are designated as tr0,tr1 and tr2∈Γ s.t. Õc(tr0)⊂Õc(Γ), Õc(tr1)⊂Õc(Γ), 

Õc(tr2)⊂Õc(Γ), Õc(tr0)=Õc(tr1)=Õc(tr2) and Öc(tr0)∩Öc(tr2)=∅, Öc(tr0)⊂Öc(tr1), 

Öc(tr2)⊂Öc(tr1).  

 

Let M0=δ(M,tr0), M'=δ(M0,tr2), M"=δ(M',tr1), s.t. 

 

M 0
ck =



 ∈

otherwise

)}(tÖ)(t),Õ(t{Õpif rcrcrcck

0

,1 021
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M 0
sk =



 ∈

otherwise

)}(tÖ)(t),Õ(t{Õpif rsrsrssk

0

,1 021

 

 

and  

 

'
ckM =



 ∈

otherwise
(ÃÖpif cck

0

)1
 

 

'
skM =



 ∈

otherwise

(ÃÖpif ssk

0

)1
 

 

and 

 

"
ckM =



 ∈

otherwise
(ÃÖpif cck

0

)2
 

 

"
skM =



 ∈

otherwise
(ÃÖpif ssk

0

)2
 

 

Thus for ∀psk∈Ös(Γ), ∀pck∈Öc(Γ), Msk=0, Mck=0, '
skM >1, '

ckM >1, "
skM >1, 

"
ckM >1. This indicates three incorrect sequences σi=(tr0), σj=(tr1) and σk=(tr2), 

having problems of ambiguity possibly due to the existence of an indeterminate rule 

causing inclusive disjunction of conditions from different Object Classes. 

 

7.2.4. Cyclicity 

 

Given M which minimally enables a transition sequence α, and ∃j≥i, ∃k, s.t. 

 

(i) Mi∈[M0>={M0,M1,M2,…Mi,..Mj},  
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(ii) Mj=δ(M0,α) for j>0,  

(iii) Tc∩α≠∅; 

(iv) M i
sk [Õ]>0, M j

sk [Õ]>1.  

 

If α has the following cases: 

 

Considering that α is a nontrivial transition sequence, i.e., α≠∅ and α is composed 

of a series of transitions.  

 

Let the sequence be 

 

α=(tr1,tr2,…..tri,tc,tr(i+1),….tr(n),….tr(m)) 

 

Case (I):  The subsequence β consists of a single transition that begins at tri and 

ends at tc for i=1. 

 

Since tr1 is minimally enabled, let M0 be the initial marking, such that 

 

M 0
sk =



 ∈

otherwise

)(tÕpif rssk

0

1 1

 

 

M 0
ck =



 ∈

otherwise

)(tÕpif rcck

0

1 1

 

 

Thus, M0
sk [Õs(tr1)]=1. 

 

After firing of tr1, the marking M1 of Ös(tr1)=1, 0 otherwise and the marking M1 of 

Öc(tr1)=1, 0 otherwise. 

 

Since β=(tr1,tc), thus tc is enabled after firing tr1. 
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therefore, Ãc(tc)⊆Öc(tr1) and Ãs(tc)⊆Ös(tr1). 

 

Let M2 = δ(M1,tc) 

 

M 2
sk =








∈
∈

otherwise
)(tÖpif

)(tÕpif

cssk

rssk

0

1

2 1

 

 

M 2
ck =



 ∈

otherwise

)(tÖpif ccck

0

1
 

 

Since tr1 is immediate enabled in α, and ∃j≥i, for j=2, i=0, ∃k s.t. M0
sk [Õs(tr1)]=1, 

M 2
sk [Õs(tr1)]>1, 

 

∴∃psk s.t. psk∈Ös(tc) and Ös(tr1)∩Õs(tc)≠∅. 

 

This indicates an incorrect sequence α containing β=(tri,tc), for i=1, possibly occurs 

within the object classes. 

 

Case (II):  The subsequence β consists of a series of transitions that begins at tri 

and ends at tn for i=1 and n>i. 

 

Since α  is enabled by M0, therefore 

 

M 0
sk =



 ∈

otherwise

)(tÕpif rssk

0

1 1
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M 0
ck =



 ∈

otherwise

)(tÕpif rcck

0

1 1
 

 

Thus, M0
sk [Õs(tr1)]=1. 

 

Let M1=δ(M0,tr1), 

 

M1
sk =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

M1
ck =



 ∈

otherwise

)(tÖpif rcck

0

1 1

 

 

Since β=(tr1,tc,tr(i+1),….trn), thus tc is enabled after firing tr1. 

 

therefore, Ãc(tc)⊆Öc(tr1) and Ãs(tc)⊆Ös(tr1). 

 

Let M2=δ(M1,tc) 

 

M 2
sk =



 ∈

otherwise

)}(t),Ö(t),Ö(t{Õpif csrsrssk

0

1 11

 

 

M 2
ck =



 ∈

otherwise

)(tÖpif ccck

0

1
 

 

Similarly for any tl in α, where l =2,3,4…..i-1, 
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M l
sk =



 ∈

otherwise

)}(t)....Ö(t),Ö(t),Ö(t),Ö(t{Õpif rlsrscsrsrssk

0

1 211

 

 

M l
ck =



 ∈

otherwise

)(tÖpif lcck

0

1
 

 

 

Since trn is immediate enabled in α, and ∃j=n≥i=1, ∃k s.t. M 0
sk [Õs(tr1)]=1,  

M n
sk [Õs(tr1)]>1, i.e., 

 

M n
sk =








∈
∈

otherwise
)}(t)....Ö(t),Ö(t),Ö(t{Öpif

)(tÕpif

rlsrscsrssk

rssk

0

1

2

21

1

 

 

This indicates an incorrect sequence α containing β=(ti,tc,ti+1,….tn), possibly having 

a problem of cyclicity within the object classes. Note that α could be longer than 

sufficient to demonstrate the effect of such cyclicity if m>n>i. 

 

7.3. Consistency: Forward Case Proof 

 

7.3.1. Contradiction 

 

Proposition 7.5a. For a given marking M0, that minimally enables a nontrivial 

transition sequence σi, iff the HES has inconsistent rules causing contradiction 

between the parent and child object classes, then ∃σj, ∃k, such that these sequences 

have the following properties:  

 

(i) σi∩σj=∅; 

(ii) Tc∩σi =∅; Tc∩σj≠∅; 
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(iii) M'=δ(M0,σi), M"=δ(M0,σj); 

(iv) Msk=0, '
skM >0, "

skM >0; 

(v) Mck=0, '
ckM >0, "

ckM >0; 

(vi) ∃(prk,cck)'∈ '
ckM , ∃(prk,cck)"∈ "

ckM  

(vii)  (prk,cck)'=¬(prk,cck)" 

 

If there exists incorrect rules applied to the object hierarchy of the following cases: 

 

Case (I):  Identical Conditions but Contradict Actions between Parent Class and 

Child Class. 

 

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and 

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 

 

In SCCPN representation, there should exists tr0, tr1 and tc such that  

 

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ) 

E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)) 

 

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1), 

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1) 

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is 

minimally enabled, 

  

then Msk=1 if psk∈Õs(tr0), 0 otherwise. 

And Mck=1 if pck∈Õc(tr0), 0 otherwise. 

 

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.). 
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Since tc is enabled, the new marking in Äc(tc)=1 and  

has a colour of (pr1,cc1) which is inherited from (pr0,cc0). Where E(pr0,tc) - 

E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.). 

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled. 

 

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0), 

σj=(tc,tr1).  

 

Therefore 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)' 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 1

 

 

And the colour of the class token at Öc(tr1)=(prk,cck)" 

 

Since E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)),  

therefore (prk,cck)'=¬(prk,cck)" 
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Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0, 

"
ckM >0, and (prk,cck)'=¬(prk,cck)", implying inconsistency with σi=(tr0), σj=(tc,tr1) in 

the object classes. 

 

Case (II): Contradictory pair of rules between Parent Class and Child Class. 

 

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and 

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 

 

In SCCPN representation, there should exist tr0, tr1 and tc such that  

 

Σ{E(Õc(tr0),tr0)} - E(Φ)=Σ{E(Õc(tr1),tr1)} - E(φ)  

E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)) 

 

Ãc(tc)⊂Õc(tr0), Äc(tc)⊂Õc(tr1), Öc(tr0)=Öc(tr1), 

Ãs(tc)⊂Õs(tr0), Äs(tc)⊂Õs(tr1), Ös(tr0)=Ös(tr1) 

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is 

minimally enabled, 

  

then Msk=1 if psk∈Õs(tr0), 0 otherwise. 

And Mck=1 if pck∈{Õc(tr0)∩Ãc(tc)}, 0 otherwise. 

 

Since Ãs(tc)⊂Õs(tr0) and Ãc(tc)⊂Õc(tr0), tc is enabled (Definition 5.7.). 

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is 

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.). 

Since Σ{E(Õc(tr0),tr0)} - E(Φ)=Σ{E(Õc(tr1),tr1)} - E(φ), therefore tr1 is enabled. 
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As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0), 

σj=(tc,tr1).  

 

Therefore 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)' 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 1

 

 

And the colour of the class token at Öc(tr1)=(prk,cck)" 

 

Since E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)), 

therefore (prk,cck)'=¬(prk,cck)" 

 

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0, 

"
ckM >0, and (prk,cck)'=¬(prk,cck)", implying inconsistency with σi=(tr0), σj=(tc,tr1). 

 

Case(III): Contradictory chains of rules between the parent and child object classes. 
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Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and 

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 

 

In SCCPN representation, there should exists σi=(tr1,tr2,….trj) and σj =(tc,tr0) such 

that  

 

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)  

E(tr0,Öc(tr0))=¬E(trj,Öc(trj)) 

 

Ös(tr(m) )=Õs(tr(m+1)) for m=1,2,…..j-1. 

Öc(tr(m) )=Õc(tr(m+1)) for m=1,2,…..j-1. 

Õc(tr1)=Ãc(tc), Äc(tc)=Õc(tr0),  

Õs(tr1)=Ãs(tc), Äs(tc)=Õs(tr0),  

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. σi 

=(tr1,tr2,….trj) is minimally enabled, i.e., ∀m=1,2,3,….j-1, 

 

then Msk=


 ∈

otherwise

)(tÃpif cssk

0

1
 

 

And Mck=


 ∈

otherwise

)(tÃpif ccck

0

1
 

 

The execution of transition sequence, σi, gives M' s.t. ∀m=1,2,3,….j, Ös(tm)∈Ös(σi) 

 

'
skM =



 ∈

otherwise

)}(),Ö(t{Õpif isrssk

0

1 1 σ
 

 

And the colour of the class token at Öc(tj)=(prk,cck)' 
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Since Ãs(tc)=Õs(tr1) and Ãc(tc)=Õc(tr1), tc is enabled (Definition 5.7.). 

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is 

inherited from (pr0,cc0). Where E(pr1,tc) - E(Φ)=E(tc,pr0) - E(φ) (Definition 5.8.). 

Since E(Õc(tr1),tr1) - E(Φ)=E(Õc(tr0),tr0) - E(φ), therefore tr0 is enabled. 

 

Let "
ckM =δ( '

ckM ,tr0), 

 

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)" 

 

E(tr0,Öc(tr0))=¬E(trj,Öc(trj)), therefore (prk,cck)'=¬(prk,cck)" 

 

Case (IV): Self Contradictory chain of inference between the parent and child 

object classes.  

 

Proposition 7.5b.  For a given marking M0, that minimally enables transition 

sequence α, iff the HES has inconsistent rules causing self-contradictory chain of 

inference between the parent and child object classes, then ∃j, ∃k such that the 

sequence has the following properties:  

 

(i) Mi∈[M0>={M0,M1,M2,…Mi,..Mj}, 

(ii) Mj=δ(M0,α) for j>0,  

(iii) Tc∩α≠∅; 

(iv) M sk [Õ]=0, M 0
sk [Õ]>0, M j

sk [Õ]>1.  

(v) ∃(prk,cck)'∈M0
ck, ∃(prk,cck)"∈Mj

ck 

(vi) (prk,cck)'=¬(prk,cck)" 
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In SCCPN representation, there should exist α=(tr1,tr2,....tr(l-1),tc,trl,...trm) forming a 

connected path such that  

 

Õs(tr(l+1))⊆Ös(trl) for l=1,2,.....m-1, 

Õs(tr1)⊆Ös(trm). 

E(Õc(tr1),tr1)=¬E(trm,Öc(trm)) 

 

Choose M0 with a class token element (pr0,cc0)' and a state token (pr0,cs0)' s.t. 

α=(tr1,tr2,....t r(l-1),tc,trl,...tm) is minimally enabled,i.e., ∀l=1,2,....m-1,  

 

then Msk=1 if psk∈Õs(tr1), 0 otherwise. 

And Mck=1 if pck∈Õc(tr1), 0 otherwise. 

 

M 0
sk =



 =∈

otherwise

)(p),where M(tÕpif ckrssk ck

0

11 0
1

 

 

i.e. M0
sk [Õs(tr1)]=1 if psk∈Õs(tr1) 

Since Õs(tr1)⊆Ös(trm), and Mm=δ(M0,αi). Therefore the execution of transition 

sequence, α, gives Mm s.t. ∀l=1,2,....m-1. 

 

M m
sk =









∈
∈

otherwise

)}(t), Ö(t{Öpif

)(tÕpif

rmsrssk

rssk

0

1

2

1

1

 

 

And the colour of the class token at Öc(trm)=(prk,cck)" 

 

Since E(Õc(tr1),tr1)=¬E(trm,Öc(trm)) 

therefore (prk,cck)'=¬(prk,cck)" 
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Thus for psk∈Õs(tr1), M sk [Õ]=0, M 0
sk [Õ]>0, M j

sk [Õ]>1, ∃(prk,cck)'∈M0
ck, 

∃(prk,cck)"∈Mj
ck and (prk,cck)'=¬(prk,cck)", implying inconsistent rules causing self-

contradictory chain of inference between the parent and child object classes. 

 

7.3.2. Deadend   

 

The problems of deadend is not caused by any conflict in the rule set attached to the 

object hierarchy, but by the inaction of some events (or conditions). In other words, 

it only causes concerns if the execution of the deadend rule fails to achieve any goal 

state which belongs to a collection of terminating goals under a specific domain of 

inference. Consequently, in any SCCPN simulation of HES inference that 

determines its consistency, we need to achieve a finite termination upon any given 

state, yet satisfy the goal states. 

 

Let the collection of goal states be Ω, we define that, for a deadend rule, λ, ∃prk, 

such that prk∈Ös(λ), prk∈Öc(λ), and prk∉Ω and ¬∃ti such that prk∈Õs(ti) and 

prk∈Õc(ti). 

 

Proposition 7.6. Iff the rule set has inconsistent rules that involve deadend applied 

to the object hierarchy, then ∃ a marking M such that Msk=0 for ∀prk∈Ω, and ∀σj 

where M'=δ(M,σj), '
skM =0. 

 

We consider a nontrivial case where M≠[0], i.e. there exists some psj∉Ω that Msj≠0. 

 

In SCCPN representation, there should exist tr0 with some psj such that 

 

psj∈Ös(tr0) and psj∉Ω. 

 

Choose M s.t. 
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Msj=


 Ω∉∈

otherwise
 )  and  p(tÖpif sjrssj

0

1 0

 

 

Therefore, ∀psk∈Ω, Msk=0. 

 

Since ¬∃ti such that psj∈Õs(ti), ¬∃σj s.t. M'=δ(M,σj), thus σj=∅ or M'=M, i.e. 

'
skM =0 for ∀psk∈Ω, implying inconsistency with tr0 being the deadend rule in the 

object hierarchy. 

 

7.3.3. Unnecessary IF condition  

 

Proposition 7.7. For a given marking M0, that minimally enables Γ={σi,σj} for a 

nontrivial transition sequence σi, σj, iff the HES has inconsistent rules causing 

unnecessary IF conditions between the parent and child object classes, then ∃k, ∃Y 

(a step Y), such that these sequences have the following properties:  

 

(i) σi∩σj=∅; 

(ii) Tc∩σi=∅; Tc∩σj≠∅; 

(iii) M'=δ(M0,σi), M"=δ(M0,σj); 

(iv) Msk=0, '
skM >0, "

skM >0; 

(v) Mck=0, '
ckM >0, "

ckM >0; 

(vi) ∃(prk,cck)'∈M', ∃(prk,cck)"∈M"; 

(vii)∃Y, ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(  

 

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent 

Class and 

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class. 
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In SCCPN representation, there should exists tr0, try and tc such that  

 

Ãc(tc)⊆Õc(tr0), (Äc(tc)∪Öc(tr0))=Õc(try),  

Ãs(tc)⊆Õs(tr0), (Ä s(tc)∪Ös(tr0))=Õs(try),  

 

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is 

minimally enabled,  

 

then Msk=1 if psk∈Õs(tr0), 0 otherwise. 

And Mck=1 if pck∈Õc(tr0), 0 otherwise. 

 

Since Ãc(tc)⊆Õc(tr0) and Ãs(tc)⊆Õs(tr0), tc is enabled (Definition 5.7.). 

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is 

inherited from (pr0,cc0). 

 

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0), 

σj=(tc). 

 

Therefore 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

 

 

And the colour of the class token at Öc(tr0)=(prk,cck)' 

 

"
skM =



 ∈

otherwise

)}(t),Ä(t{Ãpif cscssk

0

1
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"
ckM =



 ∈

otherwise

)(tÄpif ccck

0

1
 

 

And the colour of the class token at Äc(tc)=(prk,cck)" 

 

Since (Äc(tc)∪Öc(tr0))=Õc(try) and (Äs(tc)∪Ös(tr0))=Õs(try) therefore try is enabled, 

thus ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),( . 

 

Thus, for psk∈(Äs(tc)∪Ös(tr0)), Msk=0, '
skM >0, "

skM >0, and for pck∈(Äc(tc)∪Öc(tr0)), 

Mck=0, '
ckM >0, "

ckM >0, and ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),( , implying 

inconsistent rules causing unnecessary IF conditions between the parent and child 

object classes with σi=(tr0) and σj=(tc). 

 

7.4. Consistency: Converse Case Proof 

 

7.4.1. Contradiction 

 

Given M0 which minimally enables a transition sequence σi, and ∃k, ∃σj s.t. 

σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, M'=δ(M0,σi), M"=δ(M0,σj), with Msk=0, '
skM >0, 

"
skM >0, Mck=0, '

ckM >0, "
ckM >0, and ∃(prk,cck)'∈ '

ckM , ∃(prk,cck)"∈ "
ckM  s.t. 

(prk,cck)'=¬(prk,cck)", if σi and σj have the following cases: 

 

Considering that σi and σj are nontrivial transition sequences, i.e. σi≠∅, and σj≠∅. 

  

(A). Let σi composed of a single transition tr0  

 



 154 

Since tr0 is minimally enabled in M0, ⇒ ∃(pr0,cc0)∈M0, ∃(pr0,cs0)∈M0 s.t. 

∑ >≤< 000 ),( MbtpE rr  (Definition 5.7.) where <b> is <((pr0,cc0),(pr0,cs0))>. 

 

and  

Msk=


 ∈

otherwise

tpif rssk

0

)(Õ1 0

 

 

Mck=


 ∈

otherwise

tpif rcck

0

)(Õ1 0

 

 

and M'=δ(M0,tr0), 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

 

 

therefore ⇒  ∃(prk,cck)'∈ '
ckM  

 

Since there exists another sequence, σj, the following cases can happen 

 

Case (A.I):  σj is composed of transitions (tc,tr1). 

 

As σj is enabled by M0, therefore, Ãs(tc)= Õs(tr0), Ãc(tc)=Õc(tr0), Äs(tc)=Õs(tr1) and 

Äc(tc)= Õc(tr1). 

 

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0, 

"
ckM >0, therefore, Ös(tr0)∩Ös(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅. 
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And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Ös(tr1). 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 1

 

 

therefore ⇒  ∃(prk,cck)"∈ "
ckM  

 

Since (prk,cck)'=¬(prk,cck)", therefore 

E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)).  

 

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)). This indicates a 

pair of inconsistent sequences σi=(tr0) and σj=(tc,tr1), possibly having inconsistent 

rules causing contradiction between the parent and child object classes. 

 

Case (A.II):  σj is composed of transitions (tc,tr1). 

 

As σj is enabled by M0, therefore, Ãs(tc)⊂ Õs(tr0), Ãc(tc)⊂Õc(tr0), Äs(tc)⊂Õs(tr1) and 

Äc(tc) ⊂Õc(tr1). 

 

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0, 

"
ckM >0, therefore, Ös(tr0)∩Ös(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅. 

 

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Ös(tr1). 
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"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 

 

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 1

 

 

therefore ⇒  ∃(prk,cck)"∈ "
ckM  

 

Since (prk,cck)'=¬(prk,cck)", therefore 

E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)).  

 

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)). This indicates a 

pair of inconsistent sequences σi=(tr0) and σj=(tc,tr1), possibly having inconsistent 

rules causing contradiction between the parent and child object classes. 

 

(B). Let σi composed of transitions (tr1,tr2….trj)   

 

Since σi is enabled by M0, therefore  

 

Ös(tr(m) )=Õs(tr(m+1)) for m=1,2,…..j-1, 

Öc(tr(m) )=Õc(tr(m+1)) for m=1,2,…..j-1, 

Ãc(tc)=Õc(tr1), Ãs(tc)=Õs(tr1).  

 

Let M1=δ(M0,tr(m+1)), 

 

M1
sk =



 ∈ +

otherwise

)(tÖpif r(msck

0

)}(tÕ,{1 1)r(ms)

 

 

M1
ck =



 ∈ +

otherwise
)(tÖpif )r(mcck

0

1 1
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therefore  ⇒  ∃(prk,cck)1∈M1
ck  

 

Similarly for any tm+u in σj, where u=1,2,…..n, 

 

M u
sk =



 ∈

otherwise

)(tÕ)(t),Õ(tÖpif r(m+u)s)r(m+sr(m)ssk

0

}......{1 1

 

 

M
ck

u =


 ∈ +

otherwise
)(tÖpif u)r(mcck

0

1
 

 

therefore  ⇒  ∃(prk,cck)u∈M u
ck  

Let M'=Mu  and (prk,cck)u=(prk,cck)' 

 

Case (B.I):  σj is composed of transitions (tc,tr0). 

 

As σj is enabled by M0, therefore, Ãs(tc)= Õs(tr1), Ãc(tc)=Õc(tr1), Äs(tc)=Õs(tr0) and 

Äc(tc)= Õc(tr0). 

 

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0, 

"
ckM >0, therefore, Ös(tr0)∩Ös(trj)≠∅ and Öc(tr0)∩Öc(trj)≠∅. 

 

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(trj), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Öc(trj). 

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0
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therefore ⇒  ∃(prk,cck)"∈ "
ckM  

 

Since (prk,cck)'=¬(prk,cck)", therefore 

E(trj,Öc(trj))=¬E(tr0,Öc(tr0)).  

 

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(trj,Öc(trj))=¬E(tr0,Öc(tr0)). This indicates a 

pair of inconsistent sequences σi=(tr1,tr2….trj) and σj=(tc,tr0), possibly having 

inconsistent rules causing contradiction between the parent and child object classes. 

 

Case (B.II):  σj is composed of transitions (tc,tr0). 

 

In Case (B.II) σj is enabled by Mj in stead of M0 in Case (B.I).  

 

Therefore, Given M0 which minimally enables a transition sequence σi, and ∃k, ∃σj 

s.t. σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, Mj=δ(M0,σi), M"=δ(Mj,σj), with 0
skM =1, 

j
skM =0, "

skM >0, 0
skM =1, j

ckM =0, "
ckM >0, and ∃(prk,cck)0∈ 0

ckM , ∃(prk,cck)"∈ "
ckM  

s.t. (prk,cck)0=¬(prk,cck)", and ∃trk s.t. E(trk,Öc(trk))=¬E(tr0,Öc(tr0)), if σi and σj have 

the following properties: 

 

Considering that σi and σj are nontrivial transition sequences, i.e. σi≠∅, and σj≠∅. 

 

As σj is enabled by Mj, therefore, Ãs(tc)= Ös(trj), Ãc(tc)=Öc(trj), Äs(tc)=Õs(tr0) and 

Äc(tc)= Õc(tr0). 

 

Let M"=δ(Mj,σj), and since ∃k, s.t. 0
skM =1, j

skM =0, "
skM >0, 0

skM =1, j
ckM =0, 

"
ckM >0, therefore, Ös(tr0)∩Õs(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅. 

 

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Õs(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Õc(tr1). 
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"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

 

 

therefore ⇒  ∃(prk,cck)"∈ "
ckM  

 

Since (prk,cck)0=¬(prk,cck)", therefore ∃trk s.t. E(trk,Öc(trk))=¬E(tr0,Öc(tr0)).  

 

Since Mj=δ(M0,σi), M"=δ(Mj,σj), and E(trk,Öc(trk))=¬E(tr0,Öc(tr0)). This indicates a 

pair of inconsistent sequences σi=(tr1,tr2….trj) and σj=(tc,tr0), possibly having 

inconsistent rules causing contradiction between the parent and child object classes. 

 

7.4.2. Deadend  

 

Given a marking M s.t. Msk=0 for ∀psk∈Ω, and ∀σl where M'=(M,σl), '
skM =0, if σl 

has the following cases: 

 

Assuming σl is the longest sequence that can be fired,  

 

Case (I): σl is an empty sequence 

 

Since σl=∅, ¬∃ any transition ti for some psj being marked by M, s.t. psj∈Õs(ti). 

Therefore, psj belongs to a deadend. This indicates that the rule set is inconsistent 

having problems of deadend. 

 

Case (II): σl is composed of a single transition t0. 
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Let M'=δ(M,t0), since 

 

M '
sj =



 Ω∉∈

otherwise

pand)(tÖpif sjssj

0

1 0

 

 

Therefore, '
skM =0 for ∀psk∈Ω. 

 

As σl is the longest sequence that can be fired and ¬∃ any transition ti after t0 s.t. 

psj∈ Õs(ti). Therefore, ti=∅ and psj belongs to a deadend. This indicates that the rule 

set is inconsistent having problems of deadend. 

 

Case (III): σl is composed of a transitions (t1,t2….tm). 

 

Let M'=δ(M,σl), since 

 

M '
sj =



 Ω∉∈

otherwise
pand)(Öpif sjissj

0

1 σ
 

 

Therefore, '
skM =0 for ∀psk∈Ω. 

 

As σl is the longest sequence that can be fired and ¬∃ any transition ti after σl s.t. 

psj∈ Õs(ti). Therefore, ti=∅ and psj belongs to a deadend. In fact, M is on a path 

through σl to a deadend. This indicates that the rule set is inconsistent having 

problem of deadend. 

 

7.4.3. Unnecessary IF condition  

 

Given M0 which minimally enables a transaction sequence σi, and ∃σj, ∃k, ∃Y(a step 

Y) s.t. σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, M'=δ(M0,σi), M"=δ(M0,σj), Msk=0, '
skM >0, 
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"
skM >0, Mck=0, '

ckM >0, "
ckM >0, ∃(prk,cck)'∈M', ∃(prk,cck)"∈M", ∃Y s.t. 

∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),( , if σi and σj has the following properties: 

 

Considering that σi and σj are nontrivial transition sequences, i.e. σi≠∅, and σj≠∅. 

 

Let σi composed of a single transition tr0, since tr0 is minimally enabled in M0, ⇒ 

∃(pr0,cc0)∈M0, ∃(pr0,cs0)∈M0 s.t. ∑ >≤< 000 ),( MbtpE rr  (Definition 5.7.) where 

<b> is <((pr0,cc0),(pr0,cs0))>. 

 

and  

Msk=


 ∈

otherwise

tpif rssk

0

)(Õ1 0

 

 

Mck=


 ∈

otherwise

tpif rcck

0

)(Õ1 0

 

 

and M'=δ(M0,tr0), 

 

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 

 

'
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

 

 

therefore ⇒  ∃(prk,cck)'∈ '
ckM  

 

Since there exists another sequence, σj, the following case can happen: 
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Let σj is composed of transition tc. 

 

As σj is enabled by M0, therefore, Ãs(tc)⊆ Õs(tr0), Ãc(tc)⊆Õc(tr0). 

 

Let M"=δ(M0,σj),   

 

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif cscssk

0

1
 

 

"
ckM =



 ∈

otherwise

)(tÖpif ccck

0

1
 

 

therefore ⇒  ∃(prk,cck)"∈ "
ckM  

 

Since ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),( , therefore (Äc(tc)∪Öc(tr0))=Õc(try) and 

(Äs(tc)∪Ös(tr0))=Õs(try). 

 

Since M'=δ(M0,σi), M"=δ(M0,σj) and ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),( . This 

indicates a pair of inconsistent sequences σi=tr0, and σj=tc, possibly having 

inconsistent rules causing unnecessary IF conditions between the parent and child 

object classes. 

 

7.5. Completeness: Forward Case Proof 

 

7.5.1.Unreachability 

 

The problems of completeness about a rule set containing incomplete rules applied 

to the object hierarchy might involve unreachability in terms of mutually exclusive 
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classes instantiation by some object instance. Testing for the completeness generally 

requires exhaustive search of the possible paths in the SCCPNs. 

 

For the following analysis, we assume the collection of the goal states be Ω, and any 

goal state will be treated as a deadend in SCCPN. 

 

Let the goal states that are in question be Γ⊆Ω. 

 

Proposition 7.8. Iff the rule set has incomplete rules that involve unreachability 

applied to the object hierarchy, then ∀ marking M, such that Msk=0 for prk∈Γ⊆Ω, 

and ∀σj where M'=δ(M,σj), '
skM =0. 

 

Case (I):  Mutually exclusive classes, (a rule with two or more IS-A condition 

statements in its antecedent part). 

 

Let E(Φa) be the arc expression function of the predicate IS-A member of Object 

Class A and 

Let E(Φb) be the arc expression function of the predicate IS-A member of Object 

Class B. 

 

In SCCPN representation, there should exists Γ={tr0,tr1}⊆Ω such that  

 

Õs(tr0)∩Õs(tr1)=∅, Ös(tr0)=Ös(tr1)=Ös(Γ), 

Õc(tr0)∩Õc(tr1)=∅, Öc(tr0)=Öc(tr1)=Öc(Γ), 

 

and 

 

(E(Φa),E(Φb))∈E(Õc(tr0),tr0), (E(Φa),E(Φb))∈E(Õc(tr1),tr1). 

For  tr0 to be minimally enabled, ∃(prk,cck) s.t. the arc expression  

 



 164 

E(Õc(tr0),tr0)<(prk,cck)>≤M(prk) (Definition 5.7) 

 

Since the IS-A predicate in E(Õc(tr0),tr0) cannot simultaneously bind with two values 

(i.e. IS-A member of Object Class A and IS-A member of Object Class B), 

therefore,  

 

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr0). 

 

Similarly, 

 

For  tr1 to be minimally enabled, ∃(prk,cck) s.t. the arc expression  

 

E(Õc(tr1),tr1)<(prk,cck)>≤M(prk) (Definition 5.7) 

 

Since the IS-A predicate in E(Õc(tr1),tr1) cannot simultaneously bind with two values 

(i.e. IS-A member of Object Class A and IS-A member of Object Class B), 

therefore,  

 

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr1). 

 

Thus for psk∈Ös(tr0), Msk=0 for prk∈Γ⊆Ω, and ∀σj where M'=δ(M,σj), '
skM =0 

implying incomplete rules applied to the object hierarchy involving unreachability in 

terms of mutually exclusive classes instantiation by some object instance. 

 

Case (II): Mutually exclusive classes chains. 

 

Let E(Φa) be the arc expression function of the predicate IS-A member of Object 

Class A and 

Let E(Φb) be the arc expression function of the predicate IS-A member of Object 

Class B. 
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In SCCPN representation, there should exists σi=(tr1,tr2,….trj) and σj =(tc,tr0) such 

that  

 

Ãs(ts)∩Õs(tr1)≠∅, Äs(tc)=Õs(tr0), 

Ãc(tc)∩Õc(tr1)≠∅, Äc(tc)=Õc(tr0),   

Ös(tr(m) )=Õs(tr(m+1)) for m=1,2,…..j-1, 

Öc(tr(m) )=Õc(tr(m+1)) for m=1,2,…..j-1, 

Ös(tr0)=Ös(trj), Öc(tr0)=Öc(trj), 

 

and 

 

(E(Φa),E(Φb))∈E(Õc(tr0),tr0), (E(Φa),E(Φb))∈E(Õc(trj),trj). 

 

For  tr0 to be minimally enabled, ∃(prk,cck) s.t. the arc expression  

 

E(Õc(tr0),tr0)<(prk,cck)>≤M(prk) (Definition 5.7) 

 

Since the IS-A predicate in E(Õc(tr0),tr0) cannot simultaneously bind with two values 

(i.e. IS-A member of Object Class A and IS-A member of Object Class B), 

therefore,  

 

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr0). 

 

Similarly, 

 

For  trj to be minimally enabled, ∃(prk,cck) s.t. the arc expression  

 

E(Õc(trj),trj)<(prk,cck)>≤M(p rk) (Definition 5.7) 
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Since the IS-A predicate in E(Õc(trj),trj) cannot simultaneously bind with two values 

(i.e. IS-A member of Object Class A and IS-A member of Object Class B), 

therefore,  

 

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(trj). 

 

Thus for psk∈Ös(tr0), Msk=0 for prk∈Γ⊆Ω, and ∀σj where M'=δ(M,σj), '
skM =0 

implying incomplete chain of rules applied to the object hierarchy involving 

unreachability in terms of mutually exclusive classes instantiation by some object 

instance. 

 

7.6. Completeness: Converse Case Proof 

 

7.6.1.Unreachability 

 

If ∀ marking M, Msk=0 for psk∈Γ⊆Ω, and ∀σl where M'=δ(M,σl), '
skM =0, then the 

rule set is incomplete. 

 

Choose M that asserts the input states such that Msk=0 for any psk∈Γ⊆Ω. Let any 

sequence, σl=(t1, t2, t3 … tm) where 

 

Õs(tri)⊆Ös(tr(i-1)), for i=2, 3, ….m, 

 

and let M'=δ(M,σl). 

 

Since '
skM =0 for ∀σl, therefore, ¬∃σl s.t. psk∈Γ⊆Ω. Thus psk is not reachable from 

M. 
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This is valid for any marking M that asserts any input places. Hence, Γ is not 

reachable from any input state or any sequence of transactions. This indicates that 

the rule set is incomplete, possibly having problem of unreachability in the object 

classes. 

 

7.7. Illustration of the Formal Methodology using the Personnel Selection 

Expert System 

 

The Personnel Selection Expert System described in Chapter 6 will be used here as 

an illustration of the formal methodology developed. The Selection System is 

represented by a State Controlled Coloured Petri Net shown in Figure 6.2. The rules 

are labeled R1 to R12. The inheritance relations are represented by T1 to T3. S1 to 

S7 represent the predicates of these rules. 

 

7.7.1. Subsumption 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1. Illustration of Subsumption 

State token 

Parent token 
Child token 

t 
r 0 

t 
r 1 

t 
c 

Ä s (t c )=Õ s (t r1 ) 

Ö c (t r0 )=Ö c (t r1 ) 

Ö s (t r0 )=Ö s (t r1 ) 
p 

r k 

' 
ck M = 

 
 
 ∈ 

otherwise 

t p if r c ck 

0 

) ( Ö 1 0 

"  
ck M = 

 
 
 ∈ 

otherwise 

t p if r c ck 

0 

) ( Ö 1 1 

Since E(t r0 ,Ö c (t r0 ))=E(t r1 ,Ö c (t r1 )), 

therefore (p rk ,c ck )'=(p rk ,c ck )" 
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To illustrate the application of our formal methodology, the net in Figure 7.1. are 

representing the followings: 

 

E(Õc(tr0),tr0) = IF X is a junior office staff AND X's quality of service is Good AND 

X's seniority is High. 

 

E(Φ) = X is a junior office staff. 

 

E(Õc(tr1),tr1) = IF X is a clerk AND X's quality of service is Good AND X's seniority 

is High. 

 

E(φ) = X is a clerk. 

 

tr0 is Rule 1 which states that IF X is a junior office staff AND X's quality of service 

is Good AND X's seniority is High THEN X's promotion is Yes. tr1 is Rule 2 which 

states that IF X is a clerk AND X's quality of service is Good AND X's seniority is 

High THEN X's promotion is Yes. 

 

(pr0,cc0) is a junior office staff token in Place Class A and with colour (data value) 

"quality of service is Good" is TRUE and "seniority is High" is also TRUE. 

 

(pr1,cc1) is a clerk token in Place Class A1 and with colour (data value) "quality of 

service is Good" is TRUE and "seniority is High" is also TRUE. 

 

σi = firing of tr0, σj= firing of tc,tr1.  

 

(prk,cck)' = (prk,cck)" because the slot "promotion" is this two tokens reveals that they 

have the same value, i.e. "YES". 
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Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0, 

"
ckM >0, and (prk,cck)'=(prk,cck)", implying incorrectness with σi=(tr0), σj=(tc,tr1). 

 

7.7.2. Cyclicity 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2. Illustration of Cyclicity 

 

In Figure 7.2., tr1 is Rule 12 which states that IF X is a clerk THEN X is a junior 

office staff. This is a self-reference rule. The Marking M1
sk is 2 because there are two 

state tokens deposited in the input place of tc after firing of Rule 12. i.e. 

 

M1
sk =









∈
∈

otherwise

)(tÖpif

)(tÕpif

rssk

rssk

0

1

2

1

1

 

Thus for psk ∈ Õs(tr1), Mi
sk [Õs]>0, M j

sk [Õs]>1, implying incorrectness, with i=1, 

j=1, and α=(tr1). 

   

 

State token 
Parent token 
Child token 

M 
0 
sk = 

 
 
 ∈ 

otherwise 

) (t Õ p if r s sk 

0 

1 1 

M 
0 
ck =  

 
 ∈ 

otherwise 

) (t Õ p if r c ck 

0 

1 1 

M 
1 
sk = 

 
 

 
 

 

∈ 

∈ 

otherwise 

) (t Ö p if 

) (t Õ p if 
r s sk 

r s sk 

0 

1 

2 
1 

1 

M 
1 
ck = 

 
 
 ∈ 

otherwise 

) (t Õ p if r c ck 

0 

1 1 

Thus for p  sk   ∈  Õ s (t r1 ),  M 
i 
sk [Õ s ]>0,  M 

j 
sk [Õ s ]>1, 

implying incorrectness, with i=1, j=1, and  α =(t r1 ) 
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7.7.3. Contradiction 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3. Illustration of Contradiction 

 

tr0 is Rule 5 which states that IF X is a junior office staff AND X's year of service is 

greater then Five THEN X's seniority is High. tr1 is Rule 4 which states that IF X is a 

clerk AND X's year of service is greater than Five THEN X's seniority is Not High.  

 

E(tr0,Öc(tr0)) is Rule 5's action part which states that X's seniority is "HIGH" while 

E(tr1,Öc(tr1)) is Rule 4's action part which states that X's seniority is "NOT HIGH". 

 

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0, 

"
ckM >0, and (prk,cck)'=¬(prk,cck)", implying inconsistency with σi=(tr0), σj=(tc,tr1) in 

the object classes. 

 

  

 

 

State token 
Parent token 
Child token 

Õ c (t r0 )=Ã c (t c ) 

Ä c (t c )=Õ c (t r1 ) 

Ö c (t r0 )=Ö c (t r1 ) 

E(Õ c (t r0 ),t r0 ) - E( Φ  )= 

E(Õ c (t r1 ),t r1 ) - E( φ ) 

E(t r0 ,Ö c (t r0 ))= 

¬ E(t r1 ,Ö c (t r1 )) 

' 
sk 
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 
 
 ∈ 

otherwise 

)} (t ),Ö (t {Õ p if r s r s sk 
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' 
ck 
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 
 
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otherwise 

) (t Ö p if r c ck 
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1 0 

" 
sk M = 

 
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otherwise
)} (t ),Ö (t {Õ p if r s r s sk

0 

1 1 1 

" 
ck 

M = 
 
 
 ∈ 

otherwise
) (t Ö p if r c ck 

0 

1 1 

Since E(t r0 ,Ö c (t r0 ))= ¬ E(t r1 ,Ö c (t r1 )), 

therefore (p rk ,c ck )'= ¬ (p rk ,c ck )" 
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7.7.4. Unnecessary IF Condition 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4. Illustration of Unnecessary IF condition 

 

tr0 is Rule 6 which states that IF X is a clerk AND X's knowledge of work is Not 

Good AND X's English is Not Good THEN X needs to attain training course. try is 

Rule 7 which states that IF X is a junior office staff AND X needs to attain training 

course THEN X's experience is Low.  

 

Since (Äc(tc)∪Öc(tr0))=Õc(try) and (Äs(tc)∪Ös(tr0))=Õs(try) therefore try is enabled, 

thus ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),( . 

 

Thus, for psk∈(Äs(tc)∪Ös(tr0)), Msk=0, '
skM >0, "

skM >0, and for pck∈(Äc(tc)∪Öc(tr0)), 

Mck=0, '
ckM >0, "

ckM >0, and ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),( , implying 

inconsistent rules causing unnecessary IF conditions between the parent and child 

object classes with σi=(tr0) and σj=(tc). 

  

 

State token 
Parent token 
Child token 

Ã c ( t c ) ⊆ Õ c (t  r0 ) 
Ã s ( t c ) ⊆ Õ s (t  r0 ) 
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' 
sk M = 

 
 
 ∈ 

otherwise 
)} (t ),Ö (t {Õ p if r s r s sk 
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' 
ck M = 
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otherwise 
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otherwise 

)} (t ),Ä (t {Ã p if c s c s sk 
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" 
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 
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otherwise 

) (t Ä p if c c ck 
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1 

Since ( Ä c ( t c ) ∪ Ö c (t r0 ))= Õ c (t ry ) and ( Ä s ( t c ) ∪ Ö s (t r0 ))= Õ s (t ry ) 

therefore t  ry  is enabled, thus  ∃ Y  s.t. ∑ 
∈ 

∪ >≤ < 
Y b t 

M M b t p E 
) , ( 

) " ' ( ) , ( 



 172 

7.7.5. Unreachability 

 

 

 

 

 

 

 

 

 

 

Figure 7.5. Illustration of Unreachability 

 

Rule 8 in the Personnel Selection Expert System could be represented either by tr0 or 

tr1.  E(Φa) represents IF X is a clerk and E(Φb) represents IF X is a junior office staff, 

therefore (E(Φa),E(Φb))∈E(Õc(tr0),tr0), (E(Φa),E(Φb))∈E(Õc(tr1),tr1). In either case, in 

order to fire Rule 8, both conditions should be satisfied. (i.e. 

E(Õc(tr0),tr0)<(prk,cck)>≤M(prk)). Since the IS-A predicate in E(Õc(tr0),tr0) cannot 

simultaneously bind with two values (i.e. IS-A clerk AND IS-A junior office staff), 

therefore,  

 

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr0). 

 

Similarly, 

 

For  tr1 to be minimally enabled, ∃(prk,cck) s.t. the arc expression  

 

E(Õc(tr1),tr1)<(prk,cck)>≤M(prk) 

 

State token 
Parent token 
Child token 

Õ s (t  r0 ) ∩ Õ s (t  r1 )= ∅ 

Ö s (t  r0 )=Ö s (t  r1 )=Ö s ( Γ ) 

Õ s (t  r0 ) ∩ Õ s (t  r1 )= ∅ 

j  where M'= (M, j),  ' 
sk M =0 for p sk Ö s (t r0 ) 

∀ σ j  where M'= δ (M, σ j),  
' 
sk M =0 for  p sk ∈ Ö s (t r1 ) 

t c 
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Since the IS-A predicate in E(Õc(tr1),tr1) cannot simultaneously bind with two values 

(i.e. IS-A clerk AND IS-A junior office staff), therefore,  

 

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr1). 

 

Thus for psk∈Ös(tr0), Msk=0 for prk∈Γ⊆Ω, and ∀σj where M'=δ(M,σj), '
skM =0 

implying incomplete rules applied to the object hierarchy involving unreachability in 

terms of mutually exclusive classes instantiation by some object instance. 

 

7.8. Summary 

 

A formal approach for the verification of Hybrid Expert Systems is given. 

Propositions are derived for checking the sequence of rule firings and properties 

inheritance in the object hierarchy. Based on the properties of reachability and 

colour tokens in the SCCPN, anomalies as defined in Chapter 5 can be formally 

located and detected in the model of the hybrid knowledge base. This is done 

exhaustively by minimally initiating any sequence of transitions and closely 

examining the reachability markings at each transition. The testing of any 

occurrence of alternative markings, multiple coloured tokens, deadlocks and the like 

lead to the system being verified in the end. Lastly, The Personnel Selection Expert 

System described in Chapter 6 is used as an illustration of the formal methodology 

developed.  
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CHAPTER 8. COMPLEXITY ANALYSIS OF SCCPN 

METHODOLOGY 

 

8.1. Introduction  

 

Modelling and verifying an Expert System, in particular, its knowledge base, is a 

complex process. The extent of that complexity has some readily identifiable costs. 

For instance, in a more complex system, we can anticipate a much longer time for 

testing the knowledge base, hence, a relatively high maintenance and management 

cost for the system. In addition, it is likely that the quality of the system is a function 

of this complexity. Such a problem is complicated further due to the weakness in 

human performance on complex inference tasks. As a result of these cost and quality 

issues, it is important that the complexity of any methodology developed which 

purports for modelling and verifying the behaviour of a system can be measured so 

that determinants of that complexity can be monitored and managed through further 

investigations or so. Complexity is described by (Bundy, A. 1997) as "the 

measurement of some aspect of the complexity of the current Problem State in a 

search problem. For instance, the depth of a goal is the length of the path from the 

current goal to the origin of the Search Space. Complexity measures are sometimes 

associated with the labels of nodes in a search space, especially when these are 

logical expressions describing the current goal, e.g. the depth of function nesting of 

an expression is the maximum amount of nesting in the functions in it. The size of 

an expression is the number of symbols in it. These symbols can also be weighted 

and the weights totalled". According to (Someren, M., 1997), many problems can be 

represented as an initial state, a goal state and a set of operators that define 

operations to go to new states from a given state. The states that can be reached from 

the initial state by applying the rules in all possible ways define the state space. The 

problem is then to reach the goal state from the initial state. 
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The criteria of interest for model evaluation include adequacy of representation, 

ability of the representation scheme to recognize problems correctly, the ability to 

formulate an algorithm to detect the errors, and the efficiency of the algorithms.  

 

8.2. Measuring Complexity 

 

There is substantial reason to suggest that the underlying structure of the knowledge 

base is a major component of complexity (O'Leary, D. E., 1991). In fact, the set of 

components in an Expert System (i.e. user interface, database interface, inference 

engine and knowledge base) allows for the same set of interfaces and inferences to 

be used in many different situations. Thus, complexity of the methodology for 

modelling Expert Systems comes from constructing and processing the knowledge 

base. One of the primary vehicles from which the structural nature of a component 

of knowledge can be assessed is network theory, alternatively referred to as graph 

theory. The State Controlled Coloured Petri Nets (SCCPNs) model has adapted well 

founded mathematical net theory with a number of extensions. Consequently it can 

provide a measure of the complexity of the process that involves a transformation of 

a Hybrid Expert System into a SCCPN network. 

 

The structural complexity of a knowledge base in a HES refers to the extent to 

which interaction between production rules within the object-hierarchy makes the 

process of representing the knowledge complex. This depends on a number of 

factors that could be determined as follows: 

 

8.2.1. The number of Object-Classes in the Frame Hierarchy 

 

The number of object classes and their hierarchical relationships characterizes the 

size of the Frame hierarchy. Quite a few object classes with a large number of rules 

attached to them will generate a verification task of comparable complexity to 

another employing a large number of object classes with smaller number of rules. In 

addition, although it is undesirable to introduce ambiguity to the knowledge base as 
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a result of any existing indeterminate rules, an intention to partition these rules in 

order to determine their individual possible effects may honor such practice. This, 

however, will inevitably increase the complexity of the model transformation. 

 

8.2.2. The size of the Rule Set and their Connectivity 

 

Connectivity among rules attempts to evaluate the relatedness which constitutes the 

rule chains and search paths. This connectivity is in some manner reflected by the 

ability to create partitioned subsets of the rules which are relatively but not 

completely disjoint. The SCCPN is subjected to greater effort of verification in the 

case of higher degrees of interconnection in the rule set attached to one particular 

object class family (i.e. Father, Son and grandson).  

 

The number of rules increases, the number of possible interactions between rules 

increases exponentially (Chen, Z. & Suen, C.Y., 1994), the complexity of the 

potential matches for each pattern in a rule increases and the number of possible 

combinations of factors required for testing the patterns increases exponentially. 

 

8.2.3. The Depth of Reasoning Structure 

 

The depth of the reasoning structure is characterized by the length of inference 

chains in the HES. This determines the scope of the verification task. Longer chains 

introduce more transitions, increase the computation effort for reachability in the 

representation, and makes the checking of SCCPN network a more complex task. 

 

8.2.4. The nature of Semantic Information 

 

The semantic information utilized by the verification procedures relates to the 

number of mutually exclusive sets of input facts attached to individual object token 

that govern the firing of the transition. Larger sets of such may impair the 

performance of the algorithms. On the other hand, semantic information required to 
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be passed over for any transition firing and operation may incur overheads for the 

verification process. The analysis could be further complicated when commonsense 

reasoning including deterministic, probabilistic and stochastic estimates of 

individual situations are taken into consideration. An extensive analysis that covers 

all of these situations, however, is beyond the scope of this research. Consequently, 

attention is limited to cases which are deterministic and applied to well defined sets 

of input object tokens. 

 

8.3. Complexity Analysis 

 

The complexity of verifying the anomalies in knowledge base, in the context of this 

thesis, is defined to include the effort to transform the rules and object hierarchy into 

transitions, to derive the reachability tree, to check the markings and the token 

colours for error examination. 

 

8.3.1. Transformation of Rules and Object hierarchy to SCCPN 

 

Let the Rule-based part of the HES have k rules, each with u conditions and v 

actions. It is required to create predicate transitions to match rules. There can be a 

maximum of k(u+v) predicate places representing 2k(u+v) possible colour tokens 

(depicted by the presence of the object token and the state token), and k+c predicate 

transitions representing rules where c is the extra number of transitions created as a 

result of possible indeterminate rules in the HES. It is noted that c = 0, if there exists 

none of this type of rule explicitly in the rule set. However, rules of this nature may 

exist implicitly in the knowledge base, presenting inter-related properties of 

redundancy and subsumption. 

 

Let the Frame-based part of the HES have m object classes. There can be a 

maximum of m object class places and 2m possible colour tokens (depicted by the 

presence of the object token and the state token), and (m-1) inheritance transitions.  
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The transition sequence, σ, will be represented by a n-vector where n is the number 

of transitions (predicate as well as inheritance) in the SCCPN. n is derived through 

the transformation by  

 

n = (k+c) + (m-1) 

 

Let 2p denote the number of token facts, with 2p ≤ 2k(u+v) + 2m. The total number 

of storage places, S, for the computation, therefore, will be  

 

S = 2p + n 

 

Each storage place will have a colour type, which was defined by the object class 

type. (i.e. each object class type will have different slot numbers, slot size, etc and 

therefore require a different data type for storage).    

 

More storage places will be needed if any additional transitions and operations are 

included for the SCCPN simulation. 

 

8.3.2. Derivation of Occurrence Graph 

 

The basic idea behind Occurrence Graphs is to construct a graph which has a node 

for each reachable marking and an arc for each occurring binding element. 

Obviously, such a graph may become very large, even for small SCCPNs. They may 

grow exponentially with respect to the number of independent processes, (i.e. if a 

system has n independent processes each of which can be in m states the full 

Occurrence Graphs (state space) have mn nodes (states)).  However, recent research 

(Li, X. et al., 1993; Christensen, S. & Petrucci, L., 1995; Kemper, P. 1996; 

Kondratyev, A. et at, 1996) has been taken to allow for a partial examination of a 

subportion of the reachability graph, therefore reduce the efforts in deriving possible 

solutions. The main idea of the above methods is to apply the concept of clustering / 

partition to the analysis of the Occurrence Graphs. Large systems (such as HES) 
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may consist of a set of modules. Local Properties of each module can be checked 

separately, before checking the validity of the entire system, hence reducing the 

complexity of the state space of the entire system. (e.g. A SCCPN may be divided 

formally into a set of sub-nets, each sub-net is called a module, and performs 

independent analysis). Other techniques (Jensen, K., 1995) for limiting the size of 

the Occurrence Graphs include (1) Occurrence Graphs with Equivalence Classes; (2) 

Occurrence Graphs with Symmetries; (3) Place Invariants and (4) Transition 

Invariants. 

 

However, the development of the partition algorithms, theories of sub-net analysis 

and reduction methodologies for Occurrence Graphs are beyond the scope of this 

research, therefore, we concentrate our analysis by adequately initiation of the 

sequence of transitions and closely examining the reachability markings in the full 

Occurrence Graphs.  

 

We propose the following algorithm for generating the (Occurrence Graph) 

reachability set of a SCCPN as follows: 

 

 Reachability Set = {M0}, where M0 is the initial marking 
 Reachability Graph ={} 
 UnfiredMarkingList = [M0] 
  repeat 
  select some marking M in the UnfiredMarkingList 
   for each transition t which is enabled at M 
    do  begin 
       generate marking M' which results from 
       firing t at M 
      if M' is not an element of ReachabilitySet 
      then  
      begin 
       add M' to ReachabilitySet 
       append M' to UnfiredMarkingList 
       end 
       add arc (M,T,M') to ReachabilityGraph 
      end 
  until UnfiredMarkingList is empty 
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In most automated SCCPN simulations, the first element of the UnfiredMarkingList 

is always selected, and so the reachability graph is produced in breadth-first order. 

 

In verifying the HES against the problems of correctness, consistency, and 

completeness, we use an automated computer aid for the generation of the 

reachability set. The SCCPN is initialized by placing tokens in the place and setting 

the values of data variables. The operation of the net can be investigated by the 

program either in a step by step manner or in an automatic mode. The basic idea is 

as follows: 

 

Let Matrix D represent a node with Marking M0 for the (predicate + inheritance) 

states and control states, respectively. The matrix is m rows (one for each token 

place) and by n columns (one for each transition). E.g. Given the following SCCPN 

(cf. Figure 5.1.) 

 

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

 
Figure 8.1. SCCPN for the generation of D 

 

The Matrix D of the SCCPN in Figure 8.1 is 
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   Tokens  

 From other node(s) Parent Class (1 * State token) To other node(s) 

  Child Class (1 * State token)  

  State C (1 * Parent token) 

(1* Child token) 

 

 

D represents a node of marking, and the content of this marking is described by the 

text inscription of the node. D can be linked to other nodes, and each link will 

represent the occurrence of a binding element, and the content of this binding 

element is described by the text attached to the corresponding arc. Detection of any 

form of error in the SCCPN will require the generation of a reachability tree for 

close examination. All markings that are reachable from a given marking will need 

to be stored for examination.   

 

8.3.3. Heuristic Search Method of Occurrence Graph for Particular Marking 

 

The checking of the irregularities and anomalies in HES requires exhaustively or 

heuristically an adequate initiation of the sequence of transitions and closely 

examining the reachability markings. The problems can be located through the trace 

of the sequence of transitions which may provide alternative or multiple marking 

effects. Therefore, some guided search strategy is necessary for reducing the 

computational complexity. It is essential that if we are to investigate whether a given 

marking is reachable from an initial marking, we have to construct the reachability 

tree, but the complete construction and exhaustive search are not efficient methods 

in general. Knowledge of the structure of the SCCPN can be used to limit the search 

of the reachability tree and heuristics can be used to reduce the search space. We 

purposed the follow heuristic based on the concept of clustering (Mehrotra, M., 

1991). 
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1. Put the Start Node [M0] in a list called HIS 

2. If HIS is empty, exit with failure ELSE continue 

3. Select the leftmost marking M in HIS 

4. For each transition t which is enabled at M, calculate the distance metric of 

all the enabled transitions using the formula: 

j

ji
ji

rofantecedentandriruleinliteralsgoverlappinofNo
rofantecedentandrruleinliteralsofnoTotal

rrD
.

.
),( =  

where D(ri,rj) is the distance metric 

5. generate a priority list of transitions with increasing distance (i.e. the top 

transitions will have the highest score) 

6. generate marking M' which results from firing the transitions which have the 

minimal distance in the distance metric 

7. closely examine the reachability markings in M' for detection of anomalies 

using the Propositions 7.1 to 7.8. 

8. If M' is not an element in HIS then add M' to HIS, add arc (M,t,M') to HIS 

9. Goto Step 4 

10. Until no transition is enabled in M 

 

Using the distance matrix as the evaluation function, the search algorithm for a 

particular marking changed from breadth-first search to heuristic search. Rules with 

higher scores are having larger changes of anomalies, and therefore should be 

checked first. Using the above algorithm should reduce the time to search through 

the occurrence graph for location of errors and anomalies, nevertheless, an 

exhaustively search shall still have to be done in order to guarantee an error free 

knowledge base. 

 

8.4. Comparative Performance of the Breadth-first search and Heuristic search 

algorithms for Occurrence Graphs Analysis 

 

We will use the Personnel Selection Expert System described in Chapter 6 as an 

illustration of the comparative performance of the breadth-first and heuristic search 
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algorithms for Occurrence Graphs Analysis. In breadth-first search strategy, the root 

node is expanded first, then all the nodes generated by the root node are expanded 

next, and then their successors. Breadth-first search is a systematic strategy, the time 

and memory it takes to complete a search depends on the branching factor of these 

states. For example, if the root of the search tree generates n nodes at the first level, 

each of which generates n more nodes, for a total of n2 at the second level. Each of 

these generates n more nodes at the third level, yielding n3 nodes at the third level, 

and so on. In Occurrence Graphs, since the branching factor is not constant, and it 

also allows for many-to-many relationship among the reachable nodes, therefore, we 

have to rely on computer tool such as DESIGN/CPN to generate the Occurrence 

Graphs for searching of a particular marking. Using the heuristic search algorithm 

proposed in section 8.3, we based on the distance metric to guide the generation of 

next reachable marking. Since we have twelve rules in this Personnel Selection 

Expert System, the distance metric D(ri, rj) is as follows: 

 

      i 
j 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 

R1 - 7/2 8/2 6/0 6/1 7/0 6/1 6/1 6/0 5/1 5/0 5/1 
R2 7/2 - 8/3 6/0 6/1 7/1 6/0 6/1 6/0 5/0 5/1 5/1 
R3 8/2 8/2 - 7/0 7/1 8/1 7/0 7/1 7/0 6/0 6/1 6/1 
R4 6/0 6/0 7/1 - 5/1 6/1 5/0 5/1 5/0 4/0 4/1 4/1 
R5 6/0 6/0 7/0 5/1 - 6/0 5/1 5/1 5/0 4/1 4/0 4/1 
R6 7/0 7/1 8/1 6/1 6/0 - 6/0 6/1 6/0 5/0 5/1 5/1 
R7 6/1 6/0 7/0 5/0 5/1 6/1 - 5/1 5/1 4/1 4/0 4/1 
R8 6/1 6/1 7/1 5/1 5/1 6/1 5/1 - 5/0 4/1 4/1 4/2 
R9 6/0 6/0 7/0 5/0 5/0 6/1 5/1 5/0 - 4/0 4/0 4/0 
R10 5/1 5/0 6/0 4/0 4/1 5/0 4/1 4/1 4/0 - 3/0 3/1 
R11 5/0 5/0 6/0 4/0 4/0 5/0 4/0 4/0 4/0 3/1 - 3/0 
R12 5/0 5/1 6/1 4/1 4/0 5/1 4/0 4/1 4/0 3/0 3/1 - 

 

Table 8.1. The Distance Matrix of Rule 1 to Rule 12  

The above Table 8.1. can be simplified to Table 8.2. by taking out all the value 

which is divided by zero (i.e. no relationship identified). Note that when calculating 

the Distance Matrix, we do not include the inheritance transitions, it is because this 
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inheritance transitions will always have a higher priority (compare with rules) for 

firing. (i.e. for the identification of possible anomalies among object classes)  

 

      i 
j 

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 

R1 - 3.5 4 - 6 - 6 6 - 5 - 5 
R2 3.5 - 2.7 - 6 7 - 6 - - 5 5 
R3 4 2.7 - - 7 8 - 7 - - 6 6 
R4 - - 7 - 5 6 - 5 - - 4 4 
R5 - - - 5 - - 5 5 - 4 - 4 
R6 - 7 8 6 - - - 6 - - 5 5 
R7 6 - - - 5 6 - 5 5 4 - 4 
R8 6 6 7 5 5 6 5 - - 4 4 2 
R9 - - - - - 6 5 - - - - - 
R10 5 - - - 4 - 4 4 - - - 3 
R11 - - - - - - - - - 3 - - 
R12 - 5 6 4 - 5 - 4 - - 3 - 

 

Table 8.2. The Final Distance Matrix of Rule 1 to Rule 12  

 

Therefore, when we refer to the Occurrence Graphs described in Chapter 6, the 

effort for searching anomalies are:    

 

8.4.1. Subsumption Case I (c.f. Figure 6.3b) 

 

For breadth-first search, the number of nodes generated are six, and the effort 

required for searching the problem node is equal to the total number of comparisons 

and substitutions times the number of steps for each comparison and substitution. 

(i.e. 15*630 = 4,410 (c.f. Chapter 6.3.4.1.1.)) 

 

For heuristic search, the search sequence is as follows: 

 

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input 

place Class A, and this token's slot "quality of service is Good" is TRUE and this 

token's slot "seniority is High" is also TRUE.) There are two enabled transactions 
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which are R1 and T1, given that inheritance transition always has a higher priority 

than rules, therefore, T1 is fired which generate marking M1. There are two enabled 

transitions in M1 which are R1 and R2, the distance between this two rules are: 

D(R1,R2) = 3.5 and D(R2,R1) = 3.5. Since their distances are the same, we can 

arbitrary take R1 to fire which generates marking M4. In M4, there is only one 

transition being enabled which is R2, after firing this transition, we have the marking 

M5. Since M5 is our goal, therefore, the total number of computation required is 

3*630 = 1,890 which has a 57.15% reduction of efforts compared with the breadth-

first search. 

 

8.4.2. Subsumption Case II (c.f. Figure 6.4b) 

 

For breadth-first search, the number of nodes generated are six, and the effort 

required for searching the problem node is equal to the total number of comparisons 

and substitutions times the number of steps for each comparison and substitution. 

(i.e. 9*630 = 5,670 (c.f. Chapter 6.3.4.1.2.)) 

 

For heuristic search, the search sequence is as follows: 

 

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input 

place Class A, and this token's slot "quality of service is Good" is TRUE, slot 

"seniority is High" is TRUE and slot "local citizen" is also TRUE.) There are two 

enabled transactions which are R1 and T1, given that inheritance transition always 

has a higher priority than rules, therefore, T1 is fired which generate marking M1. 

There are three enabled transitions in M1 which are R1, R2 and R3, the distance 

between this three rules are: D(R1,R2) = 3.5, D(R1,R3) = 4, D(R2,R1) = 3.5, 

D(R2,R3) = 2.7, D(R3,R1) = 4 and D(R3,R2) =2.7. Since the minimal distance is 

between R3 and R2, therefore, we may chose either R3 or R2 to be fired, and this  

generates the marking M3. In M3, there is only one transition being enabled which is 

R1, after firing this transition, we have the marking M5. Since M5 is our goal, 
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therefore, the total number of computation required is 3*630 = 1,890 which has a 

67% reduction of efforts compared with the breadth-first search. 

   

8.4.3. Cyclicity (c.f. Figure 6.5b) 

 

For breadth-first search, the number of nodes generated are fifteen, and the effort 

required for searching the problem node is equal to the total number of comparisons 

and substitutions times the number of steps for each comparison and substitution. 

(i.e. 29*630 = 18,270 (c.f. Chapter 6.3.4.1.2.)) 

 

For heuristic search, the search sequence is as follows: 

 

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input 

place Class A). There are two enabled transactions which are R10 and T1, given that 

inheritance transition always has a higher priority than rules, therefore, T1 is fired 

which generate marking M1. There are two enabled transitions in M1 which are R12 

and R10, the distance between this two rules are: D(R10,R12) = Nil and D(R12,R10) 

= 3. Therefore, we will fire R12 which generates marking M3. Since M3 is our goal, 

therefore, the total number of computation required is 2*630 = 1,260 which has a 

93% reduction of efforts compared with the breadth-first search. 

  

8.4.4. Contradiction (c.f. Figure 6.6b) 

 

For breadth-first search, the number of nodes generated are six, and the effort 

required for searching the problem node is equal to the total number of comparisons 

and substitutions times the number of steps for each comparison and substitution. 

(i.e. 7*630 = 4,410 (c.f. Chapter 6.3.4.2.1.)) 

 

For heuristic search, the search sequence is as follows: 
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Giving an initial marking of M0 (i.e. a junior office staff token deposited in input 

place Class A, this token's slot "Year of service greater than Five years" is TRUE). 

There are two enabled transactions which are R5 and T1, given that inheritance 

transition always has a higher priority than rules, therefore, T1 is fired which 

generate marking M1. There are two enabled transitions in M1 which are R4 and R5, 

the distance between this two rules are: D(R4,R5) = 5 and D(R5,R4) = 5. Since their 

distances are the same, we can arbitrary take R4 to fire which generates marking 

M3. In M3, there is only one transition being enabled which is R5, after firing this 

transition, we have the marking M5. Since M5 is our goal, therefore, the total 

number of computation required is 3*630 = 1,890 which has a 57.15% reduction of 

efforts compared with the breadth-first search. 

 

8.4.5. Unnecessary IF Condition (c.f. Figure 6.7b) 

 

For breadth-first search, the number of nodes generated are three, and the effort 

required for searching the problem node is equal to the total number of comparisons 

and substitutions times the number of steps for each comparison and substitution. 

(i.e. 2*630 = 1,260 (c.f. Chapter 6.3.4.2.2.)) 

 

For heuristic search, the search sequence is as follows: 

 

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input 

place Class A, this token's slot "knowledge of work is Not Good" is TRUE and slot 

"English is Not Good" is also TRUE). There is only one transition being enabled 

which is T1, after T1 is fired that will generate marking M1. There is only one 

enabled transition in M1 which is R6, therefore, there is no need to compare the 

distance with other rules. After firing R6, it will which generate marking M2. Since 

M2 is our goal, therefore, the total number of computation required is 2*630 = 

1,260. In this case, the effort required is the same compared with the breadth-first 

search. 
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8.4.6. Unreachability Case I (c.f. Figure 6.8b) 

 

For breadth-first search, the number of nodes generated are two, and the effort 

required for searching the problem node is equal to the total number of comparisons 

and substitutions times the number of steps for each comparison and substitution. 

(i.e. 1*630 = 630 (c.f. Chapter 6.3.4.3.1.)) 

 

For heuristic search, the search sequence is as follows: 

 

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input 

place Class A). There is only one transition being enabled which is T1, after T1 is 

fired that will generate marking M1. Since M1 is our goal, therefore, the total 

number of computation required is 1*630 = 630. In this case, the effort required is 

the same compared with the breadth-first search. 

 

8.4.7. Unreachability Case II (c.f. Figure 6.9b) 

 

For breadth-first search, the number of nodes generated are five, and the effort 

required for searching the problem node is equal to the total number of comparisons 

and substitutions times the number of steps for each comparison and substitution. 

(i.e. 6*630 = 3,780 (c.f. Chapter 6.3.4.3.1.)) 

 

For heuristic search, the search sequence is as follows: 

 

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input 

place Class A). There is only two transitions being enabled which are T1 and T2, 

since they are both inheritance transitions, we may arbitrary take T1 for firing and 

this generates marking M1. There are two transition being enabled in M1, which are 

R6 and T2, giving inheritance transition has a higher priority than rules, we chose T2 

to be fired, and this will generate marking M4. There is only one transition enabled 

in M4 which is R6, and after firing R6, this will generate marking M3. Since M3 is 
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our goal, therefore, the total number of computation required is 3*630 = 1,890. In 

this case, the effort saved is 50% compared with the breadth-first search. 

 

Based on the above calculations, we can conclude that the average number of 

computation steps saved when using the heuristic search algorithm is (57.15% + 

67% + 93% + 57.15% + 0% + 0% + 50%) / 7 = 46.33% as compared with the 

breadth-first search. 

 

8.5. Summary 

 

The analysis would not be complete without some form of performance analysis of 

the SCCPN model. It should be highlighted that the complexity issue of the SCCPN 

depends on a number of issues. These include the number of Object-Classes in the 

Frame Hierarchy; the size of the Rule Set and their Connectivity; the Depth of 

Reasoning Structure and the nature of Semantic Information; Transformation of 

Rules and Object hierarchy to SCCPN and Derivation of Occurrence Graph. Among 

these issues, the state space complexity of generation of the full Occurrence Graph is 

the most important part because a small SCCPN may generate a very large 

Occurrence Graph with exponential growth of nodes and arcs. Fortunately, recent 

research has been taken to allow for a partial examination of a subportion of the 

reachability graph, therefore reduce the efforts in deriving possible solutions. In the 

context of searching a particular marking in the SCCPN, we have developed a 

heuristic search algorithm which based on the concepts of rule clustering. The 

algorithm will shorten the time to search through an Occurrence Graph for location 

of errors and anomalies. Lastly, we used the Personnel Selection Expert System 

described in Chapter 6 as an illustration of the comparative performance of the 

breadth-first and heuristic search algorithms for Occurrence Graphs Analysis. 
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CHAPTER 9. POTENTIAL FOR EXTENSION AND 

CONCLUSION 

 

9.1. Introduction 

 

This is the final chapter of the thesis. We would like to spend some effort here to 

provide an assessment of the proposed State Controlled Coloured Petri Nets 

(SCCPNs) model and the methodology for supporting the description and 

verification of Hybrid Expert Systems. A discussion on the limitations of the 

approach and an investigation into potential opportunities for future research are 

given.  

 

9.2. An Assessment of SCCPN Methodology 

 

This research set out to provide a dynamic and a state by state analysis of a 

Hybrid Expert System in order to verify its correctness, consistency and 

completeness in a defined domain space. It recognized the importance and a need 

to search for a means of representing knowledge and its structure syntactically 

and semantically that could support and automate the processes involved in 

verification. With the development of the SCCPN model we have been able to 

simulate the effects of possible chained inference in an object hierarchy 

integrated with production rules, and considerably expand the scope of 

verification. 

 

Several constraints were introduced to simplify the verification process. First, the 

verification of Rule/Frame-based Expert Systems concentrates on the problems 

introduced by the inheritance mechanism within the object hierarchy. As a result 

of this inheritance, various forms of errors and anomalies exist which called for 

attention. The SCCPN methodology at present is designed for tackling this set of 

problems. Attention was not put on other hybrid aspects although SCCPN has the 

potential to describe more complicated structures, such as those mentioned in 

Chapter 3, e.g. rules with demons and rules with methods. 
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Secondly, a special feature of introducing state tokens to represent the states of a 

predicate is not only to increase the expressive power of the model, but also to 

allow the use of its colours as a necessary basis for verifying the knowledge base. 

This characteristic together with the colours of the object tokens are used to trap 

more subtle versions of anomalies, particularly contradiction and deadend. 

SCCPN that supports the independent use of input and output constraints and 

operations permit efficient detection of a wider set of problems and it is useful in 

locating possible errors in the knowledge base. 

 

In order to allow for greater applicability to a variety of hybridizing mechanism, 

(how different types of rules are attached to the object hierarchy), a set of 

schemes was provided in Chapter 5, so that all production rules had to be 

transformed into the appropriate specific SCCPN format. Rules that involved 

disjunction of conditions or actions needed to be decomposed into a number of 

alternative rules. This constraint requires that some effort be expanded in 

converting a rule set to the standard form before any verification should be 

attempted. 

 

Additional major features specific to this research are the capability of 

performing constant maintenance of the predicate states as well as the slot values 

of the object class instances. The former is achieved by the introduction of a self-

loop attached to an individual input place. Its significance includes an 

opportunity to update the state of the predicate. The latter is done by evaluating 

the corresponding arc expression functions, which provide the basis for dynamic 

verification of the knowledge base. 

 

It has been shown to be possible that all anomalies extensively outline in Chapter 

7 were detectable using the SCCPN methodology. This might require exhaustive 

testing of the knowledge and involve a certain degree of complexity. As such, we 

recognize the importance of developing a formal model in that it allows 

delineation between semantics, the property being proved, and the actual proof 

itself. A number of propositions were therefore derived from the principle of 

reachability markings, which provide a formal basis to give some guarantee of 

the validity of the verification process. 
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9.3. Limitation of the Research 

 

This research has a number of limitations. The most serious one relates to the 

completeness of the knowledge representation. Besides simple production rules 

and frames structures, there are other kinds of knowledge which need explicit 

scheme for their description and representation. E.g. Common Sense, Knowledge 

about how to learn from experience, Uncertainty reasoning, Non-monotonic 

reasoning, etc. These kinds of knowledge are high level knowledge whose 

representation are not yet precisely defined and formalized. Should they be better 

represented by some means other than the production rule and simple frame 

structures? If these were the case, it would be conceptually different and beyond 

the present format of SCCPN that could handle otherwise. 

 

Furthermore, the taxonomy of anomalies so defined might not be appropriate to 

cover all forms of verification problem that could arise in the knowledge base 

should the knowledge be represented using different paradigms. Extra set of 

principles and criteria would have to be defined to identify any possible 

anomalies in other schemes such as: Abduction; Case-Based Reasoning; 

Circumscription; Default Logic; Fuzzy Logic; Non-monotonic Reasoning; 

Temporal Systems and the like.    

 

Another major limitation of using SCCPN is the state space complexity of the 

Occurrence Graphs. Obviously, such a graph may become very large, even for 

small SCCPNs. They may grow exponentially with respect to the number of 

independent processes. Although recent research (Li, X. et al., 1993; Christensen, 

S. & Petrucci, L., 1995; Kemper, P. 1996; Kondratyev, A. et al, 1996) has been 

taken to allow for a partial examination of a subportion of the reachability graph, 

therefore reduce the efforts in deriving possible solutions, the development of the 

partition algorithms, theories of sub-net analysis and reduction methodologies for 

Occurrence Graphs are beyond the scope of this research. 

 

9.4. Future Research 
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For Expert Systems technology to gain wider acceptance, the ability to integrate 

it with other forms of information technology and development methods, is 

necessary. Every limitation of an Expert System presents opportunities for 

further research. Hence we would like to highlight some of the potential of the 

present SCCPN model at a conceptual level, that is worthy for future 

development and research. 

 

9.4.1.  Extension of Methodology for Modelling Hybrid Expert Systems with 

Uncertainty 

 

Imprecision plays an important role in many Expert System applications. It is 

involved in a variety of applications that are very important and potentially life 

saving. Most of the more difficult problems for which experts are available have 

a high amount of imprecision associated with them. In knowledge abstraction, 

uncertainty might be present because of noise in observation and incompleteness 

of knowledge. Thus so-called approximate, inexact, plausible reasoning methods 

are strongly needed in knowledge engineering. The ability to represent and 

reason about information with uncertainty is dependent upon the form and detail 

of the constructs of this information. A number of numerical approaches had 

been proposed in the literature (Baldwin, J. F., 1985; Buckley, J. J. et al., 1986; 

Grzymala-Busse, 1991; Durkin, J., 1994). These approaches are based on various 

kinds of theoretical calculi such as Bayesian inference, Dempster-Shafer's Belief 

theory or Zadeh's Fuzzy Set Theory. The construction of Expert System and 

other intelligent computer systems require a sophisticated mechanism for 

representing and reasoning with uncertain information. The verification of these 

Expert Systems with Uncertainty involves investigation of suitable measures for 

consistency, correctness and completeness of "uncertain" propositions. Ordinary 

and high level Petri Nets have been proposed (Chen, S. M., et al. 1990; Looney, 

C. G., 1994; Scarpelli, H. & Gomide, F., 1994b; Yeung, D. S. & Tsang, E. C. C., 

1994; Cao, T., & Sanderson, A. C., 1995) as knowledge representation 

formalisms where structural and behavioural properties of the net can be used to 

prove properties of the system being modelled or to verify the knowledge base 

integrity. These approaches consist of using the structural properties of the high 

level Petri Nets model representing a Fuzzy knowledge base to verify the 
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necessary conditions for the existence of potential conflicts. However, all these 

techniques only work with Rule-based Expert Systems (i.e. Rules with certainty 

factors; Fuzzy Rules; Rules with probabilities attachments). Research into how a 

hybrid approach of knowledge representation will affect these "uncertain" 

representations of information is necessary for future enhancement of Expert 

System technology. This requires an extension of the current definitions of 

SCCPNs to cover these "uncertain" cases.   

 

9.4.2. Extension of Methodology for Modelling Hybrid Expert Systems with 

Temporal Properties 

 

In recent years, the increasing need for reasoning about time in various areas of 

artificial intelligence applications (Allen, J. F., 1983; Berthomieu, B. & Diaz, M., 

1991; Yao, Y., 1994) requires models that can handle both qualitative and 

quantitative temporal information. These temporal qualitative relations indicated 

how two propositions related to each other in a specific time interval. (e.g. Tom 

goes to school either by Train (Proposition 1 (P1)) OR by Bus (P2). Once he 

arrives at the school, he either has breakfast (P3) AND read newspaper (P4) OR 

goes to the classroom (P5) OR plays tennis with Peter (P6)..etc). Given such 

temporal information, we want to verify the system's consistency, (e.g. Does the 

proposition P holds at certain time t? Is it possible that both temporal proposition 

P and Q hold at certain time t?) 

 

Representing these concurrent, temporal relationships in Hybrid Expert Systems 

will definitely be another area of future research.  

 

 9.4.3. Extension of Methodology for Modelling Hybrid Expert Systems with 

Case-Based Systems 

 

Access to a large mental library of past cases is what it distinguishes most 

experts from non-experts, particularly in subjects where there are no fundamental 

models. Expertise in those subjects is applied, and evolves, by generalization 

from cases or by discovery of regularities and links between cases. Any 

computing scheme that accommodates cases should therefore make it as easy as 
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possible to create, maintain and apply cases. Obviously, the validation and 

verification of these Case-based Systems are never less important that the 

traditional rule based Expert Systems. In Case-Based Expert Systems, Cases 

typically are represented using Frames, this indicates that verification approaches 

for Case-based structures could exploit the frame structure. In addition, these 

systems add solved cases to their case library, and previous solutions become 

part of their experience. This is a critical difference from Rule-based system 

where the knowledge is in the forms of production rules and are usually static. 

Errors and anomalies in a Case-Based Expert System (O'Leary, D. E. 1993) may 

include: (1) Misspelling or using different names for the same Case object 

(attributes); (2) Duplicate Cases; (3) Missing Cases attributes; (4) Cyclic 

inheritance of Cases; (5) Conflicts in cases and  (6) Problems in matching Cases.    

 

Application of our SCCPN methodology to cope with Hybrid Expert Systems 

that involves case-based reasoning seems another interesting research topic for 

the future work. 

    

9.4.4. Extension of Methodology for Modelling Hybrid Expert Systems with 

Conventional Software Systems 

 

Many real world applications are neither purely conventional nor purely 

knowledge based. A beneficial consequence of extending our SCCPN model to 

cover conventional software systems verification is that it will be able to tackle 

problems from some large-scale hybrid systems (Preece, A. D. 1995) 

(Conventional and Expert Systems integration). These may include: (1) the 

problems of hybridizing the procedural and declarative problem solving 

paradigm. (2) the integration of object-oriented programming method with rules. 

(3) other forms of hybridization namely: Blackboard reasoning, default-based 

approaches, non-monotonic reasoning, and the like.  

 

9.5. Summary 

 

An assessment of the proposed SCCPN methodology is given, it is followed by a 

discussion on the limitations of the approach. Lastly, the potential for future 
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research are suggested, these include: (1) Extension of Methodology for 

Modelling Hybrid Expert Systems with Uncertainty; (2) Extension of 

Methodology for Modelling Hybrid Expert Systems with Temporal Properties; 

(3) Extension of Methodology for Modelling Hybrid Expert Systems with Case-

Based Systems, and (4) Extension of Methodology for Modelling Hybrid Expert 

Systems with Conventional Software Systems. 
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