

FORMAL DESCRIPTION TECHNIQUES
FOR THE VERIFICATION OF

EXPERT SYSTEMS

SHIU Chi Keung Simon

Ph.D.

THE HONG KONG
POLYTECHNIC UNIVERSITY

1997

Formal Description Techniques for the

Verification of Expert Systems

Submitted by

SHIU Chi Keung Simon

M.Sc., M.Sc., Teacher Certificate

A thesis submitted in total fulfillment of the requirements for the

degree of Doctor of Philosophy

Department of Computing

Hong Kong Polytechnic University

1997

 I

STATEMENT OF AUTHORSHIP

Except where reference is made in the text of the thesis, this thesis contains no

material published elsewhere or extracted in whole or in part from a thesis

presented by me for another degree or diploma.

No other person's work has been used without due acknowledgement in the main

text of the thesis.

This thesis has not been submitted for the award of any other degree or diploma

at any other tertiary institution.

SHIU Chi Keung Simon

September 1997

 II

 ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who have assisted me and made

this thesis possible.

I am deeply indebted to my chief supervisor, Dr. James N. K. LIU, for his

invaluable guidance, helpful advice and constructive criticisms. My most sincere

appreciation is extended to my co-supervisor, Professor Daniel S. YEUNG, for

the countless discussions, suggestions and comments. Without his help, I would

not have the courage and determination to complete this work.

In particular, I would like to thank my wife, LI Mei Yee, for her love,

consideration and sacrifice she has made towards my research endeavors over the

past years. Thanks also to my son, SHIU Pak Wah Ivan, and my daughter, SHIU

Yee Shin Janna, for their patience and understanding.

Thanks also to the board of examiners who spent their time and effort in

assessing this research work. They are Prof. Y. S. LEE from the Department of

Electronic Engineering, Hong Kong Polytechnic University, Prof. K. S. Leung

from the Department of Computer Science and Engineering, Chinese University

of Hong Kong and Prof. S. S. Tseng from the Department of Computer and

Information Science, National Chiao Tung University, Taiwan.

Finally, I would also like to express my indebtedness to the Hong Kong

Polytechnic University for supporting me with the Staff Development

Programme, and to Department of Computing for providing me with excellent

research environment and facilities to complete my thesis.

 III

ABSTRACT

With increasingly complex, sophisticated and changing real-world situations, it

has been recognized over recent years that Expert Systems which combine one or

more techniques greatly increase the problem solving capability and help

overcome some of the shortcomings associated with any single technique. The

verification of these Expert Systems requires methods that could tackle the

multiple knowledge representation paradigms and integrated inference

mechanisms used. This thesis presents a formal description technique for

verifying the correctness, consistency, and completeness of Hybrid Expert

Systems (HES) that emphasizes an integration of object hierarchy, property

inheritance and production rules.

Four important research contributions arise from this investigation: (1) A formal

approach based on State Controlled Coloured Petri Nets was developed in

modelling and analyzing Hybrid Rule/Frame-based Expert Systems. (2) Errors

and anomalies due to the integration of the object-hierarchy and production rules

in HES are defined and explained. (3) A set of propositions is formulated to

verify errors and anomalies in Rule/Frame-based HES defined in (2), and (4)

Rigorous mathematical proofs of all of these propositions are developed.

The main idea of this formal technique is to convert the HES into a State

Controlled Coloured Petri Net (SCCPN) where the object hierarchy, property

inheritance and production rules are modelled as separated components in the

same SCCPN. The detection and analysis of the anomalies in the system are done

by constructing and examining the reachability tree spanned by the knowledge

inference. This provides a formal basis for automating the deduction process and

a means of verifying HES.

A complexity analysis is conducted to investigate the performance of the

methodology. The complexity includes the effort to transform the rules and

object hierarchy into places and transactions, the calculation of the size of the

Occurrence Graphs, and the time required searching such Occurrence Graphs for

 IV

anomalies. This is followed by the discussion and suggestions on the potential

and direction of the developed model for future research.

 V

TABLE OF CONTENTS

 Page

Statement of Authorship I

Acknowledgements II

Abstract III-IV

Table of Contents V-VII

List of Figures VIII-IX

List of Tables X

Chapter 1. Introduction and Motivation

1.1. Introduction 1

1.2. Motivation of the Research 2-3

1.3. Aim of the Research 4

1.4. Scope of Research 5

1.5. Contributions of Research 5

1.6. Outline of Thesis 6

1.7. Refereed Publications resulted from this Research 7-8

Chapter 2. Literature Survey and Critical Evaluation

 2.1. What is Knowledge 9

 2.2. Expert Systems 10

 2.3. Expert Systems Verification 11-15

 2.4. Major Approaches for Expert Systems Verification 16-24

 2.5. Summary 25

Chapter 3. Choice of Methodology

 3.1. Logic-Based Techniques 26

 3.2. Statistics-Based Techniques 26

 3.3. Test Cases-Based Techniques 27

 3.4. Petri Nets-Based Techniques 27-35

 3.5. Summary 35

Chapter 4. Modelling and Verification Problems in Hybrid
Rule/Frame-Based Expert Systems (HES)

 4.1. A Hybrid Expert System 36-37

4.2. Modelling HES Using State Controlled Coloured
Petri Nets (SCCPNs)

38-46

 4.3. Summary 47

 VI

Chapter 5. A Formal Methodology for Modelling Hybrid
Rule/Frame-Based HES Using State Controlled Coloured
Petri Nets

 5.1. Fundamental Principles 48-56

 5.2. Description and Properties 56-58

 5.3. Modelling HES with SCCPNs

 5.3.1. Correctness

 5.3.2. Consistency

 5.3.3. Completeness

58

59-66

66-71

71-74

 5.4. Knowledge Inference in SCCPN Modelling 74

 5.5. Summary 75

Chapter 6. An Application of the Formal Verification Method to a
Personnel Selection System

 6.1. A Personnel Selection Hybrid Expert System 76-85

6.2. Analysis of the Personnel Selection System Using
SCCPNs

85-99

6.3. Time and Space Complexity of the SCCPN
Methodology

99-109

 6.4. Summary 110

Chapter 7. Formal Description and Verification of Rule/Frame-
Based Hybrid Expert Systems

 7.1. Correctness: Forward Case Proof

 7.2. Correctness: Converse Case Proof

111-130

130-142

 7.3. Consistency: Forward Case Proof

 7.4. Consistency: Converse Case Proof

142-153

153-162

 7.5. Completeness: Forward Case Proof

 7.6. Completeness: Converse Case Proof

162-166

166-167

7.7. Illustration of the Formal Methodology using the
Personnel Selection Expert System

167-173

 7.8. Summary 173

Chapter 8. Complexity Analysis of the SCCPN Methodology

 8.1. Introduction 174

 8.2. Measuring Complexity 175-176

 8.3. Complexity Analysis 177-182

8.4. Comparative Performance of the Breadth-first Search
and Heuristic Search Algorithms for Occurrence
Graphs Analysis

182-189

 VII

 8.5. Summary 189

Chapter 9. Potential for Extension and Conclusion

 9.1. Introduction 190

 9.2. An Assessment of SCCPN Methodology 190-192

 9.3. Limitation of the Research 192

 9.4. Future Research 192-196

 9.5. Summary 196

Reference R1-R21

Reprints of Published Papers

 VIII

LIST OF FIGURES

 Page

Figure 3.1. A Petri Net. 29

Figure 4.1.a. Rule R with Inheritance (before firing) with an input
token "a" & "s" in Super Class A.

39

Figure 4.1.b. Rule R with Inheritance (after firing Inheritance T) with
an input token "a" & "s" in Super Class A.

40

Figure 4.1.c. Rule R with Inheritance (after firing both Rule R and
Inheritance T) with output token "a" & "s" in State R
and output token "a1" & "s" in Class A1. A state token
"s" also created in Super Class A.

40

Figure 4.2.a. Rule R with Demon (before firing) with an input token
"a" and a state token "s" in Super Class A.

42

Figure 4.2.b. Rule R with Demon (after firing) with output token "a"
& "s" in State R and output token "a1" & "s" in Class
A1. A state token "s" is also created in Super Class A.

43

Figure 4.3.a. Rule with Method (before firing) with an input token
"a" and a state token "s" in P1.

44

Figure 4.3.b. Rule with Method (Rule is called by the Method). The
token "a" was passed to P2 and a state token "s" was
created in P1, P2 and P3 respectively.

45

Figure 4.3.c. Rule with Method (after firing). The token "a" is in P4
and a state token "s" in P1, P2, P3 and P4 respectively.

45

Figure 4.3.d. Rule with Method (Method resumes control). The token
"a" was passed to P5. A state token "s" was
subsequently created in P1, P2, P3, P4 and P5
respectively.

46

Figure 5.1. SCCPN showing Redundancy Case I. 59

Figure 5.2. SCCPN showing Redundancy Case II. 60

Figure 5.3. SCCPN showing Subsumption Case I. 61

Figure 5.4. SCCPN showing Subsumption Case II and III. 62

Figure 5.5. SCCPN showing Ambiguity Case I. 63

Figure 5.6. SCCPN showing Ambiguity Case II. 64

Figure 5.7. SCCPN showing Circular Rule Sets Case I. 65

Figure 5.8. SCCPN showing Circular Rule Sets Case II. 66

Figure 5.9. SCCPN showing Contradiction Case I. 67

Figure 5.10. SCCPN showing Contradiction Case II. 68

Figure 5.11. SCCPN showing Contradiction Case III. 69

Figure 5.12. SCCPN showing Contradiction Case IV. 70

Figure 5.13. SCCPN showing Deadend. 70

Figure 5.14. SCCPN showing Unnecessary IF condition. 71

 IX

Figure 5.15. SCCPN showing Unreachability Case I.a. 72

Figure 5.16. SCCPN showing Unreachability Case I.b. 73

Figure 5.17. SCCPN showing Unreachability Case II. 74

Figure 6.1. The Frame Hierarchy. 76

Figure 6.2. SCCPN representation of the given HES. 83

Figure 6.3.a. SCCPN representation showing the events of
subsumption, Case I.

87

Figure 6.3.b. Reachability Graph due to the firing of R1 and R2. 88

Figure 6.4.a. SCCPN representation showing the events of
subsumption, Case II.

89

Figure 6.4.b. Reachability Graph due to the firing of R1, R2 and R3. 90

Figure 6.5.a. SCCPN representation showing the events of cyclicity. 91

Figure 6.5.b. Reachability Graph due to the firing of R10, R11 and
R12.

92

Figure 6.6.a. SCCPN representation showing the events of
contradiction.

93

Figure 6.6.b. Reachability Graph due to the firing of R4 and R5. 94

Figure 6.7.a. SCCPN representation showing the event of
unnecessary IF condition.

95

Figure 6.7.b. Reachability Graph due to the firing of R6 & R7. 96

Figure 6.8.a. SCCPN representation showing the events of
Unreachability, Case I.

97

Figure 6.8.b. Reachability Graph due to the firing of R8. 97

Figure 6.9.a. SCCPN representation showing the events of
Unreachability, Case II.

98

Figure 6.9.b. Reseachability Graph due to the firing of R6 & R9. 99

Figure 6.10. Representation of a set of markings 109

Figure 7.1. Illustration of Subsumption 167

Figure 7.2. Illustration of Cyclicity 169

Figure 7.3. Illustration of Contradiction 170

Figure 7.4. Illustration of Unnecessary IF Condition 171

Figure 7.5. Illustration of Unreachability 172

Figure 8.1. SCCPN for generation of D 180

 X

LIST OF TABLES

 Page

Table 5.1. Conceptual interpretation of HES in SCCPNs. 51

Table 6.1. A Junior Staff Frame. 76

Table 6.2. A Junior Office Staff Frame. 77-78

Table 6.3a. Input functions for the class tokens and control tokens
(T0-R4)

101

Table 6.3b. Input functions for the class tokens and control tokens
(R5-R12)

102

Table 6.4a. Output functions for the class tokens and control tokens
(T0-R4)

103

Table 6.4b. Output functions for the class tokens and control tokens
(R5-R12)

103

Table 8.1. The Distance Matrix of Rule 1 to Rule 12 183

Table 8.2. The Final Distance Matrix of Rule 1 to Rule 12 184

1

CHAPTER 1. INTRODUCTION AND MOTIVATION

1.1. Introduction

Expert Systems (ES) incorporate human expertise in computer programs to allow

these programs to perform tasks which normally involve human experts.

Showing that an ES is 'correct' is a critical task. An incorrect system may make

costly errors, or may not perform up to expectations. In either case the decisions

generated by the system may be inappropriate or wrong, if used, considerable

damage such as financial loss or human suffering may result.

Knowledge verification can be broadly defined (Gupta, U. G., 1993) as the

process of analyzing and establishing that an ES is robust, reliable, accurate,

complete, and consistent. The process of verifying a knowledge base is made up

of three main activities:

• Checking if the knowledge is complete, consistent and correct.

• Determining if the reasoning mechanism accurately and consistently

interprets and applies the knowledge in the knowledge base to solve

system problems. This process is referred to as certification. Quite

frequently, when off-the-shelf shells are used in the development

process, inference engine certification is simply assumed.

• Analyzing and grading the performance of the system by comparing it

with that of its human counterpart.

Traditionally, attention has been concentrated on using verification techniques to

tackle rule-based systems (Gupta, U. G., 1991; Gamble R. F. et al., 1994; Liu N.

K. & Dillon T., 1995; Nurrell, S. & Plant, R., 1996). However, these techniques

exhibit a limited range of applicability. They could not cope with the kind of

Hybrid Expert Systems (HES), e.g. Rule-based plus Frame-based, which many of

the current Expert Systems are being developed (Aikins, J. S., 1993; O'Keefe, R.

E. & O'Leary, D. E., 1993; Durkin, J., 1994; Vranes, S. & Stanojevic, M., 1995).

The use of this hybrid approach integrates the power of organizing data objects

2

in a class hierarchy and reasoning about the objects through user pre-defined

logical associations. This advantage accounts for many popular Expert System

development software (or shells), such as ADS, ART, EXSYS EL, KAPPA-PC,

KBMS, NEXPERT OBJECT, LEVEL5 OBJECT, PRO-KAPPA, REMIND,

which combine some sort of Frame-based representation with a Rule-based

inference engine.

The verification of these Hybrid Expert Systems requires methods that could

tackle the multiple knowledge representation paradigms and integrated inference

mechanisms used. This thesis presents a formal description technique based on

State Controlled Coloured Petri Nets for verifying the correctness, consistency,

and completeness of Hybrid Expert Systems (HES) that emphasizes an

integration of object hierarchy, property inheritance and production rules.

1.2. Motivation of the Research

There are a whole range of problems and difficulties hindering the development

of Expert Systems. Typically, the bottleneck is knowledge acquisition,

representation of surface and deep knowledge, creativity modelling, temporal

reasoning, causal and common sense reasoning, uncertainty reasoning,

combinatorial explosions, conflict resolutions, and the like. The use of large

amounts of domain knowledge to solve real world problems raises some

concerns for the creation and maintenance of such systems. (Geissman, J. R. &

Schultz, R. D., 1988; Duchessi, P. & O'Keefe, R. M., 1995). Furthermore, since

these systems tend to grow in an evolutionary manner, constant maintenance of

knowledge is necessary to ensure correct system performance. The importance of

validating and verifying Expert Systems are well documented (Gupta, U. G.,

1991, 1993; O'Keefe, R. M. & O'Leary, D. E., 1993; Coenen, F. & Bench-Capon,

T., 1993; Liu N. K. & Dillon T., 1995; Nurrell, S. & Plant, R., 1996). One of the

major criticisms of the above techniques is that none or very little consideration

is given to allow for the dynamic checking (i.e. the verification is carried out in

the process of the system reasoning (Matsumoto, K. et al., 1991; Preece, A. D.,

1996)) of Hybrid Expert Systems.

3

In a traditional pure Frame-based Expert System, reasoning is by comparing

descriptions of incoming facts with the frames in the knowledge base, and

retrieving the class frame that best matches the situation. The main inference

mechanism or strategy for applying general information to specific instances is

inheritance. This reasoning mechanism is rather limited in practical situations. In

a traditional pure Rule-based Expert System, reasoning is by firing a sequence of

rules using incoming facts. Although this method is simple and useful, complex

domain knowledge could not be represented. The use of a Hybrid Rule/Frame-

based approach integrates the power of organizing data objects in a class

hierarchy and reasoning about the objects through user pre-defined logical

associations.

A Hybrid Expert System combines multiple representation paradigms into a

single integrated environment for modelling and reasoning of complicated real

world phenomena. For a Rule- and Frame-based integration, it models the

problem domain using the concepts of Classes and Rules together. The essential

key modelling features are: Object Classes, Slot Attributes, Inheritance

Relations, Demons, Methods, Rules and Reasoning Strategies.

In order to allow for the automation of the verification of the HES process, to

tackle the mathematical problems associated with the method, and to provide

accurate detection of anomalies in the HES, a more formal approach (i.e.

methods which are based on mathematical techniques) of the HES model is

necessary. Thus, there are two major problems for HES verifications:

• Expert Systems are developed using hybrid techniques, yet very little

fundamental research work has been done for their verifications.

• A need to formalize the verification process to allow for automatic

detection of anomalies in the HES.

In view of the lacking of proper understanding within this subject, i.e. Hybrid

Expert System verification, this thesis seeks to address the issues of knowledge

description, formulation and verification in HES. It examines the problem of

4

demonstrating a hybrid knowledge base to be correct, consistent and complete in

terms of more global issues and provides a framework for verifying hybrid

knowledge based systems.

1.3. Aim of the Research

The aim of this research is to develop a formal methodology (i.e. Mathematical

Model) for specifying and verifying Hybrid Expert Systems. A broader

categorization of anomalies pertaining to knowledge verification is provided.

Representation schemes are examined for adequacy of representation, ability to

detect anomalies and at reasonable cost. The schemes adopted in this analysis are

based on the notion of State Controlled Coloured Petri Nets (SCCPNs). Predicate

transitions, object-hierarchy, inheritance relations are formulated to establish

correspondence between anomalies in the hybrid knowledge base and their

manifestation in the transformed representation. Proofs for these transitions are

derived. Algorithms are developed to detect the anomalies listed. The

methodology should exhibit the following characteristics:

• provide a graphical representation of the relationships among the object

hierarchy, object instances, methods, demons and the production rules.

• allow for the dynamic checking of HES which yields information on how the

system achieves its goals.

• provide information about the current state of transition predicates as well as

the states of the object instances.

• provide a clear semantics which allow for the formal analysis (i.e. methods

which are based on mathematical representations and proof techniques) of the

behaviour of the modelled HES.

• has the ability to maintain or update both the state of predicates and slot

values of the object instances during transition firings.

5

• has a potential to tackle situations with relatively higher complexity and

variant conditions like temporal space, probabilistic and fuzzy reasoning.

1.4. Scope of Research

This research will focus on the development of formal description techniques for

the detection of anomalies attributed to the integration of production rules with

the inheritance of object properties within the object hierarchy. If Domain

knowledge (concepts) is related by production rules and frame hierarchy, then

anomalies may arise among these knowledge (concepts) due to the existence of

two mutually independent formalism of relations. The anomalies include the

checking of the Correctness, Consistency and Completeness in Hybrid Expert

Systems.

Correctness refers to the accuracy of the hybrid knowledge base. It includes the

checking of Redundancy, Subsumption, Ambiguity and Circular rule sets that

applied to the parent object class and child object classes within the HES.

Consistency refers to the relationship between the information in the knowledge

base and the ability of the inference engine to process the knowledge base in a

consistent manner. It includes the checking of Contradiction, Deadend and

Unnecessary IF Conditions that applied to the parent object class and child object

classes within the HES. Completeness refers to the amount of knowledge built

into the knowledge base. It includes the checking of Unreachability of the HES.

1.5. Contributions of the Research

(1) A formal approach based on State Controlled Coloured Petri Nets was

developed in modelling and analyzing Hybrid Rule/Frame-based Expert

Systems. The result was published in (Shiu, S. C. K. et al., 1997;1996b)

(2) Errors and anomalies due to the integration of the object-hierarchy and

production rules in HES are defined and explained. The result was published

in (Shiu, S. C. K. et al., 1995a,b; 1996a)

6

(3) A set of propositions is formulated to verify errors and anomalies in

Rule/Frame-based HES defined in (2). Our result is to be published in a

Journal paper in the Special Issue on Intelligent Hybrid Systems of Expert

Systems with Applications.

(4) Rigorous mathematical proofs of all of these propositions are developed.

1.6. Outline of Thesis

Chapter One describes the traditional methods adopted in verifying Expert

Systems which exhibit a limited range of applicability. They could not cope with

the kind of Hybrid Expert Systems (HES), e.g. Rule-based plus Frame-based,

which many of the current Expert Systems are being developed. In view of the

lacking of proper understanding within this subject, i.e. Hybrid Expert System

verification, the motivation of this research is to address the issues of knowledge

description, formulation and verification of HES.

Chapter Two examines the issues of knowledge, Expert Systems and their

verifications. Prior works in the area of knowledge verification are reviewed and

their limitations assessed. This is used to guide the search for alternative

approaches in modelling and analyzing of HES.

Chapter Three highlights the importance of seeking a formal description

technique for modelling knowledge representations in HES. In particular,

Coloured Petri Nets paradigm is adopted as the candidate methodology to

support a formal description of the anomalies in terms of predicate calculus and

object oriented concepts.

Chapter Four introduces a methodology for modelling HES based on State

Coloured Coloured Petri Nets (SCCPNs). The general properties of a HES are

described and their corresponding representations in the SCCPNs given. A

Taxonomy of the anomalies in the HES is defined and explained.

7

Chapter Five formally presents the formulation and representation schemes for

various components in a HES using SCCPNs. The scheme derived is for the

purpose of knowledge verification.

Chapter Six applies the formal verification method to a practical personnel

selection system and illustrates the strength and potential of the methodology. An

algorithm for generating the reachability graph is provided. Through the

reachability analysis, various anomalies can be revealed in this personnel

selection system.

Chapter Seven formulates a set of propositions concerning verification in the

transformed HES. Rigorous mathematical proofs of the correctness, consistency

and completeness of HES are developed.

Chapter Eight gives a complexity analysis of the SCCPN methodology. The

evaluation criteria and assessment of the utility of the approach are addressed.

Chapter Nine discusses the findings from this thesis. Possible extensions of the

methodology include Hybrid Expert Systems involving uncertainty, temporal

knowledge, case-based reasoning and common sense reasoning are suggested as

the direction for future research work.

1.7. Publications resulted from this research

1.7.1. Refereed Journal Papers

 (1). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "Formal

Description and Verification of Hybrid Rule/Frame-based Expert

Systems," to appear in the Special Issue on Intelligent Hybrid Systems of

Expert Systems with Applications.

(2). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "Detection of

Anomalies of Hybrid Rule/Frame-based Expert Systems Using Coloured

8

Petri Nets," Australian Journal of Intelligent Information Processing

Systems, Vol. 3, No. 3, pp. 59-76, Spring, 1996.

1.7.2. Refereed Conference Papers

(3). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "Formal

Verification of the Correctness in Hybrid Expert Systems." In Proceedings

of The First International Conference on Conventional and Knowledge-

Based Intelligent Electronic Systems, KES' 97, 21st - 23rd May, 1997,

Adelaide, Australia, Vol. 2, pp. 419-428, 1997.

(4). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "An Approach

Towards the Verification of Fuzzy Hybrid Rule/Frame Based Expert

Systems". In Proceedings of ECAI-96 Workshop in Validation, Verification

and Refinement of KBS, Budapest, 12-16 August, pp. 105-113, 1996.

(5). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "An Approach

Towards the Verification of Hybrid Rule/Frame-based Expert Systems

using Coloured Petri Nets". In Proceedings of 1995 IEEE International

Conference on Systems, Man and Cybernetics, Vancouver, pp. 2257-2262,

1995.

(6). Simon C.K. Shiu, James N.K. Liu and Daniel S. Yeung, "Modelling

Hybrid Rule/Frame based Expert Systems Using Coloured Petri Nets". In

Proceedings of the 8th International Conference on Industrial &

Engineering Applications of Artificial Intelligence and Expert Systems,

Melbourne, Australia, June 6-8, pp. 525-532, 1995.

 9

CHAPTER 2. LITERATURE SURVEY AND CRITICAL

EVALUATION

2.1. What is Knowledge?

According to the Webster's New World Dictionary of the American Language,

Knowledge is: "a clear and certain perception of something; understanding;

learning; all that has been perceived or grasped by the mind and organized

information applicable to problem solving". "Knowledge encompasses the

implicit and explicit restrictions placed upon objects (entities), operations, and

relationships along with general and specific heuristics and inference procedures

involved in the situation being modeled" (Sowa, J. F., 1984). "Knowledge is an

abstract term that attempts to capture an individual's understanding of a given

subject" (Durkin, J., 1994).

One of the major research areas of Artificial Intelligence has been the study of

the nature of knowledge, it's formal properties and it's use in reasoning, planning

and interpretation. Another aspect of the research in 'knowledge' concerns the

study of particular kinds of knowledge, such as spatial, temporal, uncertain,

fuzzy or causal knowledge. A major difficulty in describing knowledge is that an

expert's knowledge is largely implicit. There is widespread agreement that the

most difficult, time consuming, and expensive task in constructing an Expert

System is extracting knowledge (e.g. in the form of production rules) from a

human expert and debugging the resulting knowledge base. If noise and/or

redundant data are present the problem is even more difficult. As Expert Systems

are developed, modelers must provide descriptions of them for many purposes.

They use some characterization in terms of properties that appear to be relevant

to the knowledge base. Initial descriptions provide a central frame of reference

allowing cooperation among designers of different parts of an Expert System.

Descriptions also play a role in the verification process. The model must be

checked for logical correctness and then implemented for compliance with a set

of criteria.

 10

However, when building an Expert System, it is impossible to capture all of the

expert's knowledge. Rather, a well-focused topic from the subject area is chosen

for modelling and representation. Cognitive psychologists (e.g. Newell, A.,

1990) have formed a number of theories to explain how humans solve problems.

These works suggest the types of knowledge humans commonly use, how they

mentally organize their organization, and how they use it efficiently to solve a

problem. According to (Durkin, J., 1994), knowledge can be classified as (1)

Procedural knowledge: this type provides direction on how to do something.

Rules, strategies, agendas and procedures, are typical type of procedural

knowledge. (2) Declarative knowledge: this type describes what is known about

a problem. This includes simple statements that are asserted to be either true or

false, a list of statements that describes some object or concept. (3) Meta-

knowledge: this type describes knowledge about knowledge. It picks other

knowledge that is best suited for solving a problem. (4) Heuristic knowledge: this

type describes a rule-of-thumb that guides the reasoning process. It is often

called shallow knowledge because it is empirical and represents the knowledge

compiled by an expert through the experience of solving past problems. If the

experts are using fundamental knowledge to solve the problem, such as

fundamental laws, functional relationships etc. this knowledge is referred to as

deep knowledge. (5) Structural knowledge: this type describes knowledge

structures. It describes an expert's overall mental model of the problem. Frames,

concepts, subconcepts and objects are typical examples of this type of

knowledge.

2.2. Expert Systems

The technology of Expert Systems is one of the few branches of Artificial

Intelligence that has transitioned from research laboratories to the world of

commercial and industrial applications. Expert Systems incorporate human

expertise in a computer program to allow these programs to perform tasks

normally requiring a human expert. An Expert System has been defined as "An

intelligent computer program that uses knowledge and inference procedures to

solve problems that are difficult enough to require significant human expertise

for their solution" (Feigenbaum, E. A., 1982). "Expert Systems are systems

 11

which are capable of offering solutions to specific problems in a given domain or

which are able to give advice, both in a way and at a level comparable to that of

experts in the field" (Lucas, P., 1991), and "A computer program designed to

model the problem-solving ability of a human expert" (Durkin, J., 1994).

The first noteworthy Expert System was DENDRAL (Buchanan, B. &

Feigenbaum, E. A., 1978). The system was designed to perform chemical

analyses of the Martian soil. The success of DENDRAL marked the beginning of

the so-called Expert System industry. Later successful systems include:

MACSYMA, INTERNIST, CASNET, MYCIN, HARPY, HEARSAY, PUFF,

PROSPECTOR and XCON. Starting from the 1980s, the interest in the field

gave birth to a large number of companies that marketed Expert System

development software – Expert System Shells. Today, Expert Systems have

reached the stage where they are implemented and used in a wide variety of

organizations and industries, a selection of operational Expert Systems in US,

Europe, Canada and the Far East can be found in (Liebowitz, J., 1991; Zarri, G.

P., 1991; Stachowitz, R. A. & Chang, C. L., 1991; Lee, J. K. et al., 1991).

A significant bottleneck that is frequently encountered in the use and application

of Expert Systems technology is the lack of a rigorous and unified framework for

testing and verifying the correctness, consistency and completeness of the Expert

Systems. An incorrect ES may make costly errors, or may not perform up to

expectations, may result in lawsuits, and may cause Expert Systems to be viewed

as a non-viable technology for critical applications (Brown, D. E. & Pomykalski,

J., 1991).

2.3. Expert Systems Verification

There has been an explosion of activity in the areas of Validation and

Verification (V&V) of Expert Systems over the past 10 years. For example, one

of the longest sequences of ongoing workshops at the AAAI (American

Association for Artificial Intelligence) meeting has been the Workshop on

Verification, Validation and Testing of Intelligent Systems. The first five

workshops occurred from 1988-1992. The IJCAI (International Joint Conference

 12

on Artificial Intelligence) has had workshops on V&V since 1989. Furthermore,

the European Conference on AI (ECAI) has had a number of workshops on

V&V. Special Issue on Verification and Validation of Expert Systems had

appeared in a number of Journals: International Journal of Human-Computer

Studies, Vol. 44, 1996; International Journal of Intelligent Systems, Vol. 9, No.

8, 1994; Internal Journal of Expert Systems, Vol. 6, No. 3, 1993 and Expert

Systems with Applications, Vol. 1, No. 3, 1990 and Vol. 8, No. 3, 1995. Large

projects of Validation and Verification are funded by agencies including NASA,

DARPA, and the European Community's ESPRIT program, such as RCP (Suwa,

M. et al., 1982), CHECK (Nguyen, T. A. et al., 1985), ESC (Cragun, B. J. &

Steudel, H. J., 1987), COVADIS (Rousset, M. C., 1988), EVA (Chang, C. L. et

al., 1990), KB-REDUCER (Ginsberg, A., 1988), COVER (Preece, A. D., 1989),

SACCO (Laurent, J. P. & Ayel, M., 1989), NASA MMU-FDIR (Culbert, C.,

1994), VALID (Meseguer, P., 1994), JIPDEC (Terano, T., 1994), SYCOJET and

SACCO (Ayel, M & Vignollet, L., 1994).

This interest has driven from the need to test the large number of Expert Systems

that have been developed since the mid-1980s. It also has derived from the

increasing role that intelligent systems are taking in critical situations, such as

medicine and defense. The role and importance of verifying Expert Systems is

well documented (Gupta, U. G., 1991, 1993; O'Keefe, R. M. & O'Leary, D. E.,

1993; Coenen F. & Bench-Capon, T., 1993; Liu N. K. & Dillon T., 1995;

Nurrell, S. & Plant, R., 1996). While there is controversy over how to define the

terms verification and validation, there is general consensus that validation refers

to the process of building the right system (that is, substantiating that a system

performs with an acceptable level of accuracy), while verification refers to the

process of building the system right (that is, substantiating that a system correctly

implements its specifications). (Nguyen T. A. et al., 1987; Preece, A. D., 1991;

O'Keefe, R. E. & O'Leary, D. E., 1993).

Typically, Expert Systems verification approaches are based upon the concept of

an anomaly, where an anomaly is an abuse or unusual use of the knowledge

representation scheme. An anomaly can be considered a potential error – it may

be an actual error that needs correcting, or may alternatively be intended.

 13

Considerable research has been done on identifying rule-base anomalies (Gupta,

U. G., 1991; Gamble R. F. et al., 1994; Liu N. K. & Dillon T., 1995; Nurrell, S.

& Plant, R., 1996), with the result that rule anomalies are now quite well

understood. These may include

a). Correctness

• Redundancy: Identical or chained rules succeed in the same

situation and have some common results.

• Subsumption: Two rules have the same results but one

contains additional constraints on the situations in which it

will succeed.

• Ambiguity: Indeterminate rules.

• Cyclicity: Circular rules (i.e. Without a satisfactory

terminating condition.

b). Consistency

• Contradiction: Conflicting rules (i.e. Two sequences of rules

offering conflicting results).

• Deadend: Rules which are executed and no other rules can

succeed them.

c). Completeness

• Unreachability: Rules whose conditions can never be satisfied.

• Omission: Missing rules.

Although there are comparatively less research work done on verifying Frame-

based Expert Systems, both (O'Keefe, R. E. & O'Leary, D. E., 1993) and

(Coenen, F. & Bench-Capon, T., 1993) pointed out that increasingly,

implemented Expert Systems employed some variation of object-oriented

methods to store attributes and procedural attachments and provide inheritance.

They defined the typical anomalies for a Frame-based Expert System are:

• Redundancy, (e.g. A slot or frame is redundant if it is not used

to establish anything that the system is designed to address).

• Missing slots and Frames.

 14

• Misplaced Slots and Frames, (e.g. given the property of

inheritance, the location of a slot in a frame hierarchy can be

highly significant).

• Duplication, (e.g. Duplicated slots).

• Inconsistency, (e.g. There exists a possible set of facts that

would allow an entity to be instantiated to two different

frames).

• Incompleteness, (e.g. There exists a possible set of facts that

an entity could not be instantiated to a frame).

The earliest references to activities designed to ensure acceptable knowledge

base system quality can be traced to efforts on the MYCIN project (Shortiliffe, E.

H., 1976). Some of these efforts were aimed to fix spelling errors, checks that

rules are semantically and syntactically correct through pairwise rule

comparison, and to some extent points out potential erroneous interactions

among any two rules. With greater acceptance of knowledge base systems as

viable solutions for a specific range of problems, the need for more formal

mechanisms to assure knowledge based system quality assumed greater

importance. Independent research streams addressing the problems of

completeness and consistency of the domain knowledge were now identifiable.

Strategies include the use of Normal Form Approach (Charles, E., 1991);

Decision Table Methods (Suwa, M. et al., 1982; Nguyen, T. A. et al., 1985);

Incidence Matrix Method (Landauer, C., 1990; Agarwal, R. & Tanniru, M.,

1991); Knowledge Base Reduction (Ginsberg, A., 1987); Generic Rule Systems

(Chang, C. L. et al., 1990; Stachowitz, R. A. & Chang, C. L., 1988; Stachowitz,

R. A. & Combs, J. B., 1987; Preece, A. D. & Shinghal, R., 1991a and 1991b);

Bayesian Approach (O'Keefe, R. E. & O'Leary, D. E., 1993; O'Leary, D.E.,

1995); Statistical Investigations (Landauer, C., 1990; O'Leary, D. E., 1988a);

Rule Clustering (Jacob, R. J. K. & Forscher, J. N., 1991; Mehrotra, M., 1991);

Using Test Cases, (Cuda, T. V. & Dolan, C. P., 1991) and Petri-Net Systems

(Liu, N. K., 1996, 1995, 1993, 1991; Wu, C. H. & Lee S. J., 1995; Scarpelli, H &

Gomide, F., 1994a, 1994b; Yao, Y., 1994; Zhang, D. & Nguyen, D., 1994;

Nazareth, D. L., 1993; Agarwal, R. & Tanniru, M., 1992; Meseguer, P., 1990).

 15

In modelling studies, nobody solves the problem - rather, everybody solves the

model of the problem. Since an Expert System represents human reasoning and

knowledge, we must justify its representation level through some kinds of

checking and testing, basically, the verification. While 'verification' and

'validation' might have separate definitions, we can derive the maximum benefit

by using them synergistically treating both as an integrated definition.

In this thesis, the process of verification involves the checking of correctness,

consistency and completeness in Hybrid Expert Systems. The approach adopted

by this research illustrates the use of dynamic analysis that involves the

execution of the system using a variety of inputs and scrutiny of the output for

correct behavior. In general, correctness refers to the accuracy of the knowledge

in the knowledge base. Consistency refers to the relationship between the

information in the knowledge base and the ability of the inference engine to

process the knowledge base in a consistent manner. It includes the checking for

and reporting of built-in discrepancies, ambiguities, and redundancies in the

contents of the knowledge base. Completeness refers to the amount of knowledge

built into the knowledge base. It means that a knowledge base is prepared to

answer all possible situations that could arise within its domain. It is hence one

measure of robustness. Completeness checking is a debugging aid which finds

logical cases that have not been considered, in other words, missing knowledge.

As the input parameters increase, the potential number of cases increases

exponentially, resulting in great human difficulty determining which situations

have not been considered.

As such the verification of an Expert System attempts to show that the software

programs of the system are correct in relation to the criteria. Verification tries to

prove this correctness by formal means, whose correct application may again be

examined by formal means. This provides greater reliability of the statement as

to the correctness of a system than can be achieved by other, non-formally

controllable validation means. In an effort to preclude confusion of other

definition, verification in an Expert System will be constructed to be the

demonstration of logical correctness, consistency, and completeness of the

 16

knowledge base. The view that verification is a process of ensuring these logical

qualities does not necessarily imply enforcement of semantically correct

performance. It should also be stressed that these qualities are not restricted to

the theorem proving usage of the construct.

2.4 Major Approaches for Expert Systems Verification

2.4.1. Normal Form Approach

(Charles, E., 1991) considered that knowledge based systems can be checked at

the clausal level. The rules in an ES are translated into clausal form using logical

equivalence. The most common types of clausal forms are Disjunctive Normal

Form (DNF) and Conjunctive Normal Form (CNF). Checking for anomalies

requires comparing the individual clauses. E.g.

 Rule 1: IF B OR C THEN A

 Rule 2: IF (B AND D) OR E THEN A

These then translate into the following clauses:

 Clause 1: B ⇒A

 Clause 2: C ⇒A

 Clause 3: B∧D ⇒A

 Clause: 4: E ⇒A

Here clause 1 subsumes clause 3. Meta-rules can be used to identity subsumed

clauses, e.g. A clause is subsumed by another if all literals in the second clause

are also contained in the first, i.e. a clause (A∧B∧C) will be subsumed by a

clause (A∧B). If all the clauses derived from a rule are eliminated then the rule is

declared to be redundant. If only some clauses are eliminated then the rule is

declared to contain redundant premises or conclusions. Although this Normal

Form approach is quite straightforward, the decision of how to resolve anomalies

detected is based on the view as to how the rule-base should be structured

together with expert view of the domain. Another problem of this approach is its

inability to deal with complicated Hybrid Expert Systems.

2.4.2. Decision Table Methods

 17

A decision table is a tabular representation of a procedural decision situation,

where the state of a number of conditions determines the execution of a set of

actions (Coenen, F. & Bench-Capon, T., 1993). Conditions are given along the

X-axis and actions along the Y-axis. The aim is to demonstrate the results of an

exhaustive set of mutually exclusive combinations of conditions. More

succinctly, decision tables can be said to be a method of organizing and

documenting logic in a manner that allows easy inspection and analysis. This

approach, widely used in conventional software specification to determine the

effect of conditional statements, has been used to facilitate the testing of a set of

rules for conditions of ambiguity redundancy and completeness (Cragen, B. J. &

Steudel, H. J., 1987; Vanthienen, J., 1991). A number of variations on the

decision table approach have also been developed, examples include Suwa's rule

checking program (Suwa, M. et al., 1982) and Nguyen's CHECK (Nguyen, T. A.

et al., 1985).

The main idea of decision table techniques is as follows:

• Separate rules into sub-tables so they have logical isolation from other

rules i.e. the rules in the set have at least one condition (attribute) in

common, and no other rules uses that attribute.

• Further separate the sub-table so that no rule in a sub-table allocates

the value for a condition in another rule in the same table.

• A master table is created to display all possible combinations for

condition parameters and resulting action parameters.

• The master table is used to check for conflicts, redundancies,

subsumptions and missing rules. (e.g. A missing rule is identified if

there is a possible combination of values of attributes appear in the

antecedent set but no corresponding output action.)

The problem of decision table techniques is that in any realistically sized

application the table will grow to unmanageable proportions unless some form of

partitioning is implemented whereby only a finite number of condition-action

 18

combinations need be considered. A further problem of decision table techniques

is that only static checks are involved, i.e. no consideration is given to dynamic

checking.

2.4.3. Incidence Matrix Method

The incidence matrix method of Expert System verification and validation

involves the construction of matrices to determine the number of rules containing

a certain variable or combination of variables or the number of variables

common to a set of rules. A number of knowledge base system verification and

validation systems exist that are based on the development of incidence matrices

(Landauer, C., 1990; Agarwal, R. & Tanniru, M., 1991). Structurally an

incidence matrix is very similar to a transposed decision table (i.e. Conditions are

given along the Y-axis and Actions along the X-axis).

The main idea of incidence matrix technique is as follows:

• Convert the rules into a incidence matrix by

1. Assign negative numbers to possible values for attributes in

the antecedent of the rules.

2. Assign positive numbers to possible values for attributes in the

consequent of the rules.

3. Assign zero to attributes not appear in either antecedent or

consequent of the rules.

E.g. The incidence matrix of the following rules is:

Rule 1: IF A=1 AND B=1 THEN C=1

Rule 2: IF A=2 THEN C=2

 A=1, A=2, B=1, C=1, C=2

Rule 1 -1 0 -1 1 0

 Rule 2 0 -1 0 0 1

 19

 = 







−

−−
10010

01101

• Multiply the incidence matrix by the transpose of itself. The resulting

matrix shows the common elements contained in the rules in the

knowledge base.

• If a rule (e.g. Rule X) does not share an element with one other rule in

the knowledge base (KB), we can consider it to be redundant. (i.e. If

we multiply the incidence matrix of the knowledge base (KB) with

the transpose of the incidence matrix for the rule (Rule X), the

resulting matrix contains only zeroes).

• Similar steps as above can also check other anomalies such as

subsumption and incompleteness.

The problem of incidence matrix techniques is very similar to decision table

techniques, i.e. any realistically sized application the matrix will grow to

unmanageable proportions unless some form of partitioning is implemented

whereby only a finite number of condition-action combinations need be

considered. A further problem of incidence matrix techniques is that only static

checks are involved (i.e. no consideration is given to dynamic checking).

2.4.4. Knowledge Base Reduction Systems

The concept of knowledge base reduction, as advocated by (Ginsberg, A., 1987)

is based upon ideas concerned with solving problems associated with truth

maintenance as advanced by de Kleer amongst others, particularly those concepts

underlying de Kleer's Assumption-Base Truth Maintenance System (ATMS) (de

Kleer, J., 1986). Ginsbery defines KB Reduction as:

"A technique whereby for every assertion H that a KB can make one has

calculated all possible logically independent and minimal sets of inputs

under which the KB will be led to assert H."

 20

The technique requires that the rules in a KB form a hierarchical network that

can be partitioned into levels starting at the leaf nodes. Labels are then computed

for every hypothesis and default hypothesis in the KB. A hypothesis is any literal

in the consequent of a rule and default hypothesis is any literal in the antecedent

of a rule that negates a hypothesis. A label is thus the set of all minimal logically

consistent inputs to establish a hypothesis. This set of inputs is referred to as an

environment and the individual inputs as findings. The latter are defined as

antecedent literals that are not negated in the consequent of any rule. By

comparing labels we can then identify anomalies such as inconsistency,

redundancy, auxiliary rules and subsumptions. For example, consider the

following four rules:

 Rule 1: IF P OR Q THEN R

 Rule 2: IF A THEN B

 Rule 3: IF B AND R THEN S

 Rule 4: IF NOT S AND C THEN T

 Findings: P, Q, A, C

 Hypotheses: R, B, S, T

 Default Hypothesis: ¬S

 The labels are then:

 Label R: P∨Q

 Label B: A

 Label S: (A∧P)∨(A∧Q)

 Label T: ¬A∧C∨(¬P∧¬Q∧C)

 Label ¬S: ¬A∨(¬P∧¬Q∧C)

If the rule label R consists solely of inconsistent environments (e.g. P∧¬P) the

rule R can be eliminated because it can never be fired. If the rule label is implied

by the current partial label of H, (e.g. Every environment of H is a super-set of

some environment in the rule label of R) this may suggest the existence of a

subsumed rule.

 21

The basic advantage of the KB reduction is its ability to treat multiple, mutually

contradictory, states at once. In addition, it has an advantage when dealing with

problems that require many solutions, since it avoids all dependency directed

backtracking and context switching. The advantage of the KB reduction is less

clear when there is only one solution. It all depends on how much dependency-

directed backtracking is required to find the single solution. The more there are,

the better the KB reduction is likely to be. For some problems with many

solutions, the basic KB reduction may contribute to inefficiency because all

solutions will be explored when only one or a few may be necessary.

2.4.5. Generic Rule Systems

Generic rule systems are designed to allow knowledge based systems, using any

representation, to be verified and validated by first translating the rules or frames

into a generic representation. Two outstanding examples are the EVA (Chang, C.

L. et al., 1990; Stachowitz, R. A. & Chang, C. L., 1988; Stachowitz, R. A. &

Combs, J. B., 1987) and COVER (Preece, A. D. & Shinghal, R., 1991a and

1991b). EVA is written in PROLOG and consists of a wide range of validation

tools that enable the user to check the redundancy, consistency, completeness

and correctness of a KBS. EVA can be viewed as a metashell consisting of a

unifying architecture that uses a single inference strategy, a single meta-KB and

a common language for specifying requirements, constraints and models for

domain knowledge. This makes EVA independent of any specific shell. COVER

is implemented in PROLOG and C, and runs on SUN workstations. COVER

checks for a number of types of anomaly such as deficiency, ambivalence,

redundancy and circularity.

The major criticism of using Generic Rule Systems is that specific languages

used in particular Expert System shells must be translated into this generic form,

which is not a trivial task.

2.4.6. Bayesian Approach

 22

In systems which attempt to measure uncertainly or strength of association, using

certainty factors, Bayesian probabilities or any other method, it is also important

to verify that the weights are consistent, complete, correct and not redundant.

(O'Keefe, R. E. & O'Leary, D. E., 1993; O'Leary, D. E. 1995). This can be done

by ensuring that each rule that is supposed to have a weight does have one and

that the weights are developed in concert with the theory on which they are

based. For example, given the following rule:

 Rule 1: IF E THEN H (to degree S, N)

 where S and N are numeric values that represent the strength of

association between E and H. S is a sufficiency factor, since a large value

of S means that a high probability for E is sufficient to produce a high

probability for H, and N is a necessity factor, since a small value of N

indicates that a high probability of E is necessary to produce a high

probability of H. S and N can be specified directly, or they can be

developed by establishing the likelihood ratios. The relationships between

these ratios could take any of a number of functional forms, including

linear, quadratic, etc. Anomalies exist if these are violated.

Finding anomalies in the weights in an ES is a process that has received limited

attention, probably due to the limited number of implemented ES that make

extensive use of uncertainty measures.

2.4.7. Statistical Investigations

Statistical methods can be a useful static or dynamic verification test. (Landauer,

C., 1990; O'Leary, D. E., 1988a) suggest that various aspects of rules, such as

attributes and conclusions, be analyzed statistically as part of the verification

process. This can be done statically or dynamically. The frequency that rules are

fired or paths are traversed can be statistically analysis to reveal some anomalies.

For example, a priori, it may be expected that a particular rule or sequence of

rules should fire frequently. If analysis of actual or simulated use of the system

provides data that indicates that this is not the case, then it would be appropriate

 23

to examine those rules in more detail. In applying the statistical technique, the

biggest problem is the identification of criteria for analysis. This may require

expert's input, again, it is time consuming and error prone.

2.4.8. Rule Clustering

Grouping rules can be performed by: (1) measuring the distance between two

rules based on their relatedness, and (2) clustering rules with a minimum

distance. Rule grouping has been advocated for improving the modularity of rule

bases, consequently enhancing their maintainability (Jacob, R. J. K. & Forscher,

J. N., 1991; Mehrotra, M., 1991). In terms of knowledge base verification, by

decomposing the rule base into a number of meaningful units, the pair-wise

comparisons among rules within the groups can be minimized. The main idea is

as follows:

• Calculate the distance metric between rules using the formula

ji

ji
ji

rofantecedentandrofconsequentinliteralsgoverlappinofNo

rofantecedentandrofconsequentinliteralsofnoTotal
rrD

.

.
),(=

where D(ri,rj) is the distance metric

• Rules are clustered with a minimum distance

• Construct a rule connection graph in each cluster of rule sets

• Represent the rule sets using adjacent matrix

• Apply pair-wise comparisons and detect for anomalies

The advantage of this method is the reduction of the total number of pair-wise

comparisons with the assumption that errors will occur between pairs or limited

sets of rules. Consequently, this approach fails to recognize that some knowledge

systems are not simple classification systems, but could involve a network of

inferences, and errors in chained inference are a definite possibility, even if

pairwise comparisons indicate no errors.

2.4.9. Using Test Cases

 24

Using test cases may be considered as an informal method, however, some

authors (Cuda, T. V. & Dolan, C. D., 1991) claim that many of the properties

checked by formal means may be better dealt with by relatively informal

techniques based on a particular method of constructing a knowledge base. A test

case consists of a set of inputs for a particular problem and the correct outputs.

The knowledge base is given the inputs of a test case, and the outputs it

generated are checked against the known correct outputs. A test case descriptor

allows a possible range of values to be entered for each input parameter and then

forms cases by taking the cross product.

An unfulfillable goal is detected if, as a result of running the test cases a goal

does not have a value. Unreachable attribute values and if-conditions are detected

in a similar way. Illegal input sets are identified by presenting the expert with

input sets produced by the test case descriptors. Illegal output sets are checked

for by running the widest possible range of test cases and checking the system's

output against them. Although using test cases is straightforward and easy to use,

it requires expert's evaluation and interpretation of the tests' results. Again, it is

time consuming and error prone.

2.4.10. Petri-Net Systems

Suggestions for the use of Petri Nets (Liu, N. K., 1996, 1995, 1993, 1991; Wu, C.

H. & Lee S. J., 1995; Scarpelli, H & Gomide, F., 1994a, 1994b; Yao, Y., 1994;

Zhang, D. & Nguyen, D., 1994; Nazareth, D. L., 1993; Agarwal, R. & Tanniru,

M., 1992; Meseguer, P., 1990) to model the interaction and temporal

relationships between individual events represented in production-based Expert

Systems appear promising. The model's behaviour can be expressed in Algebraic

form, thus supplying the basis for automating algorithms, capable of proving

properties of the modelled system.

Petri-net models are abstract, formal representations of information flow. They

describe the input/output relationship between objects using a graphical

representation. Using Petri nets for verification purposes, each rule is translated

into a transition by allocating a place to each condition and each action in the

 25

rule. The detection and analysis of the anomalies in the system are done by

constructing and examining the reachability tree spanned by the knowledge

inference. A more detailed description and evaluation of Petri Nets systems as

the appropriate methodology for this research project will be discussed in the

next Chapter.

2.5. Summary

A number of issues about the description and verification of knowledge being

applied in Expert Systems has been discussed. To obtain a conceptual basis for

the theme of verification in this thesis, we have defined the process of

verification as the checking of the appropriateness of a model. This involves the

checking of correctness, consistency and completeness in Expert Systems. A

number of major approaches to the verification of Expert Systems have been

reviewed. These include the use of Normal Form Approach, Decision Table

Methods, Incidence Matrix Method, Knowledge Base Reduction, Generic Rule

Systems, Bayesian Approach, Statistical Investigations, Rule Clustering, Using

Test Cases, and Petri-Net Systems. However, these techniques exhibit a limited

range of applicability. They could not cope with the kind of Hybrid Expert

Systems (HES), e.g. Rule-based plus Frame-based, which many of the current

Expert Systems are being developed. The verification of these Hybrid Expert

Systems requires methods that could tackle the multiple knowledge

representation paradigms and integrated inference mechanisms used.

 26

CHAPTER 3. CHOICE OF METHODOLOGY

3.1. Logic-based Techniques

This set of techniques includes the use of Normal Form Approach (Charles, E.,

1991); Decision Table Methods (Suwa, M. et al., 1982; Nguyen, T. A. et al., 1985);

Incidence Matrix Method (Landauer, C., 1990; Agarwal, R. & Tanniru, M., 1991);

Knowledge Base Reduction (Ginsberg, A., 1987); Generic Rule Systems (Chang, C.

L. et al., 1990; Stachowitz, R. A. & Chang, C. L., 1988; Stachowitz, R. A. & Combs,

J. B., 1987; Preece, A. D. & Shinghal, R., 1991a and 1991b). The major problem of

logic-base technique is that it does not provide explicit and complete

interrelationship of knowledge structure. Therefore, it cannot reflect a network of

possible inference in a knowledge base. Consequently, anomalies due to any

semantic gap will unlikely be detected and verified. Furthermore, logic-based

techniques is incapable of supporting the investigation of any concurrent and

dynamic behaviour exhibiting in the knowledge systems. Lastly, logic-based

techniques cannot support the descriptions of complex data types such as object-

oriented concepts.

3.2. Statistics-based Techniques

This set of techniques includes the use of the Bayesian Approach (O'Keefe, R. E. &

O'Leary, D. E., 1993; O'Leary, D. E., 1995); Statistical Investigations (Landauer, C.,

1990; O'Leary, D. E., 1988a); Rule Clustering (Jacob, R. J. K. & Forscher, J. N.,

1991; Mehrotra, M., 1991). In systems that attempt to measure uncertainty or

strength of association, statistical methods can be a useful static or dynamic

verification test. Nevertheless, these techniques employ meta-knowledge from the

domain to examine the statistical results from the tests. Thus, it is not easy to

identify a generic approach in representing anomalies based on statistics.

Furthermore, the assumptions made when carrying out the statistics has to be

examined together with the results. Finally, this kind of techniques is only good at

 27

proving 'the system is good as long as not proven bad'. The correctness, consistency

and completeness of the system cannot be formally established.

3.3. Test Cases-based Techniques

This set of techniques mainly use Test Cases (Cuda, T. V. & Dolan, C. P., 1991).

The problems of using test cases includes: (1) Difficulty in establishing criteria for

testing; (2) Difficulty in comparing results generated from the test cases; (3) How to

maintain Objectivity; (4) How to determine the reliability of the Expert Systems if

only test cases are used, and (5) The availability of the test cases. Another major

problem with using test cases is an assumption that the expert against which the

system is being compared is always correct, i.e. if the system differs from the expert

then it is 'wrong'. Using synthetic cases is dangerous, and demands considerable

objectivity on behalf of the developers. Finally, there is always a temptation to make

the test cases reflect the known strengths of the system.

3.4. Petri Nets-based Techniques

Petri Nets based techniques (Liu, N. K., 1996, 1995, 1993, 1991; Wu, C. H. & Lee

S. J., 1995; Jensen K., 1995, 1996; Scarpelli, H & Gomide, F., 1994a, 1994b; Yao,

Y., 1994; Zhang, D. & Nguyen, D., 1994; Nazareth, D. L., 1993; Agarwal, R. &

Tanniru, M., 1992; Meseguer, P., 1990) is now in widespread use for many different

practical purposes. The main reason for the great success of these kinds of net

models is the fact that they have a graphical representation and a well-defined

semantics allowing formal analysis. The simplest Petri nets are those without colours

and called Place/Transition Nets (PTN). In PTNs there is only one kind of token and

this means that the state of a place is described by an integer or by a Boolean value

(e.g. 1 or 0). In high level nets, such as Coloured Petri Nets (CPNs), each token

carries complex information or data which may be used to describe the entire state of

a process. A Petri net model is a description of the state and action of a system – it

gives an explicit description of both the states and actions of the system. This allows

 28

the user to determine freely whether, at a given moment of time, he wants to

concentrate on states or on actions. In a typical Petri Net diagram (Figure 3.1.),

states of the system are indicated by means of cycles (or ellipses) which are called

places. Each place may contain a dynamically varying number of small black dots,

which are called tokens. An arbitrary distribution of tokens on the places is called a

marking. An initial distribution of tokens on the places is called the initial marking

and it is usually denoted by M0. The actions of the system is indicated by means of

rectangles, which are called transitions. The places and transitions of a Petri net are

collectively referred to as the nodes. The Petri net also contains a set of directed

arrows, which are called arcs. Each arc connects a place with a transition or a

transition with a place – but never two nodes of the same kind. Each arc may have

an expression attached to it (e.g. A positive integer), this expression is called an arc

expression. The above gives the syntax of a Petri net.

With reference to the semantics of a Petri Net, each transition represents a potential

move. A move is possible if and only if each input place of the transition contains at

least the number of tokens prescribed by the arc expression of the corresponding

input arc. If this happens, the transition is enabled. When a transition is enabled the

corresponding move may take place, this means the transition occurs. The effect of

an occurrence is that tokens are removed from the input places and added to the

output places. The number of removed/added tokens is specified by the arc

expression of the corresponding input/output arc. Tokens are removed from the input

places, and completely new tokens are added to the output places. This means that

there is no relationship between the token removed and the token added. The

execution of a transition T transforms marking M0 to the marking M1, therefore, M1

is reachable from M0 by T. If two or more transitions are concurrently enabled in a

marking M, this means the enabled transitions may occur at the same time (or occur

in parallel). A transition may even occur concurrently to itself, if there are sufficient

tokens deposited in its input places.

 29

T4T3T2T1 P5P4P3

P2

P1

A9

A1

A2

A10

A3 A4 A5 A6 A7 A8

Figure 3.1. A Petri Net

In Figure 3.1., there are five places, P1 to P5; four transitions, T1 to T4 and ten arcs,

A1 to A10. There are two tokens in place P1, one token in place P2 and another

token in P5.

3.4.1. Coloured Petri Nets

In order to describe complex systems in a manageable way, the development of high

level Petri Nets constitutes a very significant improvement in this respect. Coloured

Petri Nets belong to the class of high level nets. The main advantages of Coloured

Petri Nets (CPNs) over PTNs is the introduction of the data type concept. In CPN,

each token is attached a data value, called the token colour. The data value may be

of arbitrarily complex type. (e.g. A record where the first field is a real number, the

second is a text string, while the third is a list of integer pairs). For a given place all

tokens must have token colours that belong to a specified type. This type is called

the colour set of the place. Colour sets determine the possible values of tokens

analogously to the way in which types determine the possible values of variables and

expressions in programming languages.

Attaching a colour to each token and a colour set to each place allows the use of

fewer places than would be needed in a PTN. Intuitively, the introduction of colours

has allowed the folding of places into a single place without losing the ability to

 30

distinguish between various states and actions of the system. Similarly, to get

transitions which can represent many different actions, the arc expressions

surrounding a given transition can contain a number of variables. This variable can

be bound to different values and this means that the expressions evaluate to different

values. Therefore, in order for the transition to occur, the variables in the arc

expressions surrounding the given transition have to be bound to colours (data) of

the corresponding type (data type). When a transition is enabled for a certain

binding, it may occur, and it then removes tokens from its input places and adds

tokens to its output places.

The introduction of colours into PTNs have the following advantages:

• Description and analysis of systems become more compact and

manageable.

• It is possible to describe data manipulations in a direct way.

• It becomes easier to see the similarities and differences between similar

systems.

• It is possible to create hierarchical descriptions.

3.4.2. Choice of Coloured Petri Nets to model Hybrid Expert Systems

3.4.2.1. Requirements of the modelling language

In the design and analysis of Expert Systems, questions of correct behaviour is very

important since they may be used to control traffic systems, telecommunication

systems, medical diagnostic systems, etc. Their incorrect behaviour could lead to

disasters. Moreover, dynamic analysis of Expert Systems is more difficult to

understand due to their combinatorial complexity. Therefore, a proper formal

methodological framework for the verification of knowledge bases is needed.

 31

Formal approaches to software specification and development have been a topic of

active research for a long time. Formal methods are introduced (Graigen, D. et al,

1993) as "mathematically based techniques, often supported by reasoning tools, that

can offer a rigorous and effective way to model, design and analyze computer

systems." At the specification level, a formal method provides a notation for

software specification and development with some mathematical meaning which

each specification is associated a mathematical entity. Moreover, there is a formal

deduction system which makes it possible to perform some symbolic computations

or proofs. This formal system is consistent with the mathematical meaning. One of

the main interests of formal techniques is the possibility to perform proofs. Such

proofs have different aims: (1) they can be used to verify a specification, (i.e. by

verifying that some properties are consequences of the specification, or by refuting

some other properties which correspond to undesirable situations; (2) They can be

used to verify that a design step is correct, (i.e. that a detailed specification is

compatible with a less detailed one; (3) They can be used to check that a system

satisfies a specification, (i.e. by proofing the properties of the system).

A formal description technique (Broy, M., 1991) comprises of the following two

components:

• Syntax: the forms of descriptions are precisely defined, this can be done

by graphical forms as well as by textual forms or mixtures of both of

them.

• Semantics: the meaning of the syntactic forms has to be uniquely defined,

this can be done by mapping the syntactic forms onto appropriately

chosen semantic models as well as by logical calculi.

Without a mathematically properly defined semantics, a description technique

cannot be called formal but at most semiformal. Semantic models are helpful in the

understanding of the concepts of a formal description technique. Logical calculi are

 32

of methodological importance when developing, transforming, and verifying

systems descriptions. In general, an available formal framework serves two

important purposes. First of all, it gives a proper foundation such that it is clear what

is meant that a system is correct or that it can be verified. Second, support tools that

should give substantial support aid have to be based on formal methods. This is why

formal description methods get more and more into practical use, at least, if systems

with high reliability are required.

As the major aim of this Ph.D. research is to develop a formal methodology for

specifying and verifying Hybrid Expert Systems, the most important requirement is

whether the modelling language used has a sound, solid and well defined semantics

for formal analysis. In addition, the methodology chosen should exhibit the

following potentials:

• provide a graphical representation of the relationships among the object

hierarchy, object instances, methods, demons and the production rules in the

Hybrid Expert Systems.

• allow for the dynamic checking of HES which yields information on how the

system achieves it goals.

• provide information about the current state of transition predicates as well as

the states of the object instances.

• provide a clear semantics which allow for the formal analysis of the

behaviour of the modelled HES.

• has the ability to maintain or update both the state of predicates and slot

values of the object instances during transition firings.

 33

• has a potential to tackle situations with relatively higher complexity and

variant conditions like temporal space, probabilistic and fuzzy reasoning.

3.4.2.2. Reasons of choosing Coloured Petri Nets as the modelling language

First of all, a CPN model is a description of the modelled system, and it can be used

as a specification of a system which is to be built, or a representation of a system

which we want to understand and communicate with others. Secondly, the behaviour

of a CPN model can be analyzed, either by means of simulation or by means of

formal analysis method. Detail reasons for using it for this research project are as

follows:

3.4.2.2.1. Graphical Representation

It is extremely easy to understand and grasp the meaning of the modelled systems by

CPN because of its graphical representation. This is due to the fact that CPN

diagrams resemble many of the informal drawings which designers and engineers

make while they construct and analyze a system. The notion of states, actions and

flow are particularly appealing, when they are used to model the states of the

predicates of the rules, the inference mechanisms in the Expert Systems. Many

concepts in Expert Systems can be represented by places, transitions, and arcs of

CPN directly.

3.4.2.2.2. Well Defined Semantics

It is the presence of the semantics which makes it possible to implement simulators

for CPNs, and it is also the semantics which form the foundation for the formal

analysis methods that this research project seeks to develop.

3.4.2.2.3. Concurrent Systems

 34

Transitions in CPN can be concurrently enabled and occurred, they can be used to

model systems which required descriptions of concurrently behaviours. This means

that the notions of conflict, concurrency and causal dependency can be defined in a

very natural and straightforward way. In Hybrid Expert Systems, the dynamic

behaviour (e.g. Inference strategies, inheritance among the object classes in the

hierarchy) can be modelled explicitly using these concurrently enabled transitions.

3.4.2.2.4. Few, but Powerful Primitives

The definition of CPN is rather short and it builds upon standard concepts which are

based on mathematics and programming languages. This means that it is relatively

easy to learn to use CPN. In addition, the small number of primitives also means that

it is much easier to develop strong analysis methods.

3.4.2.2.5. Explicit Description of both States and Actions

Since CPN is a system description language which explicitly describe both states

and actions, it is easy for the user to change the point of focus from state to actions,

or from actions to states. In the case of HES modelling and analysis, at some

instance, it may be convenient to concentrate on the states of the predicates, and the

states of the object instances while at other instances it may be more convenient to

concentrate on the inferences or inheritance of the object properties.

3.4.2.2.6. Hierarchical Descriptions

This means that large CPN can be constructed from relating smaller CPNs in a well

defined manner. Therefore, the modelling of very large systems can be carried out in

a manageable and modular way.

3.4.2.2.7. Data Manipulation

 35

This means that from a CPN, it can be seen what the environment, enabling

conditions and effects of an action are. The data manipulation is carried out by the

net expressions, which may be built from a number of variables, constants,

operations and functions. The manipulation is similar to applying the operation and

functions to the binded variables. The operations and functions take a number of

arguments and return a result.

3.4.2.2.8. Formal Analysis Techniques

Formal analysis techniques are available for CPNs, such as the construction and

analysis of occurrence graphs (representing all reachable markings); calculation and

interpretation of system invariants (place and transition invariants); reductions

(which shrink the net without changing a certain selected set of properties) and

checking of structural properties (which guarantee certain behavioural properties).

3.5. Summary

As the major aim of this Ph.D. research is to develop a formal methodology for

specifying and verifying Hybrid Expert Systems, the most important requirement is

whether the modelling language used has a sound, solid and well defined semantics

for formal analysis. In addition, the method chosen should be able to model both the

Frame-based and Rule-based knowledge representation characteristics. Such a

technique is chosen as a possible candidate among logic-based, statistics-based, test-

cases based and Petri nets-based methods. The analysis of these choices suggests the

use of the Petri Nets paradigm as the candidate methodology for modelling

knowledge representations in Hybrid Expert Systems. The distinguished network

characteristics and the concept of coloured tokens can be used to establish formal

description and verification of Hybrid Expert Systems. This will require semantic

extensions of the nets to provide sufficient descriptive and expressive power for the

purpose of verification of hybrid knowledge bases.

 36

CHAPTER 4. MODELLING AND VERIFICATION

PROBLEMS IN RULE/FRAME-BASED

HYBRID EXPERT SYSTEMS (HES)

4.1. A Hybrid Expert System

A Hybrid Expert System combines multiple representation paradigms into a single

integrated environment. For a Rule- and Frame-based integration, it composes of the

following key features: Object Classes, Slot Attributes, Inheritance Relations,

Demons, Methods, Rules and Reasoning Strategies. These features can be analyzed

using three conceptual views (French, S. W. & Hamilton, D., 1994) of an Expert

System, they are: (1) An Object View which encapsulates a module of knowledge

(or a concept). These knowledge modules (concepts) are represented by Object

Classes. Inheritance Relations describe how these knowledge modules are related.

(2) A Function View which specifies the functional behaviour of the objects within

the Expert System. These functions are represented using Methods and Demons. (3)

A Control View which specifies the sequence of knowledge inference in the Expert

System. These controls are represented in terms of Rules and Reasoning Strategies.

In practical HES development (Shiu, S. C. K. et al., 1995a, 1995b), Frames are used

to represent domain objects, various kinds of Demons are used to implement

procedures attached to specific slots, Inheritance is used to inherit Class properties,

Methods and Demons among Object Classes, Message Passing is used for the

interaction among different objects and Methods are used to perform algorithmic

actions or some array manipulation within an object. Rules are used to describe

heuristic problem-solving knowledge, Forward and Backward chains are commonly

used to reason using rules. Therefore, in HES, the Frame base can be seen as being

used to define the vocabulary for the Rule base, i.e. the possible values that slots can

be defined and so specified, and the literal used to construct rules must conform to

the restrictions imposed by what is available from the class hierarchy. The Frame

 37

base is married together with the Rules designed to manipulate it. The specific

integration mechanisms of HES are as follows:

• Rules with Message Passing: Rules send or receive messages to and from objects

for testing the Rules' premises.

• Rules with Inheritance: Rules directly read and write data into slots in a parent

object and through inheritance of this slot's value to its children objects, trigger

other rules to fire.

• Rules with Demons: Rules directly read and write data into slots and cause the

execution of the associated Demons, which then trigger other rules to fire.

• Rules with Methods: Rules are embedded as part of an object's methods. Since

methods are arbitrary pieces of code attached to an object, they can access the

rules through function calls.

• Rules with Instances: Rules can be used to create/delete an instance of a specific

Object Class.

Usually, Object class has a set of attributes, demons and methods. Each attribute is

of a simple data type: e.g. string or integer. Each specific object element is called an

instance of the Object Class and will have different attribute values.

A Demon is a function which is executed when the associated slot value is either

updated, or needed. Sometimes, a Demon can also act like a validation trigger which

checks the cardinality and/or constraints imposed on a particular slot. The effects of

a Demon are confined always locally to the same Object Class.

Methods are procedures attached to some Object Class, that will be executed

whenever a signal is passed through. This way of executing a method is known as

 38

Message Passing. Rules will interact with the information contained in the slots of

the various Object Classes within the HES.

Finally, in HES, there should be a set of reasoning strategies. Some common ones

are:

• Backward Chain with Inheritance: Goal directed search with inheritance as one

of the means to establish the rule chains linking up different Object Classes.

• Forward Chain with Inheritance: Data directed search with inheritance as one of

the means to establish the rule chains linking up different Object Classes.

Other important inference strategies include: Pattern Matching, Unification,

Resolution and Heuristic Search.

4.2. Modelling Hybrid Expert System using State Controlled Coloured Petri

Nets (SCCPNs)

4.2.1. Object Classes

Each object class's data structure is represented by a compound colour set, and each

object instance is represented by a token in that set. For instance, if there are fifteen

sets of non-empty types or colour sets being used to represent one object class's data

structure, i.e. Σ = AA,BB,....OO; Color AA may be defined as text strings; Color BB

may be as Boolean; ...and Color OO may be defined from some already declared

coloured sets, e.g. Color OO = Product AA * BB * CC. Each object class instance is

declared as a variable of a particular colour set, i.e. var Instance-1 : OO (var denotes

variable declaration which introduces one or more variables). Here we have one

variable, Instance-1, which is with colour OO. We may use var Instance-1, Instance-

2, Instance-3 : OO for declaring three different instances of the same object class

with colour OO. In the following sections, we will use three variables, object "a",

 39

which is a particular instance of a Super Class A, object "a1", which is a particular

instance of Class A. (i.e. "a" IS-A superclass instance while "a1" IS-A class

instance) and State "s" which is the state token. State "s" is used to carry the

information that identifies which object instance had fired from which transition.

(i.e. var a : OO, var a1 : OO and var s : text string)

4.2.2. Rules with Inheritance

In SCCPN, the transition operations are represented by the arc expression functions.

By defining the arc expression functions differently, it can help us model different

events in the HES. Therefore, places in the SCCPN are taken to correspond to two

different elements in the HES. First, places are taken to correspond to predicates of

the production rules which are pre-defined earlier by the user. Secondly, places are

taken to correspond to the Objects class in the HES's Frame hierarchy. Similarly,

transitions in the SCCPN correspond to two different events in the HES. First, the

transitions correspond to the implications of the rules. Secondly, the transitions

correspond to the inheritance of the properties from Classes.

Figure 4.1a. Rule R with Inheritance (before firing) with an input token "a" & "s" in

Super Class A.

 40

The transition operations are represented by the arc expression functions. (e.g. A

Rule R can be represented in SCCPN as shown in Figures 4.1a, 4.1b and 4.1c)

Figure 4.1b. Rule R with Inheritance (after firing Inheritance T) with an input token

"a" & "s" in Super Class A.

Figure 4.1c. Rule R with Inheritance (after firing both Rule R and Inheritance T)

with output token "a" & "s" in State R and output token "a1" & "s" in Class A1. A

state token "s" is also created in Super Class A.

 41

Super Class A is a SCCPN Place with colour set that was used to represent the data

structure of all object instances in Super Class A. Class A1 is a SCCPN Place with

colour set that was used to represent the data structure of all object instances in Class

A1. Rule R is a SCCPN Transition which is enabled iff the input arc expression fR(x)

is evaluated to be true (i.e., the premise X IS-A member of super class A AND X's

slot-1 is 'Y' is true). If fR(x) is true then Rule R is fired, it implies that Rule R is

executed. All tokens will be removed from Super Class A and a new token "a" will

be created in State R with new data values determined by the output arc expression

fR(y) (i.e. fR(y) will assign 'Y' to X's slot-2). Inheritance T is a SCCPN Transition

which is enabled whenever there is an "a" token in Super Class A, after firing this

transition, a token "a1" is created in Class A1 with all the attributes inherited from

A. (i.e. a child token is created with the same attributes of its father). These two

tokens ("a", "a1") can be used for further inference (if any) in the HES. In this way,

we can trace the execution path of these two tokens by examining the information

carried by the state tokens created within the SCCPN network. Moreover, we can

also examine the contents of these two tokens to see if any attributes are in conflict

with each other. These could serve as an indication of the existence of anomalies

within the HES. (Note that in order to preserve the state of the predicate in Rule R, a

state token is created in Super Class A via the self-loop of Rule R and an "a" token is

created in Super Class A via the self-loop of inheritance T.)

4.2.3. Rules with Message Passing

Places in the SCCPN are taken to correspond to predicates of the production rules

and the transitions in corresponding to the implications of the rules. Since the object

class instance's data structure is represented by the token of a particular colour set,

we can define arc expression such that they directly read and write data in the

token's data slots. This can be illustrated by the following simple example: Pass the

message "OK" to the object Class A's slot-promotion.

 42

Colour sets:

 Color Classes = with ClassA | Class B;

 Color Promotion = String;

 Color Objects = product Classes * Promotion;

 var x : Classes;

Arc expression:

 IF x=ClassA THEN 1`(ClassA, "OK") ELSE empty.

This will serve the purpose of sending or receiving messages (data value) to and

from object instance for testing the rules' premises.

4.2.4. Rules with Demons

Figure 4.2a. Rule R with Demon (before firing) with an input token "a" and a state

token "s" in Super Class A.

 43

Similarly, a Rule with Demon can also be represented by a Places/Transition tuple,

e.g. if a demon is attached with object X's slot-overtime, whenever the value of slot-

overtime is updated to 'Y' then the demon will execute and compute the slot-salary

value by the formula 1.2*basic salary. This can be represented by Figures 4.2a and

4.2b.

The demon function, dR(y), is represented as an arc expression. The firing of Rule R

will trigger the demon function to execute.

Figure 4.2b. Rule R with Demon (after firing) with output token "a" & "s" in State R

and output token "a1" & "s" in Class A1. A state token "s" is also created in Super

Class A.

4.2.5. Rules with Methods

Methods are procedures attached to an Object class, they can be represented by the

Functions and Operations declarations in SCCPN. The function takes a number of

arguments and returns a result. The arguments and the result have a type which is a

declared colour set, the set of all multi-sets over a declared colour set. A declared

 44

function can be used in arc expressions, guards and initialization expressions in the

SCCPN. For example, a typical function which tells whether the argument is even or

not might be:

 fun Even(n:integers)=((n mod 2)=0).

Operations can also be used to represent Methods. In both Functions and Operations

declarations, different kinds of control structures can be built. e.g. CASE statements;

IF b is true THEN statement 1 ELSE statement 2; WHILE b is true DO; REPEAT

statement 3 UNTIL b is true. The Rules with Methods can thus be represented by

SCCPN as follows (Figures 4.3a-4.3.d, the self-loops are omitted for clarity reason)

Figure 4.3a. Rule with Method (before firing) with an input token "a" and a state

token "s" in P1.

 45

Figure 4.3b. Rule with Method (Rule is called by the Method). The token "a" was

passed to P2 and a state token "s" was created in P1, P2 and P3 respectively.

Figure 4.3c. Rule with Method (After firing). The token "a" is in P4 and a state token

"s" in P1, P2 and P3 and P4 respectively.

 46

Figure 4.3d. Rule with Method (Method resumes control). The token "a" was passed

to P5. A state token "s" was subsequently created in P1, P2, P3, P4 and P5

respectively.

The modelling of methods is divided into two parts. First the state of the method: (1)

executed some of the program codes and waiting to pass the control to the Rule; (2)

waiting for the Rule to pass back the control; (3) executed all the program codes and

waiting to pass the control to other process.

Secondly, the actual program codes of the method itself (i.e. Represented by the arc

expression functions). In Figures 4.3a-4.3d, P1 to P3 to P5 represents three states of

the Method described above. P2 to P4 represents the Rule embedded within the

Method. Arc expression function F1 is the first part of the Method which executes

first, then control is passed to the Rule by F2 which will create the "a" in P2. After

firing of the Rule (T2 is enabled and fired), P3 and P4 will allow T3 to be fired. F8

represents the remaining part of the Method which will act on Object A

correspondingly. After execution of this Rule with Method, a state token "s" is

deposited in all the Places, P1, P2, P3, P4 and P5 for preservation of the states.

 47

4.2.6. Rules with Instances

This is represented in SCCPN by the arc expressions because the number of

removed/added tokens and the colours of these tokens are determined by the value

of the corresponding arc expressions.

4.3. A Taxonomy of Anomalies

Although the integration of a Rule- and Frame-based Expert System can take the

advantages of both representation paradigms, the systems are not free from errors

and anomalies. In a pure Rule-based system, errors and anomalies could include

redundancy, dead-end rules, subsumption, duplication, circular rule sets,

unsatisfiable conditions, missing rules..etc. Their verification are well documented

in the literature (Gupta, U., 1991; Coenen, F. & Bench-Capon, T., 1993; Gamble R.

F. et al., 1994; Liu N. K. & Dillon T., 1995; Nurrell, S. & Plant, R., 1996).

In a pure Frame-based system, errors and anomalies may occur due to the problems

of message passing and concurrency, problems of inheritance (including simple,

repeated and multiple inheritance) and problems of polymorphism. Instead of

covering all the possible errors and anomalies caused by the integration of the above

two representation paradigms, we would like to focus ourselves on the additional

errors and anomalies attributed to the integration of rules with the inheritance of

object properties.

Given that in a closed world situation in which a common concept is derived by a

HES. The anomalies that are relevant to the correctness, consistency, and

completeness of the HES, take the following forms:

4.3.1. Correctness

4.3.1.1. Redundancy

 48

Case I. Conditions and Actions identical between Parent Class and Child Classes.

In the case of rules which have identical conditions and actions applied both to the

parent object class and child object classes, this implies the existence of redundant

rules.

 Rule 1 : A∧B⇒C

 Rule 2 : A'∧B'⇒C'

(A, B & C are slots in the parent object, A', B' and C' are slots in the child object and

A'=A, B'=B, C'=C because of inheritance).

Case II. Chained inference

 Rule 3 : A⇒C

 Rule 4 : A'⇒B'

 Rule 5 : B'⇒C'

In the case of a chained inference, some rules could become redundant if the same

result could be inferred by alternative transitions even the same input facts are given.

(A'=A and C'=C because of inheritance and B' is not ascertainable through other

rules). Rule 3 could become redundant as C' could be inferred by an alternative

transition, Rule 5, via Rule 4.

4.3.1.2. Subsumption

Case I. Rule 6 is subsumed by Rule 7 (Condition part) between Parent Class and

Child Classes.

 49

 Rule 6 : A∧B⇒C∧D

 Rule 7 : A'⇒ C'∧D'

Case II. Rule 8 is subsumed by Rule 9 (Action part) between Parent Class and

Child Classes.

 Rule 8 : A∧B⇒C∧D

 Rule 9 : A'∧B'⇒ C'

Case III. Rule 10 is subsumed by Rule 11 (Both Condition and Action) between

Parent Class and Child Classes.

 Rule 10 : A∧B⇒C∧D

 Rule 11 : A'⇒ C'

In a complex frame hierarchy which allows for multiple inheritance, checking for

subsumption becomes more difficult because the problem becomes what

characteristics the child inherits, and from which parent? The HES has to follow

some sort of default orderings in inheritance, and this may lead to sets of conflicting

traits which are even more complicated to verify.

4.3.1.3. Ambiguity

Case I. Rule with inclusive disjunction of IS-A conditions from different Object

Classes.

 Rule 12: A IS-A member of ClassX ∨ A IS-A member of ClassY⇒B

Case II. Rule with inclusive disjunction of IS-A Actions for different Object Classes.

 Rule 13: B⇒A IS-A member of ClassX ∨ A IS-A member of ClassY

 50

In general, when a HES enters into this indeterminate situation, some sort of

selection tactics would have to be executed by the system to choose the best

alternative it could have. This requires a greater degree of strategy evaluation.

4.3.1.4. Circular Rule Sets

If a circular loop can occur when a set of rules among different object classes are

fired, then these rules are considered as a circular rule set within the object

hierarchy.

Case I. Self-reference rule

 Rule 14: A'⇒A∧B

Case II. Self-reference chain of inference

 Rule 15: A⇒B⇒ • • • • • • ⇒P

 Rule 16: P'⇒A

If more than one level of class hierarchy is involved, an implicit cycle may exist

where the loop is formed from several rules and different frames' slots in the frame

hierarchy.

4.3.2. Consistency

4.3.2.1. Contradiction

If two rules have duplicate antecedents but in the consequents a clause is both

affirmed and denied, we refer this as inconsistency. In an object hierarchy,

 51

inconsistency may occur if a rule applied to the Parent object class but denied to the

Child object classes.

Case I. Self-contradictory rule

 Rule 17: A⇒¬A'

Case II. Self-contradictory chain of inference

 Rule 18: A⇒B⇒ • • • • • • ⇒¬A'

Case III. Contradictory pairs of rules

 Rule 19: A∧B⇒C

 Rule 20: A'∧B'⇒¬C

Case IV. Contradictory chains of rules

 Rule 21: A⇒B⇒ • • • • • • ⇒P

 Rule 22: A'⇒¬P

4.3.2.2. Deadend

A value, slot or frame is missing if it appears as the premise or conclusion in the

rules but is not defined in the Frame hierarchy. In this case, the antecedent part of

the rule cannot be satisfied because it contains a literal which cannot be matched to a

fact or a literal in the consequent part of any other rule.

 Rule 23: A⇒B

A is not defined in the slot of the class hierarchy.

 52

4.3.2.3. Unnecessary IF condition

 Rule 24: A∧B⇒C

 Rule 25: A'∧C⇒D

When rule 25 is backward chained to rule 24, (i.e. in order that C is true, we have to

check whether A is true and B is true). Rule 25 is equivalent to the testing of A', A

and B, (Rule 26):

 Rule 26: A'∧A∧B⇒D

Since A' and A are in inheritance relation, we may want to remove either the

condition IF A' or IF A.

4.3.3. Completeness

4.3.3.1. Unreachability

Case I. Mutually exclusive classes, (a rule with two or more IS-A condition

statements in its antecedent part)

 Rule 27: ClassA ∧ ClassA'⇒C

 Rule 28: ClassB ∧ ClassC⇒D

In Rule 27, if Class A is the Parent and Class A' is the Child, it is not possible for an

object instance to be both belonging to Class A and Class A'. Similarly, in Rule 28,

Class B and Class C are both children of Class A, it is not possible for any object

instance to be both belonging to two different mutually exclusive classes.

 53

Case II. Mutually exclusive classes chains

 Rule 29: ClassA∧B∧C⇒P

 Rule 30: ClassA'∧P⇒Q

If rule 30 is backward chained to rule 29, this causes an unreachable condition

because rule 29's condition part and rule 30's condition parts are having mutually

exclusive class instantiation.

A broad categorization of anomalies pertaining to knowledge verification of HES

was given. This was classified in terms of sub-problems related to correctness,

consistency and completeness in hybrid knowledge base. The anomalies take the

form of Redundancy, Subsumption, Ambiguity, Circular Rule Sets, Contradiction,

Deadend, Unnecessary IF condition and Unreachability. It is noted that significant

effect stems from the chained inference in the hybrid knowledge base.

Consequently, a mechanism for the detection and location of these anomalies

appears to be essential, which is part of the subjects for knowledge verification.

4.4. Summary

An informal description of the method to model Hybrid Expert Systems is described.

(The formal definitions of the method will be given in the next chapter). This is

based on the notion of State Controlled Coloured Petri Nets (SCCPNs). The object

classes are represented by the compound colour set; the production rules' transition

operations are represented by the arc expression functions; the inheritance of the

properties from classes are represented by another type of transitions operations;

message passing is modelled by defining arc expression such that they directly read

and write data to token's data slots; Demon is represented by a Places/Transition

tuple and Methods are procedures attached to an Object class, they are represented

 54

by the Functions and Operations declarations in SCCPN. In HES, there should be a

set of reasoning strategies. Two common ones are: (1) Backward Chain with

Inheritance (i.e. Goal directed search with inheritance as one of the means to

establish the rule chains linking up different Object Classes); (2) Forward Chain

with Inheritance (i.e. Data directed search with inheritance as one of the means to

establish the rule chains linking up different Object Classes).

 48

CHAPTER 5. A FORMAL METHODOLOGY FOR

MODELLING RULE/FRAME-BASED HES

USING STATE CONTROLLED COLOURED

PETRI NETS (SCCPNs)

5.1. Fundamental Principles

A Hybrid Expert System combines multiple representation paradigms into a single

integrated environment for modelling and reasoning of complicated real world

phenomena. For a Rule- and Frame-based integration, it models the problem domain

using the concepts of classes and rules together. The essential key modelling

features are: Object Classes, Slot Attributes, Inheritance Relations, Demons,

Methods, Rules and Reasoning Strategies. The Frame base is married together with

the Rules designed to manipulate it. The specific integration mechanisms of HES are

as follows:

• Rules with Message Passing: Rules send or receive messages to and from objects

for testing the Rules' premises.

• Rules with Inheritance: Rules directly read and write data into slots in a parent

object and through inheritance of the slot's value to its children objects, trigger

other rules to fire.

• Rules with Demons: Rules directly read and write data into slots and cause the

execution of the associated Demons, which then trigger other rules to fire.

• Rules with Methods: Rules are embedded as part of an object's methods. Since

methods are arbitrary pieces of code attached to an object, they can access the

rules through function calls.

 49

• Rules with Instances: Rules can be used to create/delete an instance of a specific

Object Class.

Based on the above concepts of integration, a Hybrid Expert System, therefore, can

be formally defined as follows.

DEFINITION 5.1. A HES is defined as a tuple given by: HES = (C, A, D, M, I, H,

R, S) satisfying the requirements below:

C = a finite set of object classes, where each object class is a Cartesian product of

(A x D x M).

A = a finite set of attributes. Each attribute is of a simple data type.

D = a finite set of demon functions. Each function is defined from A into an

expression such that: ∀a∈A:D(a)∈A. (This means the demon functions can

only change a slot's value within the same object instance. Besides, this demon

function: D(a) generates only one output from each given input "a").

M = a finite set of methods. Each method is defined as a function which takes a

number of arguments from an object∈C and returns a result to the object∈C.

I = a specific object element from an object class C.

H = an inheritance relation. It is defined from the partially ordered relations in C.

R = The rules are composed of predicates which are used as functions that map

object arguments into TRUE, FALSE values represented by binary truth

values 1,0, respectively. (One of the predicates is the IS-A predicate which is

used to specify the class of objects which a particular rule can be applied). All

literals used in both the condition and action predicates must come from the

attribute set A.

S = a finite set of reasoning strategies. The two common HES reasoning strategies

are: Backward Chain with Inheritance and Forward Chain with Inheritance.

Explanations: Object class here is defined as having a set of attributes, demons and

methods. Each attribute is defined as of a simple data type: e.g. string, integer or

 50

real. Each specific object element is called an instance of the Object Class and will

have different attribute values of the variables. Inheritance is defined as a partial

order on the set Object Class, it is a relation that is reflexive, antisymmetric and

transitive:

• Reflexive : For every Object Class, it inherits the properties from itself.

• Antisymmetric : For every Object Class, if A inherits from B and if B inherits

from A, it implies that A is B.

• Transitive : For every Object Class, if A inherits from B and if B inherits from C,

it implies that A inherits from C.

The above definition only covers simple inheritance. In the case of multiple

inheritance, the problem becomes what characteristics the child inherits, and from

which parent? The HES has to follow some sort of default orderings on inheritance

(Dori, D. & Tatcher, E., 1994; Willis, C.P., 1996), and this may lead to sets of

conflicting traits which are even more complicated to verify. Therefore, our present

analysis is concentrated on simple inheritance only.

A Demon is defined as a function which is executed when the associated slot value

is either updated, or needed. Sometimes, a Demon can also act like a validation

trigger which checks the cardinality and/or constraints imposed on a particular slot.

The effects of a Demon are confined always locally to the same Object Class.

Methods are functions attached to some Object Class, that will be executed

whenever a signal is passed through. Each method is defined as a function which

takes a number of arguments and return a result.

Rules will interact with the information contained in the slots of the various Object

Classes within the HES.

 51

Finally, in HES, there should be a set of reasoning strategies. The two common ones

are :

• Backward Chain with Inheritance: Goal directed search with inheritance as one

of the means to establish the rule chains linking up different Object Classes.

• Forward Chain with Inheritance: Data directed search with inheritance as one of

the means to establish the rule chains linking up different Object Classes.

As HES is modelled by SCCPN, a mapping between the two structures is necessary,

and is given in Table 5.1.

Hybrid Expert System

State Controlled Coloured Petri Net

Frame-based part
Object Classes Places
Object Class Types Colour Sets
Object Instances Tokens
Slots Variables in Tokens
Facts in Slots Binding of Variables with Constants
Inheritances Transitions
Demon Arc Expressions
Methods Arc Expressions

Rule-based part

Predicates Places
Predicates States Tokens
Rules Transitions
Facts Binding of Variables with Constants
Transition Operations Arc Expressions

Table 5.1. Conceptual interpretation of HES in SCCPNs.

As shown in Table 5.1 the components of the HES are separately represented, which

can be modelled explicitly by the SCCPN. The places are taken to correspond to

predicates and object classes, and transitions to represent rules implications as well

as inheritance. There are two major types of tokens, one is the state token which

 52

records the state of the predicate and the class type information. (i.e. Since rules may

be fired by either parent class instance or child class instances). The second type of

token is the object instance token which represents a particular object instance of a

particular class within the object hierarchy. Transitions are fired to represent rules

being executed or inheritance is being carried out. The maximum number a rule can

be executed is equal to the total number of different class types. (i.e. each class type

object instance can fire a particular rule once at most). Each input place of a rule has

a self-loop arc for maintaining the state of the predicate. Similarly, the input place of

an inheritance also has a self-loop arc for recording the inheritance execution.

Methods and Demons are represented by functions in the arc inscription of the

SCCPN. The net result is the exchange of colour tokens from places to places and a

new marking, which is defined as the distribution of tokens over the places of the

SCCPN, is obtained.

The SCCPN notation employed in this thesis is an extension of State Controlled

Petri Nets proposed by (Liu, N. K. & Dillon T., 1995), and Coloured Petri Nets

proposed by (Jensen, K., 1995, 1996) and is specified as follows.

DEFINITION 5.2. A SCCPN can be defined as a 10-tuple given by = (Σ, P, T, D,

F, A, N, C, E, I), where satisfying the requirements below:

Σ = { ω1,ω2,...,ωi }, a finite set of non-empty types, called colour sets, i≥1,

P = {Pc, Pr} a finite set of places,

Pc = { pc1, pc2, ..., pcj }, a finite set of places that model the classes of the HES,

called class places, j≥1,

Pr = { pr1, pr2, ..., prk }, a finite set of places that model the predicates of the

production rules, called predicate places, k≥1,

Pc∩Pr : the intersection of Pc∩Pr represents those IS-A predicates of the rule

sets attached to the specific classes,

T = { Tc, Tr }, a finite set of transitions ,

 53

Tc = { tc1, tc2, ..., tcl }, a finite set of transitions that are connected to and from

class places, called inheritance transition, l≥1,

Tr = { tr1, tr2, ..., trm }, a finite set of transitions that are connected to or from

predicate places, called predicate transition, m≥1,

Tc∩Tr=∅,

D = { d1, d2, ..., dn }, a finite set of predicates, |Pr| = |D|, n≥1,

F = { f1, f2, ..., fn }, a finite set of classes, |Pc| = |F|, n≥1,

A = { a1, a2, ..., ak }, a finite set of arcs, k ≥ 1, P ∩ T = P ∩ A = T ∩ A = ∅,

N : A → P×T∪T×P, a node function, it maps each arc into a pair where the first

element is the source node and the second is the destination

node, the two nodes have to be of different kinds. The node

functions can be further classified into the following eight

different types:

Inheritance : { Ãc, Äc, Ãs, Äs} where

Ãc : Tc→(Pc)MS is an input class function for inheritance, a mapping

from inheritance transitions to the bags of class places.

MS stands for multi-set (or bags).

Äc : Tc→(Pc)MS is an output class function for inheritance, a mapping

from inheritance transitions to the bags of class places.

Ãs : Tc→(Pc)MS is an input state function for inheritance, a mapping from

inheritance transitions to the bags of class places.

Äs : Tc→(Pc)MS is an output state function for inheritance, a mapping

from inheritance transitions to the bags of class places.

Predicate : {Õ c, Öc, Õs, Ös} where

Õc : Tr→(Pr)MS is an input class function for predicates, a mapping from

predicates transitions to the bags of predicates.

Öc : Tr→(Pr)MS is an output class function for predicates, a mapping

from predicates transitions to the bags of predicates.

Õs : Tr→(Pr)MS is an input state function for predicates, a mapping from

predicates transitions to the bags of predicates.

 54

Ös : Tr→(Pr)MS is an output state function for predicates, a mapping

from predicates transitions to the bags of predicates.

C : P→Σ, a colour function, it maps each place into a colour set,

E : A→expression, an arc expression function, It is defined from A into expressions

such that ∀a∈A : [Type(E(a))=C(p(a))MS∧Type(Var(E(a)))⊆Σ]

where p(a) is the place of N(a), where MS stands for multi-set

(or bags),

I : P→expression, an initialization function. It is defined from P into closed

expressions such that: ∀p∈P:[Type(I(p))=C(p)MS].

DEFINITION 5.3. For each transition tj∈T in a net N,

Õs(tj)∩Ös(tj)≠∅,

Õc(tj)∩Öc(tj)=∅,

Ãc(tj)∩Äc(tj)≠∅,

Ãs(tj)∩Äs(tj)=∅,

such that

pi∈Õs(tj)⇒ pi∈Ös(tj),

pi∈Õc(tj)⇒pi∉Öc(tj),

pi∈Ãc(tj)⇒pi∈Äc(tj),

pi∈Ãs(tj)⇒ pi∉Äs(tj),

DEFINITION 5.4. A binding of a transition t is a function b defined on Var(t), such

that: ∀v∈Var(t):b(v)∈Type(v) where Var(t) denotes the set of variables in a

transition and B(t) denotes the set of all bindings for t.

DEFINITION 5.5. A token element is a pair (p,c) where p∈P and c∈C(p), while a

binding element is a pair (t,b) where t∈T and b∈B(t). The set of all token elements

is denoted by TE while the set of all binding elements is denoted by BE.

 55

DEFINITION 5.6. A marking M is a multi-set over TE while a step is a non-empty

and finite multi-set over BE. The initial marking M0 is the marking which is

obtained by evaluating the initialization expressions: ∀(p,c)∈TE:M0(p,c)=I(p)(c).

The markings of a SCCPN can be further classified into the following two different

types: (Mc, Ms) where Mc represents markings of the class tokens, and Ms represents

markings of the state tokens.

DEFINITION 5.7. A step Y is enabled in a marking M iff the following property is

satisfied: ∀p∈P: ∑
∈

>≤<
Ybt

pMbtpE
),(

)(),(where E(p,t) is the expression of (place,

transition) and E(t,p) is the expression of (transition, place). The summation

indicates the addition of expressions. Expression denotes the binding of the

specific expression with a set of constants b. When (t,b)∈Y, this denotes that t is

enabled in M for the binding b. When (t1,b1), (t2,b2) ∈Y and (t1,b1) ≠ (t2,b2), this

denotes that (t1,b1) and (t2,b2) are concurrently enabled.

DEFINITION 5.8. When a step Y is enabled in a marking M1 it may occur,

changing the marking M1 to another marking M2, defined by: ∀p∈P:M2(p) = (M1(p)

- ∑
∈

><
Ybt

btpE
),(

),() + ∑
∈

><
Ybt

bptE
),(

),(. The first sum is the removed tokens while

the second is the added tokens. M2 is directly reachable from M1 by the occurrence

of the step Y, which can be denoted as M1[Y>M2.

DEFINITION 5.9. A finite occurrence sequence is a sequence of markings and

steps: M1[Y1>M2[Y2>M3……Mn[Yn>Mn+1 such than n ∈ Natural Number and

Mi[Yi>Mi+1 for all i∈1…..n. The marking M1 is called the start marking of the

occurrence sequence, while the marking Mn+1 is called the end marking. The non-

negative integer n denotes the number of steps in the occurrence sequence, or the

length of it.

 56

DEFINITION 5.10. A marking M" is reachable from a marking M' iff there exists a

finite occurrence sequence having M' as start marking and M" as end marking, i.e.

iff for some n∈N there exists a sequence of steps Y1,Y2…..Yn such that:

M1[Y1>M2[Y2>M3……Yn>M". M" is reachable from M' in n steps. A firing or

occurrence sequence is denoted by σ=(Y1,Y2……Yn)

The set of markings which are reachable from M' is denoted by [M'>.

DEFINITION 5.11. The full occurrence graph of a SCCPN is the directed graph

OG=(V, A, N) where:

a. V=[M0>

b. A={(M1,b,M2)∈VxBExV|M1[b>M2}.

 c. ∀a=(M1,b,M2)∈A: N(a)=(M1,M2).

In OG, a node is a particular marking reachable from M0. The set of markings which

are reachable from M0 is denoted by [M0>. An arc a with N(a)=(M1,M2) is said to go

from the source node M1 to the destination node M2. An arc with the binding

element b is denoted by (M1,b,M2).

The occurrence graph (O-graph) has a node for each reachable marking and an arc

for each step that occurs - with a single binding element. The source node of the arc

is the start marking of the step, while the destination node is the end marking.

5.2. Description and Properties

The logical predicate becomes true by the presence of a state token and the transition

associated with this predicate will become active by the presence of the

corresponding object class token (instance) and provided that the slots attributes in

the object class instance satisfies the transition condition. The transition is enabled

and is ready for firing. For simplicity reasons, without taking any transition

conditions or transition operations into consideration, we can minimally enable a

specific transition and then check the reachability set for any irregularities of

 57

predicate places. In this representation, a marking M is composed of Mc that depicts

the marking for the class places and Ms that depicts the marking for the state places

in the SCCPN. A transition tj is represented by a t-vector. For verification purposes,

we define that:

DEFINITION 5.12. A transition tj is minimally active if

Mc =






 ∪∈

otherwise

ttpif jcjcci

0

))(Õ)(Ã(1

DEFINITION 5.13. A transition tj is minimally enabled if tj is both minimally

active and that

Ms =






 ∪∈

otherwise

ttpif jsjssi

0

))(Õ)(Ã(1

and

))()((),(siscicji pMpMbtpE ∪>≤<∑

DEFINITION 5.14. Tk that contains a group of transitions {tn} is said to be

minimally active if ∀j=1,2,..n, tj ∈ Tk, ∃ pi ∈(Ãc(tj)∪Õs(tj)) ⊆ (Ãc(Tk)∪Õs(Tk)), such

that

Mc =







∪∉

∪∈

otherwise

ttpand

ttpif

jcjcci

jcjcci

0

))(Ö)(Ä(

))(Õ)(Ã(1

Note that the self-loop arc corresponding to each input place does not cause a

repeated firing of transitions. In the absence of any self-reference rule, the set of

 58

input places and that of output places with respect to the transition in SCCPN are

always disjointed.

DEFINITION 5.15. Tk that contains a group of transitions {tn} is said to be

minimally enabled if ∀j=1,2,..n, tj ∈ Tk, ∃ pi ∈(Ãc(tj)∪Õs(tj)) ⊆ (Ãc(Tk)∪Õs(Tk)),

such that

Ms =








∪∉

∪∈

otherwise

ttpand

ttpif

jsjssi

jsjssi

0

))(Ö)(Ä(

))(Õ)(Ã(1

and

))()((),(siscicji pMpMbtpE ∪>≤<∑

5.3. Modelling HES with SCCPNs

It is important to understand how to make use of State Controlled Coloured Petri

Nets to model the knowledge structure and inference in HES. SCCPNs inherit most

of the mathematical properties from Coloured Petri Nets (Jensen, K., 1995, 1996),

which enable the storage and recall of past and present states of machine problem

solving processes and the precalculation of results. Storage of states helps to

implement high level problem solving by allowing the system to back-track through

its problem solving process, resolve goal conflicts, and then resume the process from

the last successfully completed design step. Precalculation of results allows the

expert system to bypass some or all of the steps required during problem solving

when it comes across previously encountered or predetermined situations.

In addition to the representation advantages, SCCPNs can provide a clear indication

of data dependencies, which would make it possible for us to exploit parallelism in

the problem domain. The analysis of SCCPNs can reveal bottlenecks or other

 59

possible anomalies in the procedural flow associated with the hybrid knowledge

base. The following schema is used to represent some typical rules which attached to

the object hierarchy. The self-loop arc is omitted for clarity reason.

5.3.1. Correctness

5.3.1.1. Redundancy

Case I. Conditions and Actions identical between Parent Class and Child Classes.

 Rule 1 : A∧B⇒C

 Rule 2 : A'∧B'⇒C'

(A, B & C are slots in the parent object, A', B' and C' are slots in the child object and

A'=A, B'=B, C'=C because of inheritance).

The SCCPN representation of Rule 1 and Rule 2 is Figure 5.1.

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

Figure 5.1. SCCPN showing Redundancy Case I

 60

Initially, if we have a Parent token in Parent Class with both A and B being True,

then Rule 1 will fire, and a Parent token will be created in State C with A, B and C

being True. At the same time, a Child token will be created in Child Class, having

both A' and B' being True, because of inheritance. This enables Rule 2, and after

firing, a Child token is also created in State C with C' being True.

Case II. Chained inference

 Rule 1 : A⇒C

 Rule 2 : A'⇒B'

 : :

 Rule N : N'⇒C'

In general the chain inference can be represented by the following SCCPN in Figure

5.2.

State token
Parent token
Child token

Rule 1

Rule 2.......................Rule N

State C

Parent Class

Child Class

Inheritance

Figure 5.2. SCCPN showing Redundancy Case II

 61

Initially, if we have a Parent token in Parent Class with both A and B being True,

then Rule 1 will fire, and a Parent token will be created in State C both A, B, and C

being True. After the chain inference from Rule 2 to Rule N, a Child token will be

created in State C with A', B'… and C' being True.

5.3.1.2. Subsumption

Case I. Rule 1 is subsumed by Rule 2 (condition part) between Parent Class and

Child Classes.

 Rule 1 : A∧B⇒C∧D

 Rule 2 : A'⇒C'∧D'

State token
Parent token
Child token

Rule 1Parent Class

Child Class

Inheritance
State D

State C
Rule 2

Figure 5.3. SCCPN showing Subsumption Case I

Initially, if we have a Parent token in Parent Class with both A and B being True,

then Rule 1 will fire, and a Parent token will be created in State C and State D with

A, B, C and D being True. At the same time, a Child token will be created in Child

Class, having both A' and B' being True, because of inheritance. This enables Rule

 62

2, and after firing, a Child token is also created in State C and State D with C' and D'

being True.

Case II. Rule 1 is subsumed by Rule 2 (action part) between Parent Class and

Child Classes.

 Rule 1 : A∧B⇒C∧D

 Rule 2 : A'∧B'⇒ C'

Case III. Rule 1 is subsumed by Rule 2 (condition and action) between Parent Class

and Child Classes.

 Rule 1 : A∧B⇒C∧D

 Rule 2 : A'⇒ C'

State token
Parent token
Child token

Rule 1Parent Class

Child Class

Inheritance
State D

State C
Rule 2

Figure 5.4. SCCPN showing Subsumption Case II and III

Subsumption Case II and Case III are both represented by Figure 5.4. Initially, if we

have a Parent token in Parent Class with both A and B are True, then Rule 1 will

 63

fire, and a Parent token will be created in State C and State D with A, B, C and D

being True. At the same time, a Child token will be created in Child Class, and

having both A' and B' being True, because of inheritance. This enables Rule 2, and

after firing, a Child token is also created in State C with C' being True.

5.3.1.3. Ambiguity

Case I. Rule with inclusive disjunction of IS-A conditions from different Object

Classes.

 Rule 1 : A IS-A member of ClassX ∨ A IS-A member of ClassY⇒C

State token
Class X token
Class Y token

Rule 1a

Rule 1b

State C

Class X

Class Y

Class X Rule 1a

Rule 1b

State C

Class Y

Rule 1a

Rule 1b

State C

Class X

Class Y

Figure 5.5. SCCPN showing Ambiguity Case I

Rules with inclusive disjunction of IS-A conditions from different Object Classes

can be represented in a slight different fashion. In Figure 5.5, assertion of either IS-

A Class X or IS-A Class Y or both will result in State C being asserted. Owing to the

ambiguous condition of the rule involved, the rule can be unfolded into three

optional sub-rules, each of which is represented by an alternative set of markings.

i.e.

 64

 Rule 1a : A IS-A member of ClassX ⇒C

 Rule 1b : A IS-A member of ClassY ⇒C

Case II. Rule with inclusive disjunction of IS-A Actions for different Object Classes.

 Rule 1 : C⇒A IS-A member of ClassX ∨ A IS-A member of ClassY

State token
Class X token
Class Y token

Rule 1a

Rule 1c

Rule 1b

Class X

Class Y

State C

Figure 5.6. SCCPN showing Ambiguity Case II

Rules with inclusive disjunction of IS-A actions from different Object Classes can

be represented by the alternative sets of marking as shown in Figure 5.6. Firing of

the rule will infer the assertion of either IS-A Class X or IS-A Class Y or both. In

general, when a HES enters into this indeterminate situation, some sort of selection

tactics would have to be executed by the system to choose the best alternative it

could have. This requires a greater degree of strategy evaluation. i.e.

 Rule 1a : C⇒A IS-A member of ClassX

 Rule 1b : C⇒A IS-A member of ClassX ∧ A IS-A member of ClassY

 Rule 1c : C⇒A IS-A member of ClassY

 65

5.3.1.4. Circular Rule Sets

Case I. Self-reference rule

 Rule 1 : A'⇒A∧B

State token
Parent token
Child token

State C

Parent Class

Child Class

Inheritance Rule 1

Figure 5.7. SCCPN showing Circular Rule Sets Case I

A SCCPN representation of this self-reference rule using a typical example (e.g. If X

is a University Student THEN X is a Student AND X has a Student Identity Card) as

in Figure 5.7. Here, Student includes the Sub-Class University Student, therefore,

the firing of Rule 1 will continue to create Parent tokens in Parent Class, and this

forms a circular loop.

 66

Case II. Self-reference chain of inference

 Rule 1: B'⇒C'

 Rule 2: C'⇒D'

 : :

 Rule N: N'⇒B

In general the Self-reference chain of inference can be represented by the following

SCCPN in Figure 5.8.

State token
Parent token
Child token

Rule 1

Rule N.......................Rule 2

State C

Parent Class

Child Class

Inheritance

Figure 5.8. SCCPN showing Circular Rule Sets Case II

5.3.2. Consistency

5.3.2.1. Contradiction

Case I. Self-contradictory rule

 Rule 1 : A⇒C

 Rule 2 : A'⇒¬C

 67

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

Figure 5.9. SCCPN showing Contradiction Case I

Initially, if we have a Parent token in Parent Class A is True, then Rule 1 will fire,

and a Parent token will be created in State C with both A and C being True. At the

same time, a Child token will be created in Child Class, having A' being True,

because of inheritance. This enables Rule 2, and after firing, a Child token is also

created in State C but with C' being FALSE.

Case II. Self-contradictory chain of inference

 Rule 1: B'⇒¬C

 Rule 2 : C'⇒D

 : :

 Rule N: N'⇒B

 68

State token
Parent token
Child token

Rule 1

Rule N.......................Rule 2

State C

Parent Class

Child Class

Inheritance

Figure 5.10. SCCPN showing Contradiction Case II

Initially, if we have a Parent token in State C with C is True, then Rule 2 will fire,

after the chain inference from Rule 2 to Rule N, a Parent token will be created in

Parent Class with B being True. After inheritance, a Child token will be created in

Child Class with B' being True, and this will enables Rule 1 to fire. This time, the

State C is asserted to be FALSE by Rule 1 contradicting to the initial fact C which is

TRUE.

Case III. Contradictory pairs of rules

 Rule 1 : A∧B⇒C

 Rule 2 : A'∧B'⇒¬C

 69

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance State B

Figure 5.11. SCCPN showing Contradiction Case III

If we have a Parent token in Parent Class with A is TRUE, and a State token in State

B indicating State B is TRUE, State C will be asserted to be TRUE by Rule 1 but

FALSE by Rule 2 indicating contradictory state of inference.

Case IV. Contradictory chains of rules

 Rule 1: A'⇒¬P

 Rule 2 : A⇒B

 : :

 Rule N : N⇒P

 70

State token
Parent token
Child token

Rule 1

Rule 2.......................Rule N

State C

Parent Class

Child Class

Inheritance

Figure 5.12. SCCPN showing Contradiction Case IV

5.3.2.2. Deadend

A value, slot or frame is missing if it appears as the premise or conclusion in the

rules but is not defined in the Frame hierarchy. In this case, the antecedent part of

the rule cannot be satisfied because it contains a literal which cannot be matched to a

fact or a literal in the consequent part of any other rule. (Figure 5.13.)

 Rule 1 : A⇒B

A is not defined in the slot of the class hierarchy.

Rule 1State A State B

Figure 5.13. SCCPN showing Deadend

Since A is not defined, no tokens will be created in State A.

 71

5.3.2.3. Unnecessary IF condition

 Rule 1: X∧A⇒B

 Rule 2: X'∧B⇒C

When rule 2 is backward chained to rule 1, (i.e. in order that C is true, we have to

check whether B is true and X' is true). Rule 2 is equivalent to the testing of X', X

and A, (Rule 2):

 Rule 1 + Rule 2 : X'∧X∧A⇒C

Since X' and X are in inheritance relation, we may want to remove either the

condition IF X' or IF X. (Figure 5.14.)

State token
Parent token
Child token

Parent Class

Child Class

Inheritance

State C

State A

State B

Rule 1

Rule 2

Figure 5.14. SCCPN showing Unnecessary IF condition

5.3.3. Completeness

5.3.3.1. Unreachability

 72

Case I. Mutually exclusive classes, (a rule with two or more IS-A condition

statements in its antecedent part)

 Rule 1 : ClassA ∧ ClassA'⇒C (applied to Parent Class)

 Rule 2 : ClassA ∧ ClassA'⇒C (applied to Child Class)

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

Figure 5.15. SCCPN showing Unreachability Case I.a

Rules with mutually exclusive classes can be represented by the alternative sets of

rules in Figure 5.15. Rule 1 will check all Parent tokens deposited in the Parent

Class to see if they are also Child tokens. Similarly, Rule 2 will check all Child

tokens deposited in the Child Class to see if they are also Parent tokens. This will be

unsuccessful, and State C will never be asserted TRUE. In general, when a HES

enters into this unreachable state, some sort of selection tactics would have to be

executed by the system to choose the best alternative it could have or the modeller

have to review which class instantiation is more appropriate for the system.

 73

 Rule 1 : ClassA ∧ ClassB⇒C (applied to Class A)

 Rule 2 : ClassA ∧ ClassB⇒C (applied to Class B)

State token
Parent token
Child token

Rule 1

Parent Class

Child A

InheritanceInheritance

Rule 2

State CChild B

Figure 5.16. SCCPN showing Unreachability Case I.b

Similar to the previous case, Child Class A and Child Class B are both children of

the Parent Class, it is not possible for any object instance to be both belonging to

two different mutually exclusive classes.

Case II. Mutually exclusive classes chains

 Rule 1 : ClassX∧A∧B⇒C

 Rule 2a : ClassX'∧C⇒D (applied to Class X')

 Rule 2b : ClassX'∧C⇒D (applied to State C)

 74

State token
Parent token
Child token

Parent Class

Child Class

Inheritance Rule 1

Rule 2a

State A State B

State C

Rule 2b

State D
Figure 5.17. SCCPN showing Unreachability Case II

If Rule 2b is backward chained to Rule 1, this causes an unreachable condition

because Rule 2b's condition part and Rule 1's condition parts are having mutually

exclusive class instantiation.

5.4. Knowledge Inference in SCCPN Modelling

Basically, the methods for knowledge inference comprise of event driven and goal

driven reasoning. The reasoning strategy for dynamic knowledge inference in

SCCPN is event driven reasoning, because the reasoning process is based on the

occurrences of events. The goal of the reasoning for SCCPN is to determine the

subsequent events (activities) based on current events.

The initial marking and colours of the net determines the initial state of the system.

Subsequent markings and colours of the tokens contribute to a reachability set which

can reflect the degree of inference at different level, stemming from the initial event.

The transitions of SCCPN model are structured to be in one direction only with the

exception for the self-loop that is associated with each input places. When a

 75

transition t (either representing a rule or a inheritance relation) becomes active and

fired, the inference proceeds in a forward direction. Subsequently, SCCPNs support

a forward chaining (events driven) paradigm of inference. In order to model and

allow for simulating the backward chaining (goal driven) behaviour, a concept for

backward enabled transition (Liu, N.K., 1991) have been introduced. It is defined

that a transition t for P→Q is backward enabled if its inference proceeds in a

backward direction as if it were for P←Q. Input places and output places are

interchanged accordingly to accomplish the changes.

5.5. Summary

The factual and inference knowledge in a HES can be formulated in SCCPNs. State

tokens are used to indicate the validity of a fact which is maintained by the presence

of a self-loop in the net. A methodology for modelling a variety situations including

Redundancy, Subsumption, Ambiguity, Circular Rule Sets, Contradiction, Deadend,

Unnecessary IF Condition and Unreachability of rule sets attached to the object

hierarchy is given. This allows for the checking of alternative markings at any level

of inference. SCCPN is a event driven inference paradigm. This is to facilitate the

generation and analysis of the knowledge inference in a HES being modelled by the

net.

 76

CHAPTER 6. AN APPLICATION OF THE FORMAL

VERIFICATION METHOD

6.1. A Personnel Selection Hybrid Expert System

To illustrate the HES modelling by our proposed SCCPN methodology, we adopt a

simplified version of a Personnel Selection Expert System currently being used in

Hong Kong (Huen, H.S.M., 1993). This system is used to find out, among all the

clerks in the organization, who should be promoted to senior clerk. The

organization's employee data structure is represented in a Frame-based hierarchy as

shown in Figure 6.1 and details of relevant frames in the hierarchical structure are

given below.

Junior staff

Junior office staff

ClerkTypistOffice Boy

Figure 6.1. The Frame Hierarchy

A Junior Staff Frame:

Slot Name Value Type Demon
Job Grade Junior Staff String
Office Hours 9 am – 5 pm Time
Qualification Requirement Five passes in HKCEE String
Salary Pay Scale Point 1 to Point 10 String
Department General Secretariat String
Annual leave 21 days Integer
Father Frame -
Son Frame Junior Office Staff

Table 6.1. A Junior Staff Frame

 77

A Junior Office Staff Frame:

Slot Name Value Type Demon
Job Grade Junior Office Staff String
Name String
Address and Telephone String
Hong Kong Identity Card
Number (HKID)

 String IF possess HKID
THEN Privilege is
Local ELSE
Privilege is
Overseas

Privilege Local /
Overseas

Sex M/F
*Office Hours 9 am - 5 pm Time
*Qualification Requirement Five passes in HKCEE String
*Department General Secretariat String
*Salary Pay Scale Point 1 to Point 10 String
Present Salary Point Integer Present Salary

Point must
between 1 to 10
inclusive.

Years of Service Integer
*Annual leave 21 days Integer
Leave taken Integer
Leave balance Integer Leave balance =

Annual leave -
Leave taken

Knowledge of Work G/M/L
(Good,
Medium,
Low)

Acceptance of Responsibility G/M/L
Organization of Work G/M/L
Initiative G/M/L
Relations with Colleagues G/M/L
Relations with Public G/M/L
Expression on Paper G/M/L
Oral Expression G/M/L
Supervisory Skills G/M/L
Leading Skills G/M/L
Performance G/M/L
Experience G/M/L
Ability G/M/L
Quality of Services G/M/L

 78

Seniority G/M/L
Promotion Yes

/Wait
/Reject

Father Frame Junior Staff
Son Frame Clerk, Typist and

Office boy

* denote slots inherited from parent frame

Table 6.2. A Junior Office Staff Frame

A Clerk frame is similar to a Junior Office Staff frame except that more detailed

information about the various types of Clerk duties are included such as Purchasing

Clerk, Book Keeping Clerk, Sales Clerk, Inventory Clerk, Customer Services Clerk,

Data Entry Clerk...etc. For the purpose of this modelling exercise, we can treat the

Class Junior Office Staff as the common job grade in the organization, and the Class

Clerk, Office Boy and Typist as specific job categories all belonging to the same job

grade. Any new employment regulations and promotion rules that apply to Junior

Office Staff grade will be applicable to all Clerks, Office Boys and Typists in the

organization. The major problems of verifying this HES is due to the fact that some

rules are applicable to the general class (Super Class: Junior Office Staff) and

through inheritance these rules are applicable to specific classes as well (Classes:

Clerks, Office Boy and Typists). Anomalies exist whenever rules specifically

applied to a class are in conflict with those rules that are applied to their superclass.

Furthermore, these rules may be in a subsumed situation and some of them may be

unreachable. We will illustrate how to detect them in the following sections.

First, we model the above example using our proposed methodology described in

previous chapters. It is noted that a frame is equivalent to a data structure with

various type declarations (or an object with different attributes). Demons are

declared as methods or procedures within some frame. In the above Expert System

example, the two frames are Class frames. Each individual clerk's information is

inferred by the creation of a clerk frame instance. The data value of Clerk Name,

Sex, Address...etc are input via the user interface. The data values and demons in the

 79

slots with a * are inherited from the parent frame; the data value of Privilege and

Leave balance are updated by firing the demons in HKID and Leave balance. The

data values for slots between Knowledge of Work and Leading Skills inclusively are

input by the individual clerk's supervisor at the beginning of the inference process.

The data value of Performance, Experience, Ability, Quality of Services and

Seniority are being inferred by the execution of the rules pre-defined earlier by the

personnel manager of the organization. The goal is to find out the data value of the

slot Promotion, which can be inferred by forward chaining or backward chaining

within the rule sets. (Over 100 rules were constructed for the original Expert System

based on the Multiple Criteria Decision Model). Detail data structure of a clerk

token and some typical rules are given as follows:

A clerk token's colour is:

Color AA = string; (all text strings)

Color BB = with Local | Overseas; (colours explicitly specified)

Color CC = with Male | Female;

Color DD = time; (date)

Color EE = integer with 0..10; (between 0&10)

Color FF = integer;

Color GG = with Good | Medium | Low;

Color HH = with Yes | Wait | Reject;

Color II = list AA with 4; (a list of four strings)

Color JJ = list AA with 3;

Color KK = list FF with 5;

Color LL = list GG with 15;

Color MM = with Clerk | Typist | Office Boy;

Color NN = product II * BB * CC * DD * JJ * KK * LL * HH; (all tuples

(i,b,c,d,j,k,l,h) where i∈II, b∈BB,....h∈HH)

Color OO = with Yes | No;

 80

Color PP = product OO * KK; (for state token, the first variable o∈OO is

the state of the predicate, (i.e. if the value is Yes, it denotes

that the predicate is true, else if the value is No, the negation

of the predicate is true. The second variable k∈KK is to

record which class object has fired the rule))

Var i:II; var b:BB; var c:CC; var d:DD; var j:JJ; var k:KK; var l:LL; var h:HH; var

clerk: NN; (var denotes variable declaration which introduces one or more variables.

Here we have one variable, clerk, which is with colour NN. We may use var clerk1,

clerk2, clerk3: NN for declaring three different clerks for example.)

Some typical rules are :

Rule 1: IF X is a junior office staff
 AND X's quality of service is Good
 AND X's seniority is High
 THEN X's promotion is Yes.

Rule 2: IF X is a clerk
 AND X's quality of service is Good
 AND X's seniority is High
 THEN X's promotion is Yes.

Rule 3: IF X is a clerk
 AND X's quality of service is Good
 AND X's seniority is High
 AND X is a local citizen
 THEN X's promotion is Yes.

Rule 4: IF X is a clerk
 AND X's year of service is greater than Five
 THEN X's seniority is Not High.

Rule 5: IF X is a junior office staff
 AND X's year of service is greater than Five
 THEN X's seniority is High.

 81

Rule 6: IF X is a clerk
 AND X's knowledge of work is Not Good
 AND X's English is Not Good
 THEN X needs to attain training course.

Rule 7: IF X is a junior office staff
 AND X needs to attain training course
 THEN X's experience is Low.

Rule 8: IF X is a clerk
 AND X is a junior office staff
 THEN X is entitled to 14 days annual leave.

Rule 9: IF X is an office boy
 AND X needs to attain training course
 THEN X is on Probation.

Rule 10: IF X is a junior office staff
 THEN X is required to do typing.

Rule 11: IF X is required to do typing
 THEN X is a clerk.

Rule 12: IF X is a clerk
 THEN X is a junior office staff.

These rules can be rewritten as:

Rule 1: A∧∧ B∧∧ C⇒⇒ X

Rule 2: A1∧∧ B∧∧ C⇒⇒ X

Rule 3: A1∧∧ B∧∧ C∧∧ D⇒⇒ X

Rule 4: A1∧∧ E⇒⇒ ¬¬C

Rule 5: A∧∧ E⇒⇒ C

Rule 6: A1∧∧ ¬¬F∧∧ ¬¬G⇒⇒ Y

Rule 7: A∧∧ Y⇒⇒ H

Rule 8: A1∧∧ A⇒⇒ K

Rule 9: A2∧∧ Y⇒⇒ Z

Rule 10: A⇒⇒ L

Rule 11: L⇒⇒ A1

 82

Rule 12: A1⇒⇒ A

Where the meanings of the literals used in the above rules are as follows:

A = Junior Office Staff

A1 = Clerk

A2 = Office Boy

B = Quality of service is Good

C = Seniority is High

¬¬C= Seniority is Not High

D = Local citizen

E = Years of service is greater than Five

¬¬F = Knowledge of work is Not Good

¬¬G= English is Not Good

H = Experience is Low

K = Entitled to 14 days annual leave

L = Required to do Typing

X = Promotion is Yes

Y = Needs to attain training course

Z = On Probation

The Hybrid Expert System is represented by a State Controlled Coloured Petri Net

shown in Figure 6.2, according to the methodology proposed in the previous

chapters. Note that for simplicity, the self-loop associated with each input place is

not shown in the net. The rules are labelled R1 to R12. The inheritance relations are

represented by T1 to T3. S1 to S7 represent the predicates of these rules.

To illustrate the application of our formal methodology, the net in Figure 6.2 are

representing the followings:

 83

R1

R
2

R
3

S1

R
4

S2

R5

 Class A
(Junior Office Staff)

Class AA
(Class Junior Staff)

Class A1 (Clerk)

junior office staff tokenclerk tokenstate token

ClassA3
(Typist)

Class A2
(Office Boy)

R12

R8

R
6

S3

S4

S5

S6

S7

R7

R9

R10
f (x)

1 0 f
(y)

1
0

f(x)
7

f(y)
8

f(x)8

f(x)
8

f (
y

)
9

f (x
)

9

f(x
)

9

f(x
)

6

f(x)
4

f(x
)

3

f(
x)

2

f
(x

)
1

2
f

(y
)1

2

f(
y)

2

f(x)1

f(y)1

f(y)5

f(x)5

f
(

y
)

3 f(y)
4

f(
y)

6

f (x)
1

1

f (y)
1 1

f
(

y
)

7

f
(

x
)

7

R11

T0

In
(x

)
0

In
(y

)
0

In
(x

)
1

In
(y

)
1

In
(y

)
3

In(y)
2

In(x)
2

In
(x

)
3

T2

T1

T3

Figure 6.2. SCCPN representation of the given HES

Σ = { Color A, Color B, …Color P}, sixteen colour sets used,

P = {Pc, Pr} a finite set of places,

Pc = {Junior Staff, Junior Office Staff, Office Boy, Typist and Clerk }, five

places that model the classes of the HES,

Pr = { ClassA, ClassA1, S1, S2, S3,…S7}, nine places that model the

predicates of the production rules,

Pc∩Pr : the intersection of Pc∩Pr ={ClassA, ClassA1}, represents those IS-A

predicates of the rule sets attached to the specific classes

T = { Tc, Tr }, a finite set of transitions,

Tc = {T0, T1, T2, T3}, four transitions that are connected to and from class

places,

Tr = { R1, R2, R3, ….R12}, twelve transitions that are connected to and from

predicate places,

 84

Tc∩Tr=∅,

D = { d1, d2, ..., dn }, a finite set of predicates, |Pr| = |D|, n≥1,

F = { f1, f2, ..., fn }, a finite set of classes, |Pc| = |F|, n≥1,

A = { a1, a2, ..., ak }, a finite set of arcs, k ≥ 1, P ∩ T = P ∩ A = T ∩ A = ∅,

N : A → P×T∪T×P, a node function, it maps each arc into a pair where the first

element is the source node and the second is the destination node, the two

nodes have to be of different kinds. The node functions can be further

classified into the following eight different types:

Inheritance : { Ãc, Äc, Ãs, Äs} where

Ãc(t)= {ClassAA if T0, ClassA if T1, ClassA if T2 and ClassA if T3}

Äc(t)= {ClassA if T0, ClassA1 if T1, ClassA2 if T2 and ClassA3 if T3}

Ãs(t)= {ClassAA if T0, ClassA if T1, ClassA if T2 and ClassA if T3}

Äs(t)= {ClassA if T0, ClassA1 if T1, ClassA2 if T2 and ClassA3 if T3}

Predicate : {Õ c, Öc, Õs, Ös} where

Õc(t)=














+
++

121,117

,10,932

,81,73

,61,5,41

,31,21,1

RifARifS
RifClassARifSClassA

RifClassAClassARifSClassA
RifClassARifClassARifClassA
RifClassARifClassARifClassA

Öc(t)=










12,111,10

7,95,84,76

,63,52,42

,31,21,11

RifClassARifClassAR

ifSRifSRifSRifS
RifSRifSRifS

RifSRifSRifS

Õs(t)=














+
++

121,117

,10,932

,81,73

,61,5,41

,31,21,1

RifARifS

RifClassARifSClassA
RifClassAClassARifSClassA

RifClassARifClassARifClassA
RifClassARifClassARifClassA

 85

Ös(t)=










12,111,10

7,95,84,76

,63,52,42

,31,21,11

RifClassARifClassAR
ifSRifSRifSRifS

RifSRifSRifS
RifSRifSRifS

C : P→Σ, a colour function, it maps each place into a colour set, {Color N + Color

P} for all places

E(a) = {In0(x), In0(y), ..In3(x), In3(y); and f1(x), f1(y),…f12(x), f12(y)}

I = The initial junior staff token and state token in ClassA.

6.2. Analysis of the Personnel Selection System using SCCPNs

The major analysis technique, within the context of Expert System verification, is

the use of reachability tree which represents the reachability set of the SCCPN (or

occurrence graph in (Jensen, K., 1995,1996)'s terminology). The basic idea behind is

to construct a tree/graph containing a node for each reachable marking and an arc for

each occurring binding element. In Expert System verification, it refers to

exhaustively exploring all the useful and relevant interactions of predicates within

the model. From a given initial state, all possible transitions are generated, leading to

a number of new states. This process is repeated for each of the newly generated

states until no new states are generated. Obviously such a tree/graph may become

very large even for a small SCCPN. However, recent research (Li, X. et al., 1993;

Christensen, S. & Petrucci, L., 1995; Kemper, P. 1996; Kondratyev, A. et al, 1996)

has been taken to allow for a partial examination of a subportion of the reachability

graph, therefore reduce the efforts in deriving possible solutions. For simplicity

reason, without taking any transition conditions or transition operations into

consideration, we concentrate our analysis by enabling a specific transition (i.e.

corresponds to some meaningful initial facts) and then check the reachability set for

any irregularities of the associated predicate places. The checking of the

irregularities and anomalies can be done exhaustively or heuristically by adequately

initiation of the sequence of transitions and closely examining the reachability

markings. The problems can be located through the trace of the sequence of

 86

transitions which may provide alternative or multiple marking effects. Therefore, we

propose the following algorithm for generating the reachability set of a SCCPN as

follows:

 Reachability Set = {M0}, where M0 is the initial marking
 Reachability Graph ={}
 UnfiredMarkingList = [M0]
 repeat
 select some marking M in the UnfiredMarkingList
 for each transition t which is enabled at M
 do begin
 generate marking M' which results from
 firing t at M
 if M' is not an element of ReachabilitySet
 then
 begin
 add M' to ReachabilitySet
 append M' to UnfiredMarkingList
 end
 add arc (M,T,M') to ReachabilityGraph
 end
 until UnfiredMarkingList is empty

In most automated SCCPN simulations, the first element of the UnfiredMarkingList

is always selected, and so the reachability graph is produced in breadth-first order.

In verifying the HES against the problems of correctness, consistency, and

completeness, we use an automated computer aid for the generation of the

reachability set. The SCCPN is initialized by placing tokens in the place and setting

the values of data variables. The operation of the net can be investigated by the

program either in a step by step manner or in an automatic mode.

6.2.1. Detection of Errors and Anomalies in HES

 87

6.2.1.1. Correctness

6.2.1.1.1. Subsumption

Analysis of the network will show the presence of subsumption in the HES (Figure

6.3a). Suppose we have a Junior Office Staff with good quality of service and high

seniority, we want to infer whether he should be promoted or not in our HES. This

inference process will be as follow: initially, we have a Junior Office Staff token in

the input place Class A (Junior Office Staff), and this token's slot "quality of service

is Good" is TRUE and this token's slot "seniority is High" is also TRUE. This

enables both R1 and T1 to be fired, as a result, a Clerk token is created in place

Class A1 (clerk) by the T1 transition and a Junior Office Staff token is created in S1

by f1(y). Next, R2 is also enabled since R2's antecedent is the same as R1. After

firing the two rules, S1 consists of both a Junior Staff Token and a Clerk token.

Figure 6.3a. SCCPN representation showing the events of subsumption, Case I

 88

Figure 6.3b represents the reachability graph as the results of the execution of R1

and R2. The graph is a directed graph from which we can see the markings M1, M2,

M3, M4 and M5 are reachable from marking M0. In marking M5, both a Clerk token

and a Junior Office Staff token is created in S1, by examining the slot "promotion"

in this two tokens reveals that they have the same value, i.e. 'YES'. Since in the place

Class A1, the Clerk token inherited all his attributes from the initial Junior Office

Staff token, this means that R1 and R2 are using the same set of initial attributes for

inference, therefore, we can conclude that R2 is subsumed by R1 because R2 is just

a more specific case of R1. (i.e. Clerk is the child of Junior Office Staff).

Figure 6.3b. Reachability graph due to the firing of R1 and R2

In general, if we have two rules:

 Rule X : A∧B⇒C

 Rule Y : A'∧B⇒C

If the value of slot A inherits to slot A' (i.e. A is the parent and A' is the child), then

Rule Y is subsumed by Rule X because Rule Y is just a more specialized case of

Rule X. (i.e. whenever Rule X succeeds, Rule Y will always succeed). In a complex

frame hierarchy which allows for multiple inheritance, checking for subsumption

 89

becomes more difficult because of ambiguity in the behaviour of multiple inherited

subclasses.

Next, we consider a more complicated subsumption situation as in Figure 6.4a.

Suppose initially, we have a junior office staff token in the input place Class A

(Junior Office Staff), with slot "quality of service is Good" is TRUE, slot "seniority

is High" is TRUE and slot "local citizen" is also TRUE. This enables both R1 and

T1 to be fired, as a result, a Clerk token is created in place Class A1 (Clerk) by the

T1 transition and a Junior Office Staff token is created in S1 by f1(y). Next, R2 and

R3 are also enabled. After firing either one of the two rules, S1 consists of both a

Junior Staff Token and a Clerk token.

Figure 6.4a. SCCPN representation showing the events of subsumption, Case II

 90

Figure 6.4b represents the reachability graph as the results of the execution of Rule1

followed either by R2 or R3. Since M5 is reachable from M4 either by R2 or R3, by

examining the slot "promotion" in the Clerk token and Junior Office Staff Token

reveal that they have the same value, i.e. 'YES'. Therefore, Rule 3 is subsumed by

Rule 2 because the two transitions R2 and R3 can be enabled in A1 and their final

marking is the same.

Figure 6.4b. Reachability graph due to the firing of R1, R2 and R3

6.2.1.1.2 Cyclicity

If a circular loop can result when a set of rules are fired, then these rules are

considered as a circular rule set. For example:

 Rule X : B⇒C

 Rule Y : C'⇒B

If slot C is the parent of C', Rule X and Rule Y will form a circular loop. If more

than one level of class hierarchy is involved, an implicit cycle may exist where the

loop is formed from several rules and different frames' slots in the frame hierarchy.

 91

Figure 6.5a. SCCPN representation showing the events of cyclicity.

In our example, Rule 10, Rule 11 and Rule 12 will form such a cyclicity. In Figure

6.5a, if we have a Junior Office Staff token in Class A then R10 is enabled and fired,

this will further enable R11 and a Clerk token is deposited in A1 (Clerk). As a result,

R12 will be enabled and a Junior Office Staff token will be deposited in Class A.

This process will continue within a loop with no end. Reachability analysis (Figure

6.5b) will show that there exists an infinite tree which has the branching pattern

repeated after four levels. (Markings M7, M13 and M12 are repeated in cycles)

 92

Figure 6.5b. Reachability graph due to the firing of R10, R11 and R12

6.2.1.2. Consistency

6.2.1.2.1 Contradiction

If two rules have duplicated antecedents but in the consequence a clause is both

affirmed and denied, we refer the situation as inconsistency. The following two rules

are in conflict.

 Rule X : A∧B⇒C

 Rule Y : A'∧B'⇒¬C

 93

Since both A' and B' are slots values inherited from his parent, Rule X is in conflict

with Rule Y. In practical Expert System development, this problem is dealt with by

the concepts of overriding (i.e. Rule Y overrides Rule X). This overriding behaviour

is normally considered as an anomaly unless it is with the expert's true intent. In our

example, Rule 4 and Rule 5 are in conflict. In Figure 6.6a, if we have a Junior Office

Staff token to start off in Class A with "year of service greater than five years", after

firing Rule 4, then his seniority is High. A token clerk will be created in Class A1

with the same attributes, but this time after firing Rule 5, his seniority is Not High.

This situation is revealed when we check the reachability graph in Figure 6.6b.

Marking M5 is reachable from M0. In M5, we got both a Clerk token and a Junior

Office Staff token in S2. When examining the state of S2 in these two tokens, we

could see one is confirmed and the other is denied. This reflects that we have two

conflicting rules applied to two different Object Classes.

Figure 6.6a. SCCPN representation showing the events of contradiction

 94

Figure 6.6b. Reachability graph due to the firing of R4 and R5

6.2.1.2.2. Unnecessary IF condition

If we have two rules which contain the same conclusion but with conflicting

conditions, then this situation is referred to as having unnecessary IF conditions in

the knowledge base. E.g. consider the following two rules:

 Rule X : A∧B⇒C

 Rule Y : A∧¬B⇒C

These two rules can be combined to form a simple rule:

 Rule X : A⇒C

 95

Figure 6.7a. SCCPN representation showing the events of unnecessary IF condition

The second IF condition becomes unnecessary. In our example HES (Figure 6.7a),

additional unnecessary conditions can occur when an action in one rule becomes a

condition of another rule and these two rules' condition parts are in an inheritance

relationship (i.e. Rule 6 and Rule 7).

Consider the following two rules:

 Rule X : A∧B⇒C

 Rule Y : A'∧C⇒D

When Rule Y is backward chained to Rule X, (i.e. inorder that C is true, we have to

check whether A is true and B is true.) Rule Y is equivalent to the testing of A', A

and B:

 96

 Rule Y : A'∧(A∧B)⇒D

Since, A' and A are in inheritance relation, we may want to remove either the

condition IF A' or IF A.

Refer to our example, when we check the reachability graph (Figure 6.7b) generated

by the initial Junior Office Staff token in Class A, we only have three markings

which S6 never gets inferred with any token. It is because R6 and R7 are indirectly

asking the variable X to be instantiated, both to Junior Office Staff and Clerk

simultaneously. Therefore, we have an unnecessary IF condition for X. (i.e. IF X is a

Junior Office Staff AND IF X is a Clerk.)

Figure 6.7b. Reachability graph due to the firing of R6 & R7

6.2.1.3 Completeness

6.2.1.3.1 Unreachability, Case I

When a rule requires an object instance to be bound with two mutually exclusive

classes, or two classes in an inheritance hierarchy. This rule cannot be fired. E.g.

 Rule X : A∧A'⇒C

 Rule Y : A1∧A2⇒C

 97

Figure 6.8a. SCCPN representation showing the events of Unreachability

In Rule X, if A is the parent and A' is the Child, it is not possible for an object

instance to be both belonging to Class A and Class A'. Similarly, in Rule Y, A1 and

A2 are both children of A, it is not possible for an object instance to both belonging

to two different mutually exclusive classes. Referring to our example (Figure 6.8.a),

Rule 8 is found to be in this situation. Examining the reachability tree (Figure 6.8b),

no token is ever deposited in S4 in all reachability Markings from M0.

Figure 6.8b. Reachability graph due to the firing of R8

 98

Furthermore, if the antecedent part of a rule cannot be satisfied because it contains a

literal which cannot be matched to a fact or a literal in the consequent part of any

other rule, then this case also leads to Unreachability.

6.2.1.3.2 Unreachability, Case II

Figure 6.9a. SCCPN representation showing the events of Unreachability

Consider a more complicated situation which involves chain rules (Figure 6.9a),

Rule 6's action part will forward chain to Rule 9's condition part.

Now this causes an unreachable condition because Rule 6's condition part and Rule

9's condition parts are having mutually exclusive class instantiation.

 99

Figure 6.9b. Reachability graph due to the firing of R6 & R9

By examining the reachability graph in Figure 6.9b it shows that S5 never has any

token reached from Marking M0. This means this rule is unreachable.

6.3. Time and Space Complexity of the SCCPN Methodology

When the SCCPN methodology is used to detect anomalies of the above Personnel

Selection Expert System, some measurements are necessary to assess the real

performance of the methodology. Two of the most important considerations are how

much memory (space complexity) it will use to construct the full Occurrence Graph

and how long (time complexity) it will take to search for a particular marking in the

nodes of the Occurrence Graph? Other important issues include the effort used to

transform the rules and object hierarchy into places and transactions and the effects

of choosing different search strategy.

6.3.1. Derivation of the Occurrence Graphs

 100

Given a SCCPN, the derivation of the Occurrence Graph depends on a number of

parameters, such as the number of places and transactions, the arc expressions, the

number of token types and the initial markings. Refer to the Personnel Selection

Expert System, as can be seen from Figure 6.3 to Figure 6.9, the size and the shape

of the Occurrence Graph only depend on the initial markings of the SCCPN. (i.e. the

characteristics of the Junior Office Staff). It is because there are no changes of the

production rules and the object hierarchy used.

The derivation of the Occurrence Graphs of the Personnel Selection Expert System

can be divided into the following two steps: (1) Calculate the total number of

Occurrence Graphs generated from all possible initial markings; (2) For each initial

marking, calculate the efforts required to derive that particular Occurrence Graph.

Therefore, using the worst-case analysis, the total number of Occurrence Graphs

generated in this example is equal to the total number of possible combination of slot

values between the Slot Knowledge of Work and Leading Skills inclusively.

 = (Possible values each slot could have) to the power of (total number of slots)

 = 39

 = 19,683

Therefore, there are totally 19,683 different Junior Office Staff tokens for initial

markings, which corresponds to 19,683 Occurrence Graphs being generated. In

order to reduce the number of Occurrence Graphs being examined, we can use only

those meaningful Junior Office Staff tokens. (e.g. those with at least six "GOOD"s

between the Slot Knowledge of Work and Leading Skills. This reduced the number

of initial markings to:

 = (six "Good") + (seven "Good") + (Eight "Good") + (Nine "Good")

 = 23*C(9,6) + 22*C(9,7) + 2*C(9,8) + 1

 = 672 + 144 + 18 + 1

 = 835

 101

Therefore, using the above meaningful tokens as initial markings, we can reduce

over 95.7% of our efforts in generating and examining the Occurrence Graphs.

Secondly, the efforts required to derive the Occurrence Graph of the Personnel

Selection Expert System, using the worst-case analysis, is as follows:

We convert the SCCPN in Figure 6.2. into two matrices, Di, and Do, which are used

to represent the input and output functions for the class tokens and state tokens

respectively.

The Di of the Personnel Selection Expert System SCCPN is:

 T0 T1 T2 T3 R1 R2 R3 R4
ClassAA - - - - - - - -
ClassA [j,s] - - - - - - -
ClassA1 - [c,s] - - - - - -
ClassA2 - - [o,s] - - - - -
ClassA3 - - - [t,s] - - - -

S1 - - - - [j,s] [c,s] [c,s] -
S2 - - - - - - - [c,s]
S3 - - - - - - - -
S4 - - - - - - - -
S5 - - - - - - - -
S6 - - - - - - - -
S7 - - - - - - - -

Table 6.3a. Input functions for the class tokens and control tokens (T0-R4)

f = Junior Staff j = Junior Office Staff c = Clerk o = Office Boy

t = Typist

 102

 R5 R6 R7 R8 R9 R10 R11 R12
ClassAA - - - - - - - -
ClassA - - - - - - - [c,s]
ClassA1 - - - - - - [j,s] -
ClassA2 - - - - - - - -
ClassA3 - - - - - - - -

S1 - - - - - - - -
S2 [j,s] - - - - - - -
S3 - [c,s] - - - - - -
S4 - - - [j/c,s] - - - -
S5 - - - - [c/o,s] - - -
S6 - - [j/c,s] - - - - -
S7 - - - - - [j,s] - -

Table 6.3b. Input functions for the class tokens and control tokens (R5-R12)

Detection of any form of error in the Personnel Selection Expert System will require

the generation of a reachability tree for close examination. All markings that are

reachable from a given marking will need to be stored for examination. Given an

initial marking M0, the effort, in the worst case, to derive the next marking will

involve the following operations:

Identify enabled transitions requires comparison between M0 and the Markings in

Di.

= (Number of tokens compared) * (Number of slots in each token)

= (16 class tokens) * (16 slots) + (16 state tokens) * (2 slots)

= 256+32

= 288 comparisons

Similarly, the creation of the next state marking requires substitutions of token

colours with the values in the output matrix Do.

The Do of the Personnel Selection Expert System SCCPN is:

 103

 T0 T1 T2 T3 R1 R2 R3 R4
ClassAA [f,s] - - - - - - -
ClassA - [j,s] [j,s] [j,s] [j,s] - - -
ClassA1 - - - - - [c,s] [c,s] [c,s]
ClassA2 - - - - - - - -
ClassA3 - - - - - - - -

S1 - - - - - - - -
S2 - - - - - - - -
S3 - - - - - - - -
S4 - - - - - - - -
S5 - - - - - - - -
S6 - - - - - - - -
S7 - - - - - - - -

Table 6.4a. Output functions for the class tokens and control tokens (T0-R4)

f = Junior Staff j = Junior Office Staff c = Clerk o = Office Boy

t = Typist

 R5 R6 R7 R8 R9 R10 R11 R12
ClassAA - - - - - - - -
ClassA [j,s] - [j,s] [j,s] - [j,s] - -
ClassA1 - [c,s] - [c,s] - - - [c,s]
ClassA2 - - - - [o,s] - - -
ClassA3 - - - - - - - -

S1 - - - - - - - -
S2 - - - - - - - -
S3 - - [c,s] - [c,s] - - -
S4 - - - - - - - -
S5 - - - - - - - -
S6 - - - - - - - -
S7 - - - - - - [j,s] -

Table 6.4b. Output functions for the class tokens and control tokens (R5-R12)

Therefore, the number of substitutions required is:

= (Number of tokens substituted) * (Number of slots in each token)

= (19 class tokens) * (16 slots) + (19 state tokens) * (2 slots)

= 304 + 38

= 342 substitutions

 104

The total number of comparisons and substitutions required in each derivation of the

next state markings are 342 + 288 = 630 in the worst-case.

6.3.2. Transformation of Rules and Object hierarchy to SCCPN

Since there are 12 rules having a total of 26 conditions and 12 actions, the maximum

number of predicate places is (26+12) = 38 (storage spaces). There are 5 object

classes in the hierarchy, therefore, we need another 5 object places. The total number

of storage spaces for the predicate and class places of this Personnel Selection

System are 43.

The storage spaces required for the tokens are calculated as follows:

= (Number of classes) * (Number of Places) * (Number of slots in each token)

= 5 * 43 * 16

= 3,440 (storage spaces).

Therefore the total storage spaces required are 3,483.

6.3.3. Evaluation function for particular marking

After generation of the Occurrence Graph, each node will be evaluated by a

function. The purpose of this function is to check for the existence of a particular

marking within a node. For a function that searches for Subsumption within the

HES, it is as follows:

 105

SearchSubsumption (SearchArea, StartNode)
Begin
 Result:=StartNode; Found:=FALSE
 For all nodes∈SearchArea Do
 Begin
 If ParentToken and ChildToken Exists in Result THEN
 Begin
 Compare Slots Value
 IF Parent.Slots.Value = Child.Slots.Value THEN Found:=TRUE
 End
 End
End.

SearchArea specifies the part of the Occurrence Graph that should be searched. It is

often the subset that is minimally enabled by the meaningful initial markings.

6.3.4. Complexity measures for the Personnel Selection Expert System SCCPN

6.3.4.1. Correctness

6.3.4.1.1. Subsumption

Refer to the Occurrence Graph for Subsumption Case I, Figure 6.3b, the space

required is:

= (Total no. of nodes)*(Storage spaces for each node)

= 6*3,483

= 20,898

The computation effort required for comparisons and substitutions is:

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution)

= 7*630

= 4,410

 106

Refer to the Occurrence Graph for Subsumption Case II, Figure 6.4b, the space

required is:

= (Total no. of nodes)*(Storage spaces for each node)

= 6*3,483

= 20,898

The computation effort required for comparisons and substitutions is:

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution)

= 9*630

= 5,670

6.3.4.1.2. Cyclicity

Refer to the Occurrence Graph for Cyclicity, Figure 6.5b, the space required is:

= (Total no. of nodes)*(Storage spaces for each node)

= 15*3,483

= 52,245

The computation effort required for comparisons and substitutions is:

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution)

= 29*630

= 18,270

6.3.4.2. Consistency

6.3.4.2.1. Contradiction

Refer to the Occurrence Graph for Contradiction, Figure 6.6b, the space required is:

= (Total no. of nodes)*(Storage spaces for each node)

= 6*3,483

= 20,898

 107

The computation effort required for comparisons and substitutions is:

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution)

= 7*630

= 4,410

6.3.4.2.2. Unnecessary IF Condition

Refer to the Occurrence Graph for Unnecessary IF Condition, Figure 6.7b, the space

required is:

= (Total no. of nodes)*(Storage spaces for each node)

= 3*3,483

= 10,449

The computation effort required for comparisons and substitutions is:

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution)

= 2*630

= 1,260

6.3.4.3. Completeness

6.3.4.3.1. Unreachability

Refer to the Occurrence Graph for Unreachability Case I, Figure 6.8b, the space

required is:

= (Total no. of nodes)*(Storage spaces for each node)

= 2*3,483

= 6,966

The computation effort required for comparisons and substitutions is:

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution)

 108

= 1*630

= 630

Refer to the Occurrence Graph for Unreachability Case II, Figure 6.9b, the space

required is:

= (Total no. of nodes)*(Storage spaces for each node)

= 5*3,483

= 17,415

The computation effort required for comparisons and substitutions is:

= (Total no. of comparisons and substitutions) * (Steps in comparison + substitution)

= 6*630

= 3,780

From the above calculations, the total effort involved in finding the anomalies of the

Personnel Selection Expert System requires 149,769 storage spaces and 38,430

computations.

6.3.5. Worst Case Analysis of Occurrence Graphs

The above space and time complexity analysis is based on the concept of worst-case

analysis. As can be seen from the above calculations, the amount of work done

cannot be described by a single number because the number of steps performed is

not the same for all inputs. According to (Baase, S., 1988), worst case analysis of an

algorithm is defined as:

 W(n) = max {t(I) | I ∈Dn}

where W(n) is the maximum number of basic operations performed by the algorithm

on any input of size n. Dn is the set of inputs of size n for the problem under

 109

consideration, and I be an element of Dn. t(I) is the number of basic operations

performed by the algorithm on input I.

Refer to the Occurrence Graphs of the Personnel Selection Expert System, Dn is the

sets of meaningful Junior Office Staff tokens, I is a particular Junior Office Staff

token, t(I) is the number of comparison and substitutions required on input I and

W(n) is the maximum computations generated over the input set I. (i.e. W(n) = the

detection of Cyclicity which requires 52,245 storage spaces and 18,270

computations.)

In practical applications of Occurrence Graphs analysis, as reported by (Jensen, K.,

1995,1997), the time and space complexity could be significantly reduced since a lot

of the markings in an Occurrence Graph will be almost identical. The solution is to

avoid duplication of identical parts by representing each marking as a set of pointers,

as shown in Figure 6.10. This means each multi-set only appears once - even though

it may appear in many different marking nodes.

Markings
Records

 Page
Records

 Multi-Set
Records

M0 Page 1.1 MS1
M1 Page 1.2
M2 :
: :
: : : MS2
: : :
: : :
: : Page 2.1
Mk : : :
: : :
: :
: Page 3.1
: : : :

Figure 6.10. Representation of a set of markings

 110

The above method saves a lot of space, as well as the time required to evaluate a

particular marking. Nevertheless, the full exploration of the time and space reduction

methodologies of Occurrence Graph analysis is beyond the scope of this research,

therefore, our current analysis only concentrated on the efforts required for building

the full Occurrence Graphs of the Personnel Selection Expert System for anomalies

detection.

6.4. Summary

In this Chapter, we have applied our SCCPN approach to model a practical

Personnel Selection Hybrid Rule- and Frame-based Expert Systems. The detection

and analysis of the anomalies of system is done by constructing and examining the

reachability tree spanned by the knowledge inference. An algorithm is also given to

generate such a reachability set of the nets. A complexity analysis is conducted to

investigate the performance of the methodology. The complexity includes the effort

to transform the rules and object hierarchy into places and transactions, the

calculation of the size of the Occurrence Graphs, and the time required searching

such Occurrence Graphs for anomalies. Our approach allows for formal verification

of the correctness, consistency, and completeness of the hybrid knowledge base.

 111

CHAPTER 7. FORMAL DESCRIPTION AND

VERIFICATION OF RULE/FRAME-BASED

HES

It has been shown that Hybrid Expert Systems can be modelled by State Controlled

Coloured Petri Nets (SCCPNs). Consequently, we have been able to dynamically

simulate the propagation of rule inference and inherence of object properties in the

hybrid knowledge base and identify some defined anomalies through the analysis of

the reachability tree. To allow for accurate detection of these anomalies, a more

formal definition and discussion of the properties of these anomalies will be given.

Altogether, eight Propositions are derived, each Proposition represents a dynamic

property of the SCCPN, namely: (1) Redundancy, (2) Subsumption, (3) Ambiguity,

(4) Cyclicity, (5a) Contradiction I, (5b) Contradiction II, (6) Deadend, (7)

Unnecessary IF and (8) Unreachability. A set of Occurrence Graph (c.f. Definition

5.11.) properties is defined for each Proposition. These properties act as the

necessary and sufficient conditions for the existence of the corresponding dynamic

properties in the SCCPN.

Therefore, if we want to formally verify whether a given Hybrid Expert System

consists of, for example, Redundancy or not, we only have to investigate the HES's

corresponding SCCPN, and thus we shall consider those Occurrence Graph

properties under the Redundancy Proposition. If those properties exist, we can

deduce that the SCCPN consists of Redundancy. Since the SCCPN is the model of

the given Hybrid Expert System, therefore, we have verified the HES.

7.1. Correctness: Forward Case Proof

The problems of correctness about a rule set applied to an object hierarchy might

involve redundancy, subsumption, ambiguity, and cyclicity as described in terms of

predicate formulae in Chapter 4. These are observable either between a pair of rules

 112

applied to an object hierarchy or rules that represent chains of inference in the object

hierarchy.

7.1.1. Redundancy

Proposition 7.1. For a given marking M0, that minimally enables a nontrivial

transition sequence σi, iff the HES has incorrect rules causing redundancy between

the parent and child object classes, then ∃σj, ∃k, such that these sequences have the

following properties:

(i) σi∩σj=∅;

(ii) Tc∩σi=∅; Tc∩σj≠∅;

(iii) M'=δ(M0,σi), M"=δ(M0,σj);

(iv) Msk=0, '
skM >0, "

skM >0;

(v) Mck=0, '
ckM >0, "

ckM >0;

(vi) ∃(prk,cck)'∈ '
ckM , ∃(prk,cck)"∈ "

ckM

(vii) (prk,cck)'=(prk,cck)"

Explanation: Property (i) denotes that there should exist two nontrivial transition

sequences and they are disjoint one another. Property (ii) denotes that transition

sequence σi does not involve any inheritance while transition sequence σj involves

inheritance. Property (iii) denotes that marking M' is reachable from initial marking

M0 by the first sequence σi and marking M" is reachable from M0 by the second

sequence σj. Property (iv) denotes that no state token is deposited in Place k in the

initial marking. While in markings M' and M", there is at least one state token

deposited in Place k. Property (v) is similar to (iv) except that the markings are

referring to class tokens. Property (vi) denotes that there exists a class token element

(prk,cck)' in predicate place k of M'. There is also a class token element (prk,cck)"

which exists in predicate place k of marking M". Property (vii) tells us that the

colour (data value) of predicate k of this two class tokens are the same.

 113

If there exists incorrect rules applied to the object hierarchy of the following cases:

Case (I): Conditions and Actions identical between Parent Class and Child Class.

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

In SCCPN representation, there should exist tr0, tr1 and tc such that

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)

E(tr0,Öc(tr0))=E(tr1,Öc(tr1))

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1),

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1)

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is

minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.

And Mck=1 if pck∈Õc(tr0), 0 otherwise.

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.).

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.).

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled.

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0),

σj=(tc,tr1).

 114

Therefore

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise
tpif rcck

0

)(Ö1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise
tpif rcck

0

)(Ö1 1

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since E(tr0,Öc(tr0))=E(tr1,Öc(tr1)), therefore (prk,cck)'=(prk,cck)"

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0,

"
ckM >0, and (prk,cck)'=(prk,cck)", implying incorrectness with σi=(tr0), σj=(tc,tr1).

Case (II): Chained inference

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

 115

In SCCPN representation, there should exists tr0, and σi=(tc,tr1,tr2,….trj) such that

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)

E(tr0,Öc(tr0))=E(trj,Öc(trj))

Ös(tr(m))=Õs(tr(m+1)) for m=1,2,…..j-1.

Öc(tr(m))=Õc(tr(m+1)) for m=1,2,…..j-1.

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1),

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1),

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t.

σi=(tc,tr1,tr2,….trj) is minimally enabled, i.e., ∀m=1,2,3,….j-1,

then Msk=


 ∈

otherwise

tpif cssk

0

)(Ã1

And Mck=


 ∈

otherwise

tpif ccck

0

)(Ã1

The execution of transition sequence, σi, gives M' s.t. ∀m=1,2,3,….j, Ös(tm)∈Ös(σi)

'
skM =



 ∈

otherwise

)}(),Ö(t{Õpif isssk

0

1 1 σ

And the colour of the class token at Öc(tj)=(prk,cck)'

Since E(Õc(tr0),tr0)=E(Õc(tr1),tr1) - E(φ) + E(Φ), therefore tr0 is enabled.

Let "
ckM =δ(M0,tr0),

 116

"
ckM =



 ∈

otherwise

tpif rcck

0

)(Ö1 0

And the colour of the class token at Öc(tr0)=(prk,cck)"

Since E(tr0,Öc(tr0))=E(trj,Öc(trj)), therefore (prk,cck)'=(prk,cck)"

Since Öc(tr0)=Öc(trj)⊂Öc(σi), thus, for psk∈Ös(trj), Msk=0, '
skM >0, "

skM >0, and for

pck∈Öc(trj), Mck=0, '
ckM >0, "

ckM >0, and (prk,cck)'=(prk,cck)", implying incorrectness

with σi=(tc,tr1,tr2,….trj), σj=(tr0).

7.1.2. Subsumption

Proposition 7.2. For a given marking M0, that minimally enables a nontrivial

transition sequence σi, iff the HES has incorrect rules causing subsumption between

the parent and child object classes, then ∃σj, ∃k, such that these sequences have the

following properties:

(i) σi∩σj=∅;

(ii) Tc∩σi=∅; Tc∩σj≠∅;

(iii) M'=δ(M0,σi), M"=δ(M0,σj);

(iv) Msk=0, '
skM >0, "

skM >0;

(v) Mck=0, '
ckM >0, "

ckM >0;

(vi) ∃(prk,cck)'∈ '
ckM , ∃(prk,cck)"∈ "

ckM

(vii) (prk,cck)"⊆(prk,cck)'

Case (I): Rule X is subsumed by Rule Y (condition part) between Parent Class

and Child Class

 117

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

In SCCPN representation, there should exist tr0, tr1 and tc such that

E(Õc(tr1),tr1) - E(φ)⊂E(Õc(tr0),tr0) - E(Φ)

E(tr0,Öc(tr0))=E(tr1,Öc(tr1))

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1),

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1)

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is

minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.

And Mck=1 if pck∈Õc(tr0), 0 otherwise.

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.).

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.).

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled.

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0),

σj=(tc,tr1).

Therefore

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

 118

'
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 1

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since E(tr0,Öc(tr0))=E(tr1,Öc(tr1)), therefore (prk,cck)'=(prk,cck)"

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0,

"
ckM >0, and (prk,cck)'=(prk,cck)", implying incorrectness with σi=(tr0), σj=(tc,tr1).

Case (II): Rule X is subsumed by Rule Y (action part) between Parent Class and

Child Class.

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

In SCCPN representation, there should exists tr0, tr1 and tc such that

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)

E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0))

 119

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1),

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1)

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is

minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.

And Mck=1 if pck∈Õc(tr0), 0 otherwise.

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.).

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.).

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled.

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0),

σj=(tc,tr1).

Therefore

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

 120

"
ckM =



 ∈

otherwise

tpif rcck

0

)(Ö1 1

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0))

therefore (prk,cck)"⊂(prk,cck)'

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0,

"
ckM >0, and (prk,cck)"⊂(prk,cck)', implying incorrectness with σi=(tr0), σj=(tc,tr1).

Case (III): Rule X is subsumed by Rule Y (condition and action) between Parent

Class and Child Class.

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

In SCCPN representation, there should exists tr0, tr1 and tc such that

E(Õc(tr1),tr1) - E(φ)⊂E(Õc(tr0),tr0) - E(Φ)

E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0))

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1),

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1)

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is

minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.

 121

And Mck=1 if pck∈Õc(tr0), 0 otherwise.

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.).

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.).

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled.

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0),

σj=(tc,tr1).

Therefore

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise
tpif rcck

0

)(Ö1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 1

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0))

therefore (prk,cck)"⊂(prk,cck)'

 122

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0,

"
ckM >0, and (prk,cck)"⊂(prk,cck)', implying incorrectness with σi=(tr0), σj=(tc,tr1).

7.1.3. Ambiguity

For the Hybrid Expert System (HES) to be unambiguous, there can be no

unambiguous input to the rule set which results in having more than one object

classes are being instantiated with subsumed conclusion. Less importantly, there can

be no unambiguous input which will trigger a number of object classes that lead to

the same conclusion. The problem presented by ambiguity increases as the

redundancy and subsumption increase. Therefore, it is useful to consider the sources

of the redundancy and subsumption in the HES. The anomalies could be specifically

identified which might assemble the effect of having an indeterminate rule in the

rule base, that is composed of a set of quasi-separated rules in the form of a number

of immediate possible transitions being modeled by SCCPN. For instance, if there

exists an ambiguous rule

Rule 1: P→Q

that involves disjunction of predicates, (i.e. one of the predicates is the IS-A

predicate), according to the model transformation, the rule could have been

represented by a number of possible immediate transitions in SCCPN, i.e. ∃Γ={tk}

for Rule 1 in the form of:

p1∨ p2∨….. pm → q1∨ q2∨….. qn

where pi∈P for i=1,2,……m,

 qj∈Q for j=1,2,……n,

 123

s.t. Õs(Γ)=Õs(tr0)∪Õs(tr1)∪…..∪Õs(trk),

 Ös(Γ)=Ös(tr0)∪Ös(tr1)∪…….Ös(trk).

Consequently, we emphasize on the verification of incorrectness due to a number of

redundancy and subsumption, that might also demonstrate the existence of

ambiguity in a HES. It may not be our good practice to introduce such anomalies by

introducing any of incorrect rules into the knowledge base. However, the importance

of the verification, in this context, is to allow for a means of demonstrating the

possible inference of an indeterminate rule to the rest of the rules in the HES. In

considering with the problems of ambiguity in SCCPN representation, we will put

our attention on the reachable effect of transition firings in the set Γ upon a given

marking.

Proposition 7.3. For a given marking M0, that minimally enables Γ={σi,σj} for a

nontrivial transition sequence σi, σj, iff the HES has incorrect rules causing

ambiguous conditions of events between different object classes, then ∃k,

∀prk∈Ös(Γ), ∀prk∈Öc(Γ), such that these sequences have the following properties:

(i) σi∩σj=∅;

(ii) M'=δ(M0,σi), M"=δ(M',σj);

(iii) Msk=0, '
skM ≥1, "

skM >1;

(iv) Mck=0, '
ckM ≥1, "

ckM >1;

(v) ∃(prk,cck)'∈ '
ckM , ∃(prk,cck)"∈ "

ckM

(vi) (prk,cck)'=(prk,cck)"

Case (I): Rule with inclusive disjunction of IS-A conditions from different

Object Classes.

 124

Let E(Φa) be the arc expression function of the predicate IS-A member of Object

Class A and

Let E(Φb) be the arc expression function of the predicate IS-A member of Object

Class B.

In SCCPN representation, there should exists Γ={tr0,tr1} such that

Õs(tr0)∩Õs(tr1)=∅, Ös(tr0)=Ös(tr1)=Ös(Γ),

Õc(tr0)∩Õc(tr1)=∅, Öc(tr0)=Öc(tr1)=Öc(Γ),

and

E(Φa)∈E(Õc(tr0),tr0), E(Φb)∈E(Õc(tr1),tr1).

Choose M0 s.t. tr0, tr1 are minimally enabled, therefore, tr0, tr1 are active (i.e., Mck=1

if pck∈Õc(Γ), 0 otherwise and Msk=1 if psk∈Õs(Γ), 0 otherwise).

Without loss of generality, let M'=δ(M0,tr0). Since Õc(tr0)∩Õc(tr1)=∅, there is no

conflict for tr0, tr1 and both transitions will be executed immediately one after the

other. Thus

'
ckM =



 ∈

otherwise

)}(t), Ö(t{Õpif rcrcck

0

1 01

and

'
skM =



 ∈

otherwise

)}(t), Ö(t), Õ(t{Õpif rsrsrssk

0

1 001

And the colour of the class token at Öc(tr0)=(prk,cck)'

 125

As Öc(tr0)=Öc(tr1)=Öc(Γ), Let M"=δ(M',tr1),

"
ckM =



 Γ∈

otherwise
pif ck

0

)(Ö2 c

"
skM =








Γ∈
Γ∈

otherwise

pif

pif

sk

sk

0

)(Õ1

)(Ö2

s

s

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since Öc(tr0)=Öc(tr1)=Öc(Γ), and

E(tr0,Öc(tr0))=E(tr1,Öc(tr1))

therefore (prk,cck)'=(prk,cck)"

Thus for ∀prk∈Ös(Γ), ∀prk∈Öc(Γ), Msk=0, '
skM ≥1, "

skM >1, Mck=0, '
ckM ≥1, "

ckM >1

and (prk,cck)'=(prk,cck)" implying incorrectness with Γ={tr0,tr1}

Case (II): Rule with inclusive disjunction of IS-A actions from different Object

Classes.

Let E(Φa) be the arc expression function of the predicate IS-A member of Object

Class A and

Let E(Φb) be the arc expression function of the predicate IS-A member of Object

Class B.

In SCCPN representation, there should exist Γ={σ0,σ1,σ2} such that

σ0=(tr1,tr2,……trm),

 126

σ1=(tr(m+1),tr(m+2),……tr(m+n)),

σ2=(tr(m+n+1),tr(m+n+2),……tr(m+n+l)),

and there exist tru∈σ0, trv∈σ1, trw∈σ2, such that

σ0∩σ1∩σ2=∅,

Õs(tru)=Õs(trv)=Õs(trw),

Õc(tru)=Õc(trv)=Õc(trw),

Ös(tru)⊂Ös(trv), Ös(trw)⊂Ös(trv),

Öc(tru)⊂Öc(trv), Öc(trw)⊂Öc(trv).

and

E(Φa)∈E(tru,Öc(tru)), E(Φb)∈E(trw,Öc(trw)),

E(Φa)∈E(trv,Öc(trv)), E(Φb)∈E(trv,Öc(trv)),

Choose M0 s.t. tr1 is minimally enabled, then Msk=1 if psk∈Õs(tr1), 0 otherwise and

Mck=1 if pck∈Õc(tr1), 0 otherwise.

Since Õs(tr1)=Õs(tr(m+1))=Õs(tr(m+n+1)) and Õc(tr1)=Õc(tr(m+1))=Õc(tr(m+n+1)), tr(m+1) and

tr(m+n+1) are also enabled. The effect of having Ös(tru)⊂Ös(trv), Ös(trw)⊂Ös(trv),

Öc(tru)⊂Öc(trv) and Öc(trw)⊂Öc(trv) allows for the identification of subsumption in the

representation. We use the ideas of Subsumption (Forward Case Proof c.f. 7.1.2.)

Case (II), and Subsumption (Converse Case Proof c.f. 7.2.2.), and prove its inference

between σ0, σ1 and σ2 respectively, thus demonstrating the existence of

incorrectness, having the properties of the proposition or vice versa.

7.1.4. Circular Rule Sets

 127

Circular Rule Sets take place as a result of the incorrect rules causing cyclicity

between the parent and child object classes. The rules are represented by a series of

transitions in SCCPNs, being enabled and fired in sequences. To be able to highlight

the interinference of the transitions, the reachability set produced by SCCPN

analysis is based on a breadth-first ordering. Given a marking M that enables tr0, if

there exists any occurrence of cyclicity, then we can express the reachability set

sufficiently deep enough to cover the cyclicity, in terms of a transition sequence Γ,

as follows:

Γ=(σ1,σ2,....…,σi,σi+1,…..,σn,......,σm)

where σj is a sequence of alternative transitions spanned immediately by σj-1 in Γ for

j=2,3,….m. Note that σ1 is spanned by tr0 initially.

And that there exists a cyclic sequence, α=[tri,tr(i+1),….tr(n)], in Γ where tri∈σi for j=i,

i+1,....n<m, forming a path which begins and ends with the same transition, and

Tc∩α≠∅.

Therefore an execution of any transition trk in Γ where trk∈σk for k=1,2,....n, will

sufficiently trigger the event of cyclicity in the HES.

We define M0
sk [Õs(trj)] as the marking for any psk∈Õs(trj), similarly, for M0

ck [Õc(trj)],

as the marking for any pck∈Õc(trj). Also, we define M i
sk [Õs(trj)] as the marking for

any psk∈Õs(trj), and M i
ck [Õc(trj)], as the marking for any pck∈Õc(trj), after an

execution of any transition tri for i>0 in the sequence.

Proposition 7.4. For a given marking M0, that minimally enables transition

sequence α, iff the HES has incorrect rules causing cyclicity between the parent and

 128

child object classes, then ∃j≥i, ∃k such that the sequence has the following

properties:

(i) Mi∈[M0>={M0,M1,M2,…Mi,..Mj},

(ii) Mj=δ(M0,α) for j>0,

(iii) Tc∩α≠∅;

(iv) M i
sk [Õ]>0, M j

sk [Õ]>1.

Case (I): Self-Reference Rule

In SCCPN representation, there should exist tr1 and tc, forming a connected path

such that Ãc(tc)⊆Öc(tr1), Äc(tc)⊆Õc(tr1), Ãs(tc)⊆Ös(tr1) and Äs(tc)⊆Õs(tr1). Choose M0

s.t. tr1 is minimally enabled, therefore

M 0
sk =



 ∈

otherwise

)(tÕpif rssk

0

1 1

M 0
ck =



 ∈

otherwise

)(tÕpif rcck

0

1 1

i.e. M0
sk [Õs(tr1)]=1 if psk∈Õs(tr1)

Since Ãc(tc)⊆Öc(tr1) and Ãs(tc)⊆Ös(tr1), tc is enabled, therefore the marking in

Äc(tc)=1, 0 otherwise and the marking in Äs(tc)=1, 0 otherwise.

Since Äc(tc)⊆Õc(tr1), Äs(tc)⊆Õs(tr1), tr1 is enabled, and M1
sk = δ(M0,tr1),

 129

M1
sk =









∈
∈

otherwise

)(tÖpif

)(tÕpif

rssk

rssk

0

1

2

1

1

M1
ck =



 ∈

otherwise

)(tÕpif rcck

0

1 1

Thus for psk ∈ Õs(tr1), Mi
sk [Õs]>0, M j

sk [Õs]>1, implying incorrectness, with i=1,

j=1, and α=(tr1)

Case (II): Self Reference Chain of Inference

In SCCPN representation, there should exist α=(tr1,tr2,....tr(l-1),tc,trl,...trm) forming a

connected path such that

Õs(tr(l+1))⊆Ös(trl) for l=1,2,.....m-1,

Õs(tr1)⊆Ös(trm).

Choose M0 s.t. α=(tr1,tr2,....tr(l-1),tc,trl,...tm) is minimally enabled, i.e., ∀l=1,2,....m-1,

M 0
sk =



 =∈

otherwise

)(p),where M(tÕpif ckrssk ck

0

11 0
1

i.e. M0
sk [Õs(tr1)]=1 if psk∈Õs(tr1)

Since Õs(tr1)⊆Ös(trm), and Mm= δ(M0,αi). Therefore the execution of transition

sequence, α, gives Mm s.t. ∀l=1,2,....m-1.

 130

M m
sk =









∈
∈

otherwise

)}(t), Ö(t{Öpif

)(tÕpif

rmsrssk

rssk

0

1

2

1

1

Thus for psk ∈ Õs(tr1), M 0
sk [Õ]=1, M j

sk [Õ]>1, implying incorrectness, with i=1, j=m,

and α=(tr1,tr2,....t r(l-1),tc,trl,...tm).

7.2. Correctness: Converse Case Proof

7.2.1. Redundancy

Given M0 which minimally enables a transition sequence σi, and ∃k, ∃σj s.t.

σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, M'=δ(M0,σi), M"=δ(M0,σj), with Msk=0, '
skM >0,

"
skM >0, Mck=0, '

ckM >0, "
ckM >0, and ∃(prk,cck)'∈ '

ckM , ∃(prk,cck)"∈ "
ckM s.t.

(prk,cck)'=(prk,cck)", if σi and σj have the following cases:

Considering that σi and σj are nontrivial transition sequences, i.e. σi≠∅, and σj≠∅.

Let σi composed of a single transition tr0

Since tr0 is minimally enabled in M0, ⇒ ∃(pr0,cc0)∈M0, ∃(pr0,cs0)∈M0 s.t.

∑ >≤< 000),(MbtpE rr (Definition 5.7.) where is <((pr0,cc0),(pr0,cs0))>.

and

Msk=


 ∈

otherwise

tpif rssk

0

)(Õ1 0

Mck=


 ∈

otherwise

tpif rcck

0

)(Õ1 0

 131

and M'=δ(M0,tr0),

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

therefore ⇒ ∃(prk,cck)'∈ '
ckM

Since there exists another sequence, σj, the following cases can happen

Case (I): σj is composed of transitions (tc,tr1).

As σj is enabled by M0, therefore, Ãs(tc)⊆Õs(tr0), Ãc(tc)⊆Õc(tr0), Äs(tc)⊆Õs(tr1) and

Äc(tc)⊆Õc(tr1).

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0,

"
ckM >0, therefore, Ös(tr0)∩Ös(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅.

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Ös(tr1).

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 1

 132

therefore ⇒ ∃(prk,cck)"∈ "
ckM

Since (prk,cck)'=(prk,cck)", therefore

E(tr0,Öc(tr0))=E(tr1,Öc(tr1)).

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr0,Öc(tr0))=E(tr1,Öc(tr1)). This indicates a

pair of incorrect sequences σi=(tr0) and σj=(tc,tr1), possibly having incorrect rules

causing redundancy between the parent and child object classes.

Case (II): σj is composed of transitions (tc,tr1,tr2….trj).

Since σj is enabled by M0, therefore

Ös(tr(m))=Õs(tr(m+1)) for m=1,2,…..j-1,

Öc(tr(m))=Õc(tr(m+1)) for m=1,2,…..j-1,

Äc(tc)=Õc(tr1), Äs(tc)=Õs(tr1).

Let M1=δ(M0,tr(m+1)),

M1
sk =



 ∈ +

otherwise

)(tÖpif r(msck

0

)}(tÕ,{1 1)r(ms)

M1
ck =



 ∈ +

otherwise

)(tÖpif)r(mcck

0

1 1

therefore ⇒ ∃(prk,cck)1∈M1
ck

Similarly for any tm+u in σj, where u=1,2,…..n,

 133

M u
sk =



 ∈

otherwise

)(tÕ)(t),Õ(tÖpif r(m+u)s)r(m+sr(m)ssk

0

}......{1 1

M
ck

u =


 ∈ +

otherwise

)(tÖpif u)r(mcck

0

1

therefore ⇒ ∃(prk,cck)u∈M u
ck

Let M"=Mu and (prk,cck)u=(prk,cck)",

Since (prk,cck)'=(prk,cck)", therefore

E(tr0,Öc(tr0))=E(tr1,Öc(trj)).

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr0,Öc(tr0))=E(tr1,Öc(trj)). This indicates a

pair of incorrect sequences σi=(tr0) and σj=(tc,tr1,tr2….trj), possibly having incorrect

rules causing redundancy between the parent and child object classes.

7.2.2. Subsumption

Given M0 which minimally enables a transition sequence σi, and ∃k, ∃σj s.t.

σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, M'=δ(M0,σi), M"=δ(M0,σj), with Msk=0, '
skM >0,

"
skM >0, Mck=0, '

ckM >0, "
ckM >0, and ∃(prk,cck)'∈ '

ckM , ∃(prk,cck)"∈ "
ckM s.t.

(prk,cck)"⊆(prk,cck)' if σi and σj have the following cases:

Considering that σi and σj are nontrivial transition sequences, i.e., . σi≠∅, and σj≠∅.

Let σi composed of a single transition tr0

Since tr0 is minimally enabled in M0, ⇒ ∃(pr0,cc0)∈M0, ∃(pr0,cs0)∈M0 s.t.

∑ >≤< 000),(MbtpE rr (Definition 4.2.) where is <((pr0,cc0),(pr0,cs0))>.

 134

and

Msk=


 ∈

otherwise

tpif rssk

0

)(Õ1 0

Mck=


 ∈

otherwise

tpif rcck

0

)(Õ1 0

and M'=δ(M0,tr0),

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

therefore ⇒ ∃(prk,cck)'∈ '
ckM

Since there exists another sequence, σj, the following cases can happen

Let σj composed of transitions (tc,tr1).

As σj is enabled by M0, therefore, Ãs(tc)⊆Õs(tr0), Ãc(tc)⊆Õc(tr0), Äs(tc)⊆Õs(tr1) and

Äc(tc)⊆Õc(tr1).

Let Mc be the marking after firing transition tc, since tr1 is minimally enabled in Mc,

⇒ ∃(pr1,cc1)∈Mc, ∃(pr1,cs1)∈Mc s.t. ∑ >≤< crc MbtpE),(1 (Definition 5.7.) where

 is <((pc,cc1),(pc,cs1))>.

 135

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0,

"
ckM >0, therefore, Ös(tr0)∩Ös(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅.

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Ös(tr1).

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 1

therefore ⇒ ∃(prk,cck)"∈ "
ckM

Since (prk,cck)"⊆(prk,cck)', therefore

E(tr1,Öc(tr1))⊆E(tr0,Öc(tr0))

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr1,Öc(tr1))⊆E(tr0,Öc(tr0)). This indicates a

pair of incorrect sequences σi=(tr0) and σj=(tc,tr1), possibly having incorrect rules

causing subsumption between the parent and child object classes.

If ∑ <>< crc MbtpE),(1 and E(tr1,Öc(tr1))=E(tr0,Öc(tr0)), we have the case of a pair

of incorrect rules having conditions subsumed between Parent Class and Child

Class.

If ∑ >=< crc MbtpE),(1 and E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0)), we have the case of a pair

of incorrect rules having subsumed actions between Parent Class and Child Class.

 136

If ∑ <>< crc MbtpE),(1 and E(tr1,Öc(tr1))⊂E(tr0,Öc(tr0)), we have the case of a pair

of incorrect rules having both conditions and actions subsumed between Parent

Class and Child Class.

7.2.3. Ambiguity

Case (I): Rule with inclusive disjunction of IS-A conditions from different

Object Classes.

Since Γ is minimally enabled,

Mck=


 Γ∈

otherwise

(Õpif cck

0

)1

Since for ∀psk ∈Ös(Γ),∀pck ∈Öc(Γ), Msk=0, Mck=0, '
skM >1, '

ckM >1, at least two

transitions must be active, and fired immediately one after the other. These are

designated as tr0,tr1∈Γ s.t. Õc(tr0)⊂Õc(Γ), Õc(tr1)⊂Õc(Γ), and Õc(tr0)∩Õc(tr1)=∅ due

to nonconflict criterion. Let M0=δ(M,tr0), M'=δ(M0,tr1), s.t.

M 0
ck =



 ∈

otherwise

)}(t), Ö(t{Õpif rcrcck

0

1 01

M 0
sk =



 ∈

otherwise

)}(t), Ö(t{Õpif rsrssk

0

1 01

and

'
ckM =



 Γ∈

otherwise
(Öpif cck

0

)2

 137

'
skM =









Γ∈

Γ∈

otherwise

(Õpif

(Öpif

ssk

ssk

0

)1

)2

Thus for ∀pck ∈Öc(Γ), pck ∈Öc(tr1) and pck ∈Öc(tr0), ∀psk ∈Ös(Γ), psk ∈Ös(tr1) and psk

∈Ös(tr0). This indicates a pair of incorrect sequences σi=(tr0) and σj=(tr1), having

problems of ambiguity possibly due to the existence of an indeterminate rule causing

inclusive disjunction of conditions from different Object Classes.

Case (II): Rule with inclusive disjunction of IS-A actions from different Object

Classes.

Since Γ is minimally enabled,

Mck=


 Γ∈

otherwise

pif ck

0

)(Õ1 c

Since for ∀psk ∈Ös(Γ),∀pck ∈Öc(Γ), Msk=0, Mck=0, '
skM >1, '

ckM >1, "
skM >1,

"
ckM >1, at least three transitions must be active, and fired immediately one after the

other. These are designated as tr0,tr1 and tr2∈Γ s.t. Õc(tr0)⊂Õc(Γ), Õc(tr1)⊂Õc(Γ),

Õc(tr2)⊂Õc(Γ), Õc(tr0)=Õc(tr1)=Õc(tr2) and Öc(tr0)∩Öc(tr2)=∅, Öc(tr0)⊂Öc(tr1),

Öc(tr2)⊂Öc(tr1).

Let M0=δ(M,tr0), M'=δ(M0,tr2), M"=δ(M',tr1), s.t.

M 0
ck =



 ∈

otherwise

)}(tÖ)(t),Õ(t{Õpif rcrcrcck

0

,1 021

 138

M 0
sk =



 ∈

otherwise

)}(tÖ)(t),Õ(t{Õpif rsrsrssk

0

,1 021

and

'
ckM =



 ∈

otherwise
(ÃÖpif cck

0

)1

'
skM =



 ∈

otherwise

(ÃÖpif ssk

0

)1

and

"
ckM =



 ∈

otherwise
(ÃÖpif cck

0

)2

"
skM =



 ∈

otherwise
(ÃÖpif ssk

0

)2

Thus for ∀psk∈Ös(Γ), ∀pck∈Öc(Γ), Msk=0, Mck=0, '
skM >1, '

ckM >1, "
skM >1,

"
ckM >1. This indicates three incorrect sequences σi=(tr0), σj=(tr1) and σk=(tr2),

having problems of ambiguity possibly due to the existence of an indeterminate rule

causing inclusive disjunction of conditions from different Object Classes.

7.2.4. Cyclicity

Given M which minimally enables a transition sequence α, and ∃j≥i, ∃k, s.t.

(i) Mi∈[M0>={M0,M1,M2,…Mi,..Mj},

 139

(ii) Mj=δ(M0,α) for j>0,

(iii) Tc∩α≠∅;

(iv) M i
sk [Õ]>0, M j

sk [Õ]>1.

If α has the following cases:

Considering that α is a nontrivial transition sequence, i.e., α≠∅ and α is composed

of a series of transitions.

Let the sequence be

α=(tr1,tr2,…..tri,tc,tr(i+1),….tr(n),….tr(m))

Case (I): The subsequence β consists of a single transition that begins at tri and

ends at tc for i=1.

Since tr1 is minimally enabled, let M0 be the initial marking, such that

M 0
sk =



 ∈

otherwise

)(tÕpif rssk

0

1 1

M 0
ck =



 ∈

otherwise

)(tÕpif rcck

0

1 1

Thus, M0
sk [Õs(tr1)]=1.

After firing of tr1, the marking M1 of Ös(tr1)=1, 0 otherwise and the marking M1 of

Öc(tr1)=1, 0 otherwise.

Since β=(tr1,tc), thus tc is enabled after firing tr1.

 140

therefore, Ãc(tc)⊆Öc(tr1) and Ãs(tc)⊆Ös(tr1).

Let M2 = δ(M1,tc)

M 2
sk =








∈
∈

otherwise
)(tÖpif

)(tÕpif

cssk

rssk

0

1

2 1

M 2
ck =



 ∈

otherwise

)(tÖpif ccck

0

1

Since tr1 is immediate enabled in α, and ∃j≥i, for j=2, i=0, ∃k s.t. M0
sk [Õs(tr1)]=1,

M 2
sk [Õs(tr1)]>1,

∴∃psk s.t. psk∈Ös(tc) and Ös(tr1)∩Õs(tc)≠∅.

This indicates an incorrect sequence α containing β=(tri,tc), for i=1, possibly occurs

within the object classes.

Case (II): The subsequence β consists of a series of transitions that begins at tri

and ends at tn for i=1 and n>i.

Since α is enabled by M0, therefore

M 0
sk =



 ∈

otherwise

)(tÕpif rssk

0

1 1

 141

M 0
ck =



 ∈

otherwise

)(tÕpif rcck

0

1 1

Thus, M0
sk [Õs(tr1)]=1.

Let M1=δ(M0,tr1),

M1
sk =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

M1
ck =



 ∈

otherwise

)(tÖpif rcck

0

1 1

Since β=(tr1,tc,tr(i+1),….trn), thus tc is enabled after firing tr1.

therefore, Ãc(tc)⊆Öc(tr1) and Ãs(tc)⊆Ös(tr1).

Let M2=δ(M1,tc)

M 2
sk =



 ∈

otherwise

)}(t),Ö(t),Ö(t{Õpif csrsrssk

0

1 11

M 2
ck =



 ∈

otherwise

)(tÖpif ccck

0

1

Similarly for any tl in α, where l =2,3,4…..i-1,

 142

M l
sk =



 ∈

otherwise

)}(t)....Ö(t),Ö(t),Ö(t),Ö(t{Õpif rlsrscsrsrssk

0

1 211

M l
ck =



 ∈

otherwise

)(tÖpif lcck

0

1

Since trn is immediate enabled in α, and ∃j=n≥i=1, ∃k s.t. M 0
sk [Õs(tr1)]=1,

M n
sk [Õs(tr1)]>1, i.e.,

M n
sk =








∈
∈

otherwise
)}(t)....Ö(t),Ö(t),Ö(t{Öpif

)(tÕpif

rlsrscsrssk

rssk

0

1

2

21

1

This indicates an incorrect sequence α containing β=(ti,tc,ti+1,….tn), possibly having

a problem of cyclicity within the object classes. Note that α could be longer than

sufficient to demonstrate the effect of such cyclicity if m>n>i.

7.3. Consistency: Forward Case Proof

7.3.1. Contradiction

Proposition 7.5a. For a given marking M0, that minimally enables a nontrivial

transition sequence σi, iff the HES has inconsistent rules causing contradiction

between the parent and child object classes, then ∃σj, ∃k, such that these sequences

have the following properties:

(i) σi∩σj=∅;

(ii) Tc∩σi =∅; Tc∩σj≠∅;

 143

(iii) M'=δ(M0,σi), M"=δ(M0,σj);

(iv) Msk=0, '
skM >0, "

skM >0;

(v) Mck=0, '
ckM >0, "

ckM >0;

(vi) ∃(prk,cck)'∈ '
ckM , ∃(prk,cck)"∈ "

ckM

(vii) (prk,cck)'=¬(prk,cck)"

If there exists incorrect rules applied to the object hierarchy of the following cases:

Case (I): Identical Conditions but Contradict Actions between Parent Class and

Child Class.

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

In SCCPN representation, there should exists tr0, tr1 and tc such that

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)

E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1))

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1),

Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1)

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is

minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.

And Mck=1 if pck∈Õc(tr0), 0 otherwise.

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled (Definition 5.7.).

 144

Since tc is enabled, the new marking in Äc(tc)=1 and

has a colour of (pr1,cc1) which is inherited from (pr0,cc0). Where E(pr0,tc) -

E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.).

Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1 is enabled.

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0),

σj=(tc,tr1).

Therefore

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 1

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)),

therefore (prk,cck)'=¬(prk,cck)"

 145

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0,

"
ckM >0, and (prk,cck)'=¬(prk,cck)", implying inconsistency with σi=(tr0), σj=(tc,tr1) in

the object classes.

Case (II): Contradictory pair of rules between Parent Class and Child Class.

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

In SCCPN representation, there should exist tr0, tr1 and tc such that

Σ{E(Õc(tr0),tr0)} - E(Φ)=Σ{E(Õc(tr1),tr1)} - E(φ)

E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1))

Ãc(tc)⊂Õc(tr0), Äc(tc)⊂Õc(tr1), Öc(tr0)=Öc(tr1),

Ãs(tc)⊂Õs(tr0), Äs(tc)⊂Õs(tr1), Ös(tr0)=Ös(tr1)

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is

minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.

And Mck=1 if pck∈{Õc(tr0)∩Ãc(tc)}, 0 otherwise.

Since Ãs(tc)⊂Õs(tr0) and Ãc(tc)⊂Õc(tr0), tc is enabled (Definition 5.7.).

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is

inherited from (pr0,cc0). Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ) (Definition 5.8.).

Since Σ{E(Õc(tr0),tr0)} - E(Φ)=Σ{E(Õc(tr1),tr1)} - E(φ), therefore tr1 is enabled.

 146

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0),

σj=(tc,tr1).

Therefore

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 1

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)),

therefore (prk,cck)'=¬(prk,cck)"

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0,

"
ckM >0, and (prk,cck)'=¬(prk,cck)", implying inconsistency with σi=(tr0), σj=(tc,tr1).

Case(III): Contradictory chains of rules between the parent and child object classes.

 147

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

In SCCPN representation, there should exists σi=(tr1,tr2,….trj) and σj =(tc,tr0) such

that

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)

E(tr0,Öc(tr0))=¬E(trj,Öc(trj))

Ös(tr(m))=Õs(tr(m+1)) for m=1,2,…..j-1.

Öc(tr(m))=Õc(tr(m+1)) for m=1,2,…..j-1.

Õc(tr1)=Ãc(tc), Äc(tc)=Õc(tr0),

Õs(tr1)=Ãs(tc), Äs(tc)=Õs(tr0),

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. σi

=(tr1,tr2,….trj) is minimally enabled, i.e., ∀m=1,2,3,….j-1,

then Msk=


 ∈

otherwise

)(tÃpif cssk

0

1

And Mck=


 ∈

otherwise

)(tÃpif ccck

0

1

The execution of transition sequence, σi, gives M' s.t. ∀m=1,2,3,….j, Ös(tm)∈Ös(σi)

'
skM =



 ∈

otherwise

)}(),Ö(t{Õpif isrssk

0

1 1 σ

And the colour of the class token at Öc(tj)=(prk,cck)'

 148

Since Ãs(tc)=Õs(tr1) and Ãc(tc)=Õc(tr1), tc is enabled (Definition 5.7.).

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is

inherited from (pr0,cc0). Where E(pr1,tc) - E(Φ)=E(tc,pr0) - E(φ) (Definition 5.8.).

Since E(Õc(tr1),tr1) - E(Φ)=E(Õc(tr0),tr0) - E(φ), therefore tr0 is enabled.

Let "
ckM =δ('

ckM ,tr0),

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

And the colour of the class token at Öc(tr0)=(prk,cck)"

E(tr0,Öc(tr0))=¬E(trj,Öc(trj)), therefore (prk,cck)'=¬(prk,cck)"

Case (IV): Self Contradictory chain of inference between the parent and child

object classes.

Proposition 7.5b. For a given marking M0, that minimally enables transition

sequence α, iff the HES has inconsistent rules causing self-contradictory chain of

inference between the parent and child object classes, then ∃j, ∃k such that the

sequence has the following properties:

(i) Mi∈[M0>={M0,M1,M2,…Mi,..Mj},

(ii) Mj=δ(M0,α) for j>0,

(iii) Tc∩α≠∅;

(iv) M sk [Õ]=0, M 0
sk [Õ]>0, M j

sk [Õ]>1.

(v) ∃(prk,cck)'∈M0
ck, ∃(prk,cck)"∈Mj

ck

(vi) (prk,cck)'=¬(prk,cck)"

 149

In SCCPN representation, there should exist α=(tr1,tr2,....tr(l-1),tc,trl,...trm) forming a

connected path such that

Õs(tr(l+1))⊆Ös(trl) for l=1,2,.....m-1,

Õs(tr1)⊆Ös(trm).

E(Õc(tr1),tr1)=¬E(trm,Öc(trm))

Choose M0 with a class token element (pr0,cc0)' and a state token (pr0,cs0)' s.t.

α=(tr1,tr2,....t r(l-1),tc,trl,...tm) is minimally enabled,i.e., ∀l=1,2,....m-1,

then Msk=1 if psk∈Õs(tr1), 0 otherwise.

And Mck=1 if pck∈Õc(tr1), 0 otherwise.

M 0
sk =



 =∈

otherwise

)(p),where M(tÕpif ckrssk ck

0

11 0
1

i.e. M0
sk [Õs(tr1)]=1 if psk∈Õs(tr1)

Since Õs(tr1)⊆Ös(trm), and Mm=δ(M0,αi). Therefore the execution of transition

sequence, α, gives Mm s.t. ∀l=1,2,....m-1.

M m
sk =









∈
∈

otherwise

)}(t), Ö(t{Öpif

)(tÕpif

rmsrssk

rssk

0

1

2

1

1

And the colour of the class token at Öc(trm)=(prk,cck)"

Since E(Õc(tr1),tr1)=¬E(trm,Öc(trm))

therefore (prk,cck)'=¬(prk,cck)"

 150

Thus for psk∈Õs(tr1), M sk [Õ]=0, M 0
sk [Õ]>0, M j

sk [Õ]>1, ∃(prk,cck)'∈M0
ck,

∃(prk,cck)"∈Mj
ck and (prk,cck)'=¬(prk,cck)", implying inconsistent rules causing self-

contradictory chain of inference between the parent and child object classes.

7.3.2. Deadend

The problems of deadend is not caused by any conflict in the rule set attached to the

object hierarchy, but by the inaction of some events (or conditions). In other words,

it only causes concerns if the execution of the deadend rule fails to achieve any goal

state which belongs to a collection of terminating goals under a specific domain of

inference. Consequently, in any SCCPN simulation of HES inference that

determines its consistency, we need to achieve a finite termination upon any given

state, yet satisfy the goal states.

Let the collection of goal states be Ω, we define that, for a deadend rule, λ, ∃prk,

such that prk∈Ös(λ), prk∈Öc(λ), and prk∉Ω and ¬∃ti such that prk∈Õs(ti) and

prk∈Õc(ti).

Proposition 7.6. Iff the rule set has inconsistent rules that involve deadend applied

to the object hierarchy, then ∃ a marking M such that Msk=0 for ∀prk∈Ω, and ∀σj

where M'=δ(M,σj), '
skM =0.

We consider a nontrivial case where M≠[0], i.e. there exists some psj∉Ω that Msj≠0.

In SCCPN representation, there should exist tr0 with some psj such that

psj∈Ös(tr0) and psj∉Ω.

Choose M s.t.

 151

Msj=


 Ω∉∈

otherwise
) and p(tÖpif sjrssj

0

1 0

Therefore, ∀psk∈Ω, Msk=0.

Since ¬∃ti such that psj∈Õs(ti), ¬∃σj s.t. M'=δ(M,σj), thus σj=∅ or M'=M, i.e.

'
skM =0 for ∀psk∈Ω, implying inconsistency with tr0 being the deadend rule in the

object hierarchy.

7.3.3. Unnecessary IF condition

Proposition 7.7. For a given marking M0, that minimally enables Γ={σi,σj} for a

nontrivial transition sequence σi, σj, iff the HES has inconsistent rules causing

unnecessary IF conditions between the parent and child object classes, then ∃k, ∃Y

(a step Y), such that these sequences have the following properties:

(i) σi∩σj=∅;

(ii) Tc∩σi=∅; Tc∩σj≠∅;

(iii) M'=δ(M0,σi), M"=δ(M0,σj);

(iv) Msk=0, '
skM >0, "

skM >0;

(v) Mck=0, '
ckM >0, "

ckM >0;

(vi) ∃(prk,cck)'∈M', ∃(prk,cck)"∈M";

(vii)∃Y, ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(

Let E(Φ) be the arc expression function of the predicate IS-A member of Parent

Class and

Let E(φ) be the arc expression function of the predicate IS-A member of Child Class.

 152

In SCCPN representation, there should exists tr0, try and tc such that

Ãc(tc)⊆Õc(tr0), (Äc(tc)∪Öc(tr0))=Õc(try),

Ãs(tc)⊆Õs(tr0), (Ä s(tc)∪Ös(tr0))=Õs(try),

Choose M0 with a class token element (pr0,cc0) and a state token (pr0,cs0) s.t. tr0 is

minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.

And Mck=1 if pck∈Õc(tr0), 0 otherwise.

Since Ãc(tc)⊆Õc(tr0) and Ãs(tc)⊆Õs(tr0), tc is enabled (Definition 5.7.).

Since tc is enabled, the new marking in Äc(tc)=1 and has a colour of (pr1,cc1) which is

inherited from (pr0,cc0).

As from Definition 5.10, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and σi=(tr0),

σj=(tc).

Therefore

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM =



 ∈

otherwise

)}(t),Ä(t{Ãpif cscssk

0

1

 153

"
ckM =



 ∈

otherwise

)(tÄpif ccck

0

1

And the colour of the class token at Äc(tc)=(prk,cck)"

Since (Äc(tc)∪Öc(tr0))=Õc(try) and (Äs(tc)∪Ös(tr0))=Õs(try) therefore try is enabled,

thus ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(.

Thus, for psk∈(Äs(tc)∪Ös(tr0)), Msk=0, '
skM >0, "

skM >0, and for pck∈(Äc(tc)∪Öc(tr0)),

Mck=0, '
ckM >0, "

ckM >0, and ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(, implying

inconsistent rules causing unnecessary IF conditions between the parent and child

object classes with σi=(tr0) and σj=(tc).

7.4. Consistency: Converse Case Proof

7.4.1. Contradiction

Given M0 which minimally enables a transition sequence σi, and ∃k, ∃σj s.t.

σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, M'=δ(M0,σi), M"=δ(M0,σj), with Msk=0, '
skM >0,

"
skM >0, Mck=0, '

ckM >0, "
ckM >0, and ∃(prk,cck)'∈ '

ckM , ∃(prk,cck)"∈ "
ckM s.t.

(prk,cck)'=¬(prk,cck)", if σi and σj have the following cases:

Considering that σi and σj are nontrivial transition sequences, i.e. σi≠∅, and σj≠∅.

(A). Let σi composed of a single transition tr0

 154

Since tr0 is minimally enabled in M0, ⇒ ∃(pr0,cc0)∈M0, ∃(pr0,cs0)∈M0 s.t.

∑ >≤< 000),(MbtpE rr (Definition 5.7.) where is <((pr0,cc0),(pr0,cs0))>.

and

Msk=


 ∈

otherwise

tpif rssk

0

)(Õ1 0

Mck=


 ∈

otherwise

tpif rcck

0

)(Õ1 0

and M'=δ(M0,tr0),

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

therefore ⇒ ∃(prk,cck)'∈ '
ckM

Since there exists another sequence, σj, the following cases can happen

Case (A.I): σj is composed of transitions (tc,tr1).

As σj is enabled by M0, therefore, Ãs(tc)= Õs(tr0), Ãc(tc)=Õc(tr0), Äs(tc)=Õs(tr1) and

Äc(tc)= Õc(tr1).

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0,

"
ckM >0, therefore, Ös(tr0)∩Ös(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅.

 155

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Ös(tr1).

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 1

therefore ⇒ ∃(prk,cck)"∈ "
ckM

Since (prk,cck)'=¬(prk,cck)", therefore

E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)).

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)). This indicates a

pair of inconsistent sequences σi=(tr0) and σj=(tc,tr1), possibly having inconsistent

rules causing contradiction between the parent and child object classes.

Case (A.II): σj is composed of transitions (tc,tr1).

As σj is enabled by M0, therefore, Ãs(tc)⊂ Õs(tr0), Ãc(tc)⊂Õc(tr0), Äs(tc)⊂Õs(tr1) and

Äc(tc) ⊂Õc(tr1).

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0,

"
ckM >0, therefore, Ös(tr0)∩Ös(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅.

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Ös(tr1).

 156

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 11

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 1

therefore ⇒ ∃(prk,cck)"∈ "
ckM

Since (prk,cck)'=¬(prk,cck)", therefore

E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)).

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)). This indicates a

pair of inconsistent sequences σi=(tr0) and σj=(tc,tr1), possibly having inconsistent

rules causing contradiction between the parent and child object classes.

(B). Let σi composed of transitions (tr1,tr2….trj)

Since σi is enabled by M0, therefore

Ös(tr(m))=Õs(tr(m+1)) for m=1,2,…..j-1,

Öc(tr(m))=Õc(tr(m+1)) for m=1,2,…..j-1,

Ãc(tc)=Õc(tr1), Ãs(tc)=Õs(tr1).

Let M1=δ(M0,tr(m+1)),

M1
sk =



 ∈ +

otherwise

)(tÖpif r(msck

0

)}(tÕ,{1 1)r(ms)

M1
ck =



 ∈ +

otherwise
)(tÖpif)r(mcck

0

1 1

 157

therefore ⇒ ∃(prk,cck)1∈M1
ck

Similarly for any tm+u in σj, where u=1,2,…..n,

M u
sk =



 ∈

otherwise

)(tÕ)(t),Õ(tÖpif r(m+u)s)r(m+sr(m)ssk

0

}......{1 1

M
ck

u =


 ∈ +

otherwise
)(tÖpif u)r(mcck

0

1

therefore ⇒ ∃(prk,cck)u∈M u
ck

Let M'=Mu and (prk,cck)u=(prk,cck)'

Case (B.I): σj is composed of transitions (tc,tr0).

As σj is enabled by M0, therefore, Ãs(tc)= Õs(tr1), Ãc(tc)=Õc(tr1), Äs(tc)=Õs(tr0) and

Äc(tc)= Õc(tr0).

Let M"=δ(M0,σj), and since ∃k, s.t. Msk=0, '
skM >0, "

skM >0, Mck=0, '
ckM >0,

"
ckM >0, therefore, Ös(tr0)∩Ös(trj)≠∅ and Öc(tr0)∩Öc(trj)≠∅.

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Ös(trj), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Öc(trj).

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

"
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

 158

therefore ⇒ ∃(prk,cck)"∈ "
ckM

Since (prk,cck)'=¬(prk,cck)", therefore

E(trj,Öc(trj))=¬E(tr0,Öc(tr0)).

Since M'=δ(M0,σi), M"=δ(M0,σj), and E(trj,Öc(trj))=¬E(tr0,Öc(tr0)). This indicates a

pair of inconsistent sequences σi=(tr1,tr2….trj) and σj=(tc,tr0), possibly having

inconsistent rules causing contradiction between the parent and child object classes.

Case (B.II): σj is composed of transitions (tc,tr0).

In Case (B.II) σj is enabled by Mj in stead of M0 in Case (B.I).

Therefore, Given M0 which minimally enables a transition sequence σi, and ∃k, ∃σj

s.t. σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, Mj=δ(M0,σi), M"=δ(Mj,σj), with 0
skM =1,

j
skM =0, "

skM >0, 0
skM =1, j

ckM =0, "
ckM >0, and ∃(prk,cck)0∈ 0

ckM , ∃(prk,cck)"∈ "
ckM

s.t. (prk,cck)0=¬(prk,cck)", and ∃trk s.t. E(trk,Öc(trk))=¬E(tr0,Öc(tr0)), if σi and σj have

the following properties:

Considering that σi and σj are nontrivial transition sequences, i.e. σi≠∅, and σj≠∅.

As σj is enabled by Mj, therefore, Ãs(tc)= Ös(trj), Ãc(tc)=Öc(trj), Äs(tc)=Õs(tr0) and

Äc(tc)= Õc(tr0).

Let M"=δ(Mj,σj), and since ∃k, s.t. 0
skM =1, j

skM =0, "
skM >0, 0

skM =1, j
ckM =0,

"
ckM >0, therefore, Ös(tr0)∩Õs(tr1)≠∅ and Öc(tr0)∩Öc(tr1)≠∅.

And ∃psk, s.t. psk∈Ös(tr0) and psk∈Õs(tr1), and ∃pck, s.t. pck∈Öc(tr0) and pck∈Õc(tr1).

 159

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0

1 0

therefore ⇒ ∃(prk,cck)"∈ "
ckM

Since (prk,cck)0=¬(prk,cck)", therefore ∃trk s.t. E(trk,Öc(trk))=¬E(tr0,Öc(tr0)).

Since Mj=δ(M0,σi), M"=δ(Mj,σj), and E(trk,Öc(trk))=¬E(tr0,Öc(tr0)). This indicates a

pair of inconsistent sequences σi=(tr1,tr2….trj) and σj=(tc,tr0), possibly having

inconsistent rules causing contradiction between the parent and child object classes.

7.4.2. Deadend

Given a marking M s.t. Msk=0 for ∀psk∈Ω, and ∀σl where M'=(M,σl), '
skM =0, if σl

has the following cases:

Assuming σl is the longest sequence that can be fired,

Case (I): σl is an empty sequence

Since σl=∅, ¬∃ any transition ti for some psj being marked by M, s.t. psj∈Õs(ti).

Therefore, psj belongs to a deadend. This indicates that the rule set is inconsistent

having problems of deadend.

Case (II): σl is composed of a single transition t0.

 160

Let M'=δ(M,t0), since

M '
sj =



 Ω∉∈

otherwise

pand)(tÖpif sjssj

0

1 0

Therefore, '
skM =0 for ∀psk∈Ω.

As σl is the longest sequence that can be fired and ¬∃ any transition ti after t0 s.t.

psj∈ Õs(ti). Therefore, ti=∅ and psj belongs to a deadend. This indicates that the rule

set is inconsistent having problems of deadend.

Case (III): σl is composed of a transitions (t1,t2….tm).

Let M'=δ(M,σl), since

M '
sj =



 Ω∉∈

otherwise
pand)(Öpif sjissj

0

1 σ

Therefore, '
skM =0 for ∀psk∈Ω.

As σl is the longest sequence that can be fired and ¬∃ any transition ti after σl s.t.

psj∈ Õs(ti). Therefore, ti=∅ and psj belongs to a deadend. In fact, M is on a path

through σl to a deadend. This indicates that the rule set is inconsistent having

problem of deadend.

7.4.3. Unnecessary IF condition

Given M0 which minimally enables a transaction sequence σi, and ∃σj, ∃k, ∃Y(a step

Y) s.t. σi∩σj=∅, Tc∩σi=∅, Tc∩σj≠∅, M'=δ(M0,σi), M"=δ(M0,σj), Msk=0, '
skM >0,

 161

"
skM >0, Mck=0, '

ckM >0, "
ckM >0, ∃(prk,cck)'∈M', ∃(prk,cck)"∈M", ∃Y s.t.

∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(, if σi and σj has the following properties:

Considering that σi and σj are nontrivial transition sequences, i.e. σi≠∅, and σj≠∅.

Let σi composed of a single transition tr0, since tr0 is minimally enabled in M0, ⇒

∃(pr0,cc0)∈M0, ∃(pr0,cs0)∈M0 s.t. ∑ >≤< 000),(MbtpE rr (Definition 5.7.) where

 is <((pr0,cc0),(pr0,cs0))>.

and

Msk=


 ∈

otherwise

tpif rssk

0

)(Õ1 0

Mck=


 ∈

otherwise

tpif rcck

0

)(Õ1 0

and M'=δ(M0,tr0),

'
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif rsrssk

0

1 00

'
ckM =



 ∈

otherwise

)(tÖpif rcck

0

1 0

therefore ⇒ ∃(prk,cck)'∈ '
ckM

Since there exists another sequence, σj, the following case can happen:

 162

Let σj is composed of transition tc.

As σj is enabled by M0, therefore, Ãs(tc)⊆ Õs(tr0), Ãc(tc)⊆Õc(tr0).

Let M"=δ(M0,σj),

"
skM =



 ∈

otherwise

)}(t),Ö(t{Õpif cscssk

0

1

"
ckM =



 ∈

otherwise

)(tÖpif ccck

0

1

therefore ⇒ ∃(prk,cck)"∈ "
ckM

Since ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(, therefore (Äc(tc)∪Öc(tr0))=Õc(try) and

(Äs(tc)∪Ös(tr0))=Õs(try).

Since M'=δ(M0,σi), M"=δ(M0,σj) and ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(. This

indicates a pair of inconsistent sequences σi=tr0, and σj=tc, possibly having

inconsistent rules causing unnecessary IF conditions between the parent and child

object classes.

7.5. Completeness: Forward Case Proof

7.5.1.Unreachability

The problems of completeness about a rule set containing incomplete rules applied

to the object hierarchy might involve unreachability in terms of mutually exclusive

 163

classes instantiation by some object instance. Testing for the completeness generally

requires exhaustive search of the possible paths in the SCCPNs.

For the following analysis, we assume the collection of the goal states be Ω, and any

goal state will be treated as a deadend in SCCPN.

Let the goal states that are in question be Γ⊆Ω.

Proposition 7.8. Iff the rule set has incomplete rules that involve unreachability

applied to the object hierarchy, then ∀ marking M, such that Msk=0 for prk∈Γ⊆Ω,

and ∀σj where M'=δ(M,σj), '
skM =0.

Case (I): Mutually exclusive classes, (a rule with two or more IS-A condition

statements in its antecedent part).

Let E(Φa) be the arc expression function of the predicate IS-A member of Object

Class A and

Let E(Φb) be the arc expression function of the predicate IS-A member of Object

Class B.

In SCCPN representation, there should exists Γ={tr0,tr1}⊆Ω such that

Õs(tr0)∩Õs(tr1)=∅, Ös(tr0)=Ös(tr1)=Ös(Γ),

Õc(tr0)∩Õc(tr1)=∅, Öc(tr0)=Öc(tr1)=Öc(Γ),

and

(E(Φa),E(Φb))∈E(Õc(tr0),tr0), (E(Φa),E(Φb))∈E(Õc(tr1),tr1).

For tr0 to be minimally enabled, ∃(prk,cck) s.t. the arc expression

 164

E(Õc(tr0),tr0)<(prk,cck)>≤M(prk) (Definition 5.7)

Since the IS-A predicate in E(Õc(tr0),tr0) cannot simultaneously bind with two values

(i.e. IS-A member of Object Class A and IS-A member of Object Class B),

therefore,

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr0).

Similarly,

For tr1 to be minimally enabled, ∃(prk,cck) s.t. the arc expression

E(Õc(tr1),tr1)<(prk,cck)>≤M(prk) (Definition 5.7)

Since the IS-A predicate in E(Õc(tr1),tr1) cannot simultaneously bind with two values

(i.e. IS-A member of Object Class A and IS-A member of Object Class B),

therefore,

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr1).

Thus for psk∈Ös(tr0), Msk=0 for prk∈Γ⊆Ω, and ∀σj where M'=δ(M,σj), '
skM =0

implying incomplete rules applied to the object hierarchy involving unreachability in

terms of mutually exclusive classes instantiation by some object instance.

Case (II): Mutually exclusive classes chains.

Let E(Φa) be the arc expression function of the predicate IS-A member of Object

Class A and

Let E(Φb) be the arc expression function of the predicate IS-A member of Object

Class B.

 165

In SCCPN representation, there should exists σi=(tr1,tr2,….trj) and σj =(tc,tr0) such

that

Ãs(ts)∩Õs(tr1)≠∅, Äs(tc)=Õs(tr0),

Ãc(tc)∩Õc(tr1)≠∅, Äc(tc)=Õc(tr0),

Ös(tr(m))=Õs(tr(m+1)) for m=1,2,…..j-1,

Öc(tr(m))=Õc(tr(m+1)) for m=1,2,…..j-1,

Ös(tr0)=Ös(trj), Öc(tr0)=Öc(trj),

and

(E(Φa),E(Φb))∈E(Õc(tr0),tr0), (E(Φa),E(Φb))∈E(Õc(trj),trj).

For tr0 to be minimally enabled, ∃(prk,cck) s.t. the arc expression

E(Õc(tr0),tr0)<(prk,cck)>≤M(prk) (Definition 5.7)

Since the IS-A predicate in E(Õc(tr0),tr0) cannot simultaneously bind with two values

(i.e. IS-A member of Object Class A and IS-A member of Object Class B),

therefore,

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr0).

Similarly,

For trj to be minimally enabled, ∃(prk,cck) s.t. the arc expression

E(Õc(trj),trj)<(prk,cck)>≤M(p rk) (Definition 5.7)

 166

Since the IS-A predicate in E(Õc(trj),trj) cannot simultaneously bind with two values

(i.e. IS-A member of Object Class A and IS-A member of Object Class B),

therefore,

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(trj).

Thus for psk∈Ös(tr0), Msk=0 for prk∈Γ⊆Ω, and ∀σj where M'=δ(M,σj), '
skM =0

implying incomplete chain of rules applied to the object hierarchy involving

unreachability in terms of mutually exclusive classes instantiation by some object

instance.

7.6. Completeness: Converse Case Proof

7.6.1.Unreachability

If ∀ marking M, Msk=0 for psk∈Γ⊆Ω, and ∀σl where M'=δ(M,σl), '
skM =0, then the

rule set is incomplete.

Choose M that asserts the input states such that Msk=0 for any psk∈Γ⊆Ω. Let any

sequence, σl=(t1, t2, t3 … tm) where

Õs(tri)⊆Ös(tr(i-1)), for i=2, 3, ….m,

and let M'=δ(M,σl).

Since '
skM =0 for ∀σl, therefore, ¬∃σl s.t. psk∈Γ⊆Ω. Thus psk is not reachable from

M.

 167

This is valid for any marking M that asserts any input places. Hence, Γ is not

reachable from any input state or any sequence of transactions. This indicates that

the rule set is incomplete, possibly having problem of unreachability in the object

classes.

7.7. Illustration of the Formal Methodology using the Personnel Selection

Expert System

The Personnel Selection Expert System described in Chapter 6 will be used here as

an illustration of the formal methodology developed. The Selection System is

represented by a State Controlled Coloured Petri Net shown in Figure 6.2. The rules

are labeled R1 to R12. The inheritance relations are represented by T1 to T3. S1 to

S7 represent the predicates of these rules.

7.7.1. Subsumption

Figure 7.1. Illustration of Subsumption

State token

Parent token
Child token

t
r 0

t
r 1

t
c

Ä s (t c)=Õ s (t r1)

Ö c (t r0)=Ö c (t r1)

Ö s (t r0)=Ö s (t r1)
p

r k

'
ck M =



 ∈

otherwise

t p if r c ck

0

) (Ö 1 0

"
ck M =



 ∈

otherwise

t p if r c ck

0

) (Ö 1 1

Since E(t r0 ,Ö c (t r0))=E(t r1 ,Ö c (t r1)),

therefore (p rk ,c ck)'=(p rk ,c ck)"

 168

To illustrate the application of our formal methodology, the net in Figure 7.1. are

representing the followings:

E(Õc(tr0),tr0) = IF X is a junior office staff AND X's quality of service is Good AND

X's seniority is High.

E(Φ) = X is a junior office staff.

E(Õc(tr1),tr1) = IF X is a clerk AND X's quality of service is Good AND X's seniority

is High.

E(φ) = X is a clerk.

tr0 is Rule 1 which states that IF X is a junior office staff AND X's quality of service

is Good AND X's seniority is High THEN X's promotion is Yes. tr1 is Rule 2 which

states that IF X is a clerk AND X's quality of service is Good AND X's seniority is

High THEN X's promotion is Yes.

(pr0,cc0) is a junior office staff token in Place Class A and with colour (data value)

"quality of service is Good" is TRUE and "seniority is High" is also TRUE.

(pr1,cc1) is a clerk token in Place Class A1 and with colour (data value) "quality of

service is Good" is TRUE and "seniority is High" is also TRUE.

σi = firing of tr0, σj= firing of tc,tr1.

(prk,cck)' = (prk,cck)" because the slot "promotion" is this two tokens reveals that they

have the same value, i.e. "YES".

 169

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0,

"
ckM >0, and (prk,cck)'=(prk,cck)", implying incorrectness with σi=(tr0), σj=(tc,tr1).

7.7.2. Cyclicity

Figure 7.2. Illustration of Cyclicity

In Figure 7.2., tr1 is Rule 12 which states that IF X is a clerk THEN X is a junior

office staff. This is a self-reference rule. The Marking M1
sk is 2 because there are two

state tokens deposited in the input place of tc after firing of Rule 12. i.e.

M1
sk =









∈
∈

otherwise

)(tÖpif

)(tÕpif

rssk

rssk

0

1

2

1

1

Thus for psk ∈ Õs(tr1), Mi
sk [Õs]>0, M j

sk [Õs]>1, implying incorrectness, with i=1,

j=1, and α=(tr1).

State token
Parent token
Child token

M
0
sk =



 ∈

otherwise

) (t Õ p if r s sk

0

1 1

M
0
ck = 


 ∈

otherwise

) (t Õ p if r c ck

0

1 1

M
1
sk =









∈

∈

otherwise

) (t Ö p if

) (t Õ p if
r s sk

r s sk

0

1

2
1

1

M
1
ck =



 ∈

otherwise

) (t Õ p if r c ck

0

1 1

Thus for p sk ∈ Õ s (t r1), M
i
sk [Õ s]>0, M

j
sk [Õ s]>1,

implying incorrectness, with i=1, j=1, and α =(t r1)

 170

7.7.3. Contradiction

Figure 7.3. Illustration of Contradiction

tr0 is Rule 5 which states that IF X is a junior office staff AND X's year of service is

greater then Five THEN X's seniority is High. tr1 is Rule 4 which states that IF X is a

clerk AND X's year of service is greater than Five THEN X's seniority is Not High.

E(tr0,Öc(tr0)) is Rule 5's action part which states that X's seniority is "HIGH" while

E(tr1,Öc(tr1)) is Rule 4's action part which states that X's seniority is "NOT HIGH".

Thus, for psk∈Ös(tr0), Msk=0, '
skM >0, "

skM >0, and for pck∈Öc(tr0), Mck=0, '
ckM >0,

"
ckM >0, and (prk,cck)'=¬(prk,cck)", implying inconsistency with σi=(tr0), σj=(tc,tr1) in

the object classes.

State token
Parent token
Child token

Õ c (t r0)=Ã c (t c)

Ä c (t c)=Õ c (t r1)

Ö c (t r0)=Ö c (t r1)

E(Õ c (t r0),t r0) - E(Φ)=

E(Õ c (t r1),t r1) - E(φ)

E(t r0 ,Ö c (t r0))=

¬ E(t r1 ,Ö c (t r1))

'
sk

M =


 ∈

otherwise

)} (t),Ö (t {Õ p if r s r s sk

0

1 0 0

'
ck

M =


 ∈

otherwise

) (t Ö p if r c ck

0

1 0

"
sk M =



 ∈

otherwise
)} (t),Ö (t {Õ p if r s r s sk

0

1 1 1

"
ck

M =


 ∈

otherwise
) (t Ö p if r c ck

0

1 1

Since E(t r0 ,Ö c (t r0))= ¬ E(t r1 ,Ö c (t r1)),

therefore (p rk ,c ck)'= ¬ (p rk ,c ck)"

 171

7.7.4. Unnecessary IF Condition

Figure 7.4. Illustration of Unnecessary IF condition

tr0 is Rule 6 which states that IF X is a clerk AND X's knowledge of work is Not

Good AND X's English is Not Good THEN X needs to attain training course. try is

Rule 7 which states that IF X is a junior office staff AND X needs to attain training

course THEN X's experience is Low.

Since (Äc(tc)∪Öc(tr0))=Õc(try) and (Äs(tc)∪Ös(tr0))=Õs(try) therefore try is enabled,

thus ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(.

Thus, for psk∈(Äs(tc)∪Ös(tr0)), Msk=0, '
skM >0, "

skM >0, and for pck∈(Äc(tc)∪Öc(tr0)),

Mck=0, '
ckM >0, "

ckM >0, and ∃Y s.t. ∑
∈

∪>≤<
Ybt

MMbtpE
),(

)"'(),(, implying

inconsistent rules causing unnecessary IF conditions between the parent and child

object classes with σi=(tr0) and σj=(tc).

State token
Parent token
Child token

Ã c (t c) ⊆ Õ c (t r0)
Ã s (t c) ⊆ Õ s (t r0)

(Ä c (t c) ∪ Ö c (t r0))=Õ c (t ry)

'
sk M =



 ∈

otherwise
)} (t),Ö (t {Õ p if r s r s sk

0
1 0 0

'
ck M =



 ∈

otherwise

) (t Ö p if r c ck
0

1 0

"
sk M =



 ∈

otherwise

)} (t),Ä (t {Ã p if c s c s sk
0

1

"
ck M =



 ∈

otherwise

) (t Ä p if c c ck
0

1

Since (Ä c (t c) ∪ Ö c (t r0))= Õ c (t ry) and (Ä s (t c) ∪ Ö s (t r0))= Õ s (t ry)

therefore t ry is enabled, thus ∃ Y s.t. ∑
∈

∪ >≤ <
Y b t

M M b t p E
) , (

) " ' () , (

 172

7.7.5. Unreachability

Figure 7.5. Illustration of Unreachability

Rule 8 in the Personnel Selection Expert System could be represented either by tr0 or

tr1. E(Φa) represents IF X is a clerk and E(Φb) represents IF X is a junior office staff,

therefore (E(Φa),E(Φb))∈E(Õc(tr0),tr0), (E(Φa),E(Φb))∈E(Õc(tr1),tr1). In either case, in

order to fire Rule 8, both conditions should be satisfied. (i.e.

E(Õc(tr0),tr0)<(prk,cck)>≤M(prk)). Since the IS-A predicate in E(Õc(tr0),tr0) cannot

simultaneously bind with two values (i.e. IS-A clerk AND IS-A junior office staff),

therefore,

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr0).

Similarly,

For tr1 to be minimally enabled, ∃(prk,cck) s.t. the arc expression

E(Õc(tr1),tr1)<(prk,cck)>≤M(prk)

State token
Parent token
Child token

Õ s (t r0) ∩ Õ s (t r1)= ∅

Ö s (t r0)=Ö s (t r1)=Ö s (Γ)

Õ s (t r0) ∩ Õ s (t r1)= ∅

j where M'= (M, j), '
sk M =0 for p sk Ö s (t r0)

∀ σ j where M'= δ (M, σ j),
'
sk M =0 for p sk ∈ Ö s (t r1)

t c

 173

Since the IS-A predicate in E(Õc(tr1),tr1) cannot simultaneously bind with two values

(i.e. IS-A clerk AND IS-A junior office staff), therefore,

∀σj where M'=δ(M,σj), '
skM =0 for psk∈Ös(tr1).

Thus for psk∈Ös(tr0), Msk=0 for prk∈Γ⊆Ω, and ∀σj where M'=δ(M,σj), '
skM =0

implying incomplete rules applied to the object hierarchy involving unreachability in

terms of mutually exclusive classes instantiation by some object instance.

7.8. Summary

A formal approach for the verification of Hybrid Expert Systems is given.

Propositions are derived for checking the sequence of rule firings and properties

inheritance in the object hierarchy. Based on the properties of reachability and

colour tokens in the SCCPN, anomalies as defined in Chapter 5 can be formally

located and detected in the model of the hybrid knowledge base. This is done

exhaustively by minimally initiating any sequence of transitions and closely

examining the reachability markings at each transition. The testing of any

occurrence of alternative markings, multiple coloured tokens, deadlocks and the like

lead to the system being verified in the end. Lastly, The Personnel Selection Expert

System described in Chapter 6 is used as an illustration of the formal methodology

developed.

 174

CHAPTER 8. COMPLEXITY ANALYSIS OF SCCPN

METHODOLOGY

8.1. Introduction

Modelling and verifying an Expert System, in particular, its knowledge base, is a

complex process. The extent of that complexity has some readily identifiable costs.

For instance, in a more complex system, we can anticipate a much longer time for

testing the knowledge base, hence, a relatively high maintenance and management

cost for the system. In addition, it is likely that the quality of the system is a function

of this complexity. Such a problem is complicated further due to the weakness in

human performance on complex inference tasks. As a result of these cost and quality

issues, it is important that the complexity of any methodology developed which

purports for modelling and verifying the behaviour of a system can be measured so

that determinants of that complexity can be monitored and managed through further

investigations or so. Complexity is described by (Bundy, A. 1997) as "the

measurement of some aspect of the complexity of the current Problem State in a

search problem. For instance, the depth of a goal is the length of the path from the

current goal to the origin of the Search Space. Complexity measures are sometimes

associated with the labels of nodes in a search space, especially when these are

logical expressions describing the current goal, e.g. the depth of function nesting of

an expression is the maximum amount of nesting in the functions in it. The size of

an expression is the number of symbols in it. These symbols can also be weighted

and the weights totalled". According to (Someren, M., 1997), many problems can be

represented as an initial state, a goal state and a set of operators that define

operations to go to new states from a given state. The states that can be reached from

the initial state by applying the rules in all possible ways define the state space. The

problem is then to reach the goal state from the initial state.

 175

The criteria of interest for model evaluation include adequacy of representation,

ability of the representation scheme to recognize problems correctly, the ability to

formulate an algorithm to detect the errors, and the efficiency of the algorithms.

8.2. Measuring Complexity

There is substantial reason to suggest that the underlying structure of the knowledge

base is a major component of complexity (O'Leary, D. E., 1991). In fact, the set of

components in an Expert System (i.e. user interface, database interface, inference

engine and knowledge base) allows for the same set of interfaces and inferences to

be used in many different situations. Thus, complexity of the methodology for

modelling Expert Systems comes from constructing and processing the knowledge

base. One of the primary vehicles from which the structural nature of a component

of knowledge can be assessed is network theory, alternatively referred to as graph

theory. The State Controlled Coloured Petri Nets (SCCPNs) model has adapted well

founded mathematical net theory with a number of extensions. Consequently it can

provide a measure of the complexity of the process that involves a transformation of

a Hybrid Expert System into a SCCPN network.

The structural complexity of a knowledge base in a HES refers to the extent to

which interaction between production rules within the object-hierarchy makes the

process of representing the knowledge complex. This depends on a number of

factors that could be determined as follows:

8.2.1. The number of Object-Classes in the Frame Hierarchy

The number of object classes and their hierarchical relationships characterizes the

size of the Frame hierarchy. Quite a few object classes with a large number of rules

attached to them will generate a verification task of comparable complexity to

another employing a large number of object classes with smaller number of rules. In

addition, although it is undesirable to introduce ambiguity to the knowledge base as

 176

a result of any existing indeterminate rules, an intention to partition these rules in

order to determine their individual possible effects may honor such practice. This,

however, will inevitably increase the complexity of the model transformation.

8.2.2. The size of the Rule Set and their Connectivity

Connectivity among rules attempts to evaluate the relatedness which constitutes the

rule chains and search paths. This connectivity is in some manner reflected by the

ability to create partitioned subsets of the rules which are relatively but not

completely disjoint. The SCCPN is subjected to greater effort of verification in the

case of higher degrees of interconnection in the rule set attached to one particular

object class family (i.e. Father, Son and grandson).

The number of rules increases, the number of possible interactions between rules

increases exponentially (Chen, Z. & Suen, C.Y., 1994), the complexity of the

potential matches for each pattern in a rule increases and the number of possible

combinations of factors required for testing the patterns increases exponentially.

8.2.3. The Depth of Reasoning Structure

The depth of the reasoning structure is characterized by the length of inference

chains in the HES. This determines the scope of the verification task. Longer chains

introduce more transitions, increase the computation effort for reachability in the

representation, and makes the checking of SCCPN network a more complex task.

8.2.4. The nature of Semantic Information

The semantic information utilized by the verification procedures relates to the

number of mutually exclusive sets of input facts attached to individual object token

that govern the firing of the transition. Larger sets of such may impair the

performance of the algorithms. On the other hand, semantic information required to

 177

be passed over for any transition firing and operation may incur overheads for the

verification process. The analysis could be further complicated when commonsense

reasoning including deterministic, probabilistic and stochastic estimates of

individual situations are taken into consideration. An extensive analysis that covers

all of these situations, however, is beyond the scope of this research. Consequently,

attention is limited to cases which are deterministic and applied to well defined sets

of input object tokens.

8.3. Complexity Analysis

The complexity of verifying the anomalies in knowledge base, in the context of this

thesis, is defined to include the effort to transform the rules and object hierarchy into

transitions, to derive the reachability tree, to check the markings and the token

colours for error examination.

8.3.1. Transformation of Rules and Object hierarchy to SCCPN

Let the Rule-based part of the HES have k rules, each with u conditions and v

actions. It is required to create predicate transitions to match rules. There can be a

maximum of k(u+v) predicate places representing 2k(u+v) possible colour tokens

(depicted by the presence of the object token and the state token), and k+c predicate

transitions representing rules where c is the extra number of transitions created as a

result of possible indeterminate rules in the HES. It is noted that c = 0, if there exists

none of this type of rule explicitly in the rule set. However, rules of this nature may

exist implicitly in the knowledge base, presenting inter-related properties of

redundancy and subsumption.

Let the Frame-based part of the HES have m object classes. There can be a

maximum of m object class places and 2m possible colour tokens (depicted by the

presence of the object token and the state token), and (m-1) inheritance transitions.

 178

The transition sequence, σ, will be represented by a n-vector where n is the number

of transitions (predicate as well as inheritance) in the SCCPN. n is derived through

the transformation by

n = (k+c) + (m-1)

Let 2p denote the number of token facts, with 2p ≤ 2k(u+v) + 2m. The total number

of storage places, S, for the computation, therefore, will be

S = 2p + n

Each storage place will have a colour type, which was defined by the object class

type. (i.e. each object class type will have different slot numbers, slot size, etc and

therefore require a different data type for storage).

More storage places will be needed if any additional transitions and operations are

included for the SCCPN simulation.

8.3.2. Derivation of Occurrence Graph

The basic idea behind Occurrence Graphs is to construct a graph which has a node

for each reachable marking and an arc for each occurring binding element.

Obviously, such a graph may become very large, even for small SCCPNs. They may

grow exponentially with respect to the number of independent processes, (i.e. if a

system has n independent processes each of which can be in m states the full

Occurrence Graphs (state space) have mn nodes (states)). However, recent research

(Li, X. et al., 1993; Christensen, S. & Petrucci, L., 1995; Kemper, P. 1996;

Kondratyev, A. et at, 1996) has been taken to allow for a partial examination of a

subportion of the reachability graph, therefore reduce the efforts in deriving possible

solutions. The main idea of the above methods is to apply the concept of clustering /

partition to the analysis of the Occurrence Graphs. Large systems (such as HES)

 179

may consist of a set of modules. Local Properties of each module can be checked

separately, before checking the validity of the entire system, hence reducing the

complexity of the state space of the entire system. (e.g. A SCCPN may be divided

formally into a set of sub-nets, each sub-net is called a module, and performs

independent analysis). Other techniques (Jensen, K., 1995) for limiting the size of

the Occurrence Graphs include (1) Occurrence Graphs with Equivalence Classes; (2)

Occurrence Graphs with Symmetries; (3) Place Invariants and (4) Transition

Invariants.

However, the development of the partition algorithms, theories of sub-net analysis

and reduction methodologies for Occurrence Graphs are beyond the scope of this

research, therefore, we concentrate our analysis by adequately initiation of the

sequence of transitions and closely examining the reachability markings in the full

Occurrence Graphs.

We propose the following algorithm for generating the (Occurrence Graph)

reachability set of a SCCPN as follows:

 Reachability Set = {M0}, where M0 is the initial marking
 Reachability Graph ={}
 UnfiredMarkingList = [M0]
 repeat
 select some marking M in the UnfiredMarkingList
 for each transition t which is enabled at M
 do begin
 generate marking M' which results from
 firing t at M
 if M' is not an element of ReachabilitySet
 then
 begin
 add M' to ReachabilitySet
 append M' to UnfiredMarkingList
 end
 add arc (M,T,M') to ReachabilityGraph
 end
 until UnfiredMarkingList is empty

 180

In most automated SCCPN simulations, the first element of the UnfiredMarkingList

is always selected, and so the reachability graph is produced in breadth-first order.

In verifying the HES against the problems of correctness, consistency, and

completeness, we use an automated computer aid for the generation of the

reachability set. The SCCPN is initialized by placing tokens in the place and setting

the values of data variables. The operation of the net can be investigated by the

program either in a step by step manner or in an automatic mode. The basic idea is

as follows:

Let Matrix D represent a node with Marking M0 for the (predicate + inheritance)

states and control states, respectively. The matrix is m rows (one for each token

place) and by n columns (one for each transition). E.g. Given the following SCCPN

(cf. Figure 5.1.)

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

Figure 8.1. SCCPN for the generation of D

The Matrix D of the SCCPN in Figure 8.1 is

 181

 Tokens

 From other node(s) Parent Class (1 * State token) To other node(s)

 Child Class (1 * State token)

 State C (1 * Parent token)

(1* Child token)

D represents a node of marking, and the content of this marking is described by the

text inscription of the node. D can be linked to other nodes, and each link will

represent the occurrence of a binding element, and the content of this binding

element is described by the text attached to the corresponding arc. Detection of any

form of error in the SCCPN will require the generation of a reachability tree for

close examination. All markings that are reachable from a given marking will need

to be stored for examination.

8.3.3. Heuristic Search Method of Occurrence Graph for Particular Marking

The checking of the irregularities and anomalies in HES requires exhaustively or

heuristically an adequate initiation of the sequence of transitions and closely

examining the reachability markings. The problems can be located through the trace

of the sequence of transitions which may provide alternative or multiple marking

effects. Therefore, some guided search strategy is necessary for reducing the

computational complexity. It is essential that if we are to investigate whether a given

marking is reachable from an initial marking, we have to construct the reachability

tree, but the complete construction and exhaustive search are not efficient methods

in general. Knowledge of the structure of the SCCPN can be used to limit the search

of the reachability tree and heuristics can be used to reduce the search space. We

purposed the follow heuristic based on the concept of clustering (Mehrotra, M.,

1991).

 182

1. Put the Start Node [M0] in a list called HIS

2. If HIS is empty, exit with failure ELSE continue

3. Select the leftmost marking M in HIS

4. For each transition t which is enabled at M, calculate the distance metric of

all the enabled transitions using the formula:

j

ji
ji

rofantecedentandriruleinliteralsgoverlappinofNo
rofantecedentandrruleinliteralsofnoTotal

rrD
.

.
),(=

where D(ri,rj) is the distance metric

5. generate a priority list of transitions with increasing distance (i.e. the top

transitions will have the highest score)

6. generate marking M' which results from firing the transitions which have the

minimal distance in the distance metric

7. closely examine the reachability markings in M' for detection of anomalies

using the Propositions 7.1 to 7.8.

8. If M' is not an element in HIS then add M' to HIS, add arc (M,t,M') to HIS

9. Goto Step 4

10. Until no transition is enabled in M

Using the distance matrix as the evaluation function, the search algorithm for a

particular marking changed from breadth-first search to heuristic search. Rules with

higher scores are having larger changes of anomalies, and therefore should be

checked first. Using the above algorithm should reduce the time to search through

the occurrence graph for location of errors and anomalies, nevertheless, an

exhaustively search shall still have to be done in order to guarantee an error free

knowledge base.

8.4. Comparative Performance of the Breadth-first search and Heuristic search

algorithms for Occurrence Graphs Analysis

We will use the Personnel Selection Expert System described in Chapter 6 as an

illustration of the comparative performance of the breadth-first and heuristic search

 183

algorithms for Occurrence Graphs Analysis. In breadth-first search strategy, the root

node is expanded first, then all the nodes generated by the root node are expanded

next, and then their successors. Breadth-first search is a systematic strategy, the time

and memory it takes to complete a search depends on the branching factor of these

states. For example, if the root of the search tree generates n nodes at the first level,

each of which generates n more nodes, for a total of n2 at the second level. Each of

these generates n more nodes at the third level, yielding n3 nodes at the third level,

and so on. In Occurrence Graphs, since the branching factor is not constant, and it

also allows for many-to-many relationship among the reachable nodes, therefore, we

have to rely on computer tool such as DESIGN/CPN to generate the Occurrence

Graphs for searching of a particular marking. Using the heuristic search algorithm

proposed in section 8.3, we based on the distance metric to guide the generation of

next reachable marking. Since we have twelve rules in this Personnel Selection

Expert System, the distance metric D(ri, rj) is as follows:

 i
j

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

R1 - 7/2 8/2 6/0 6/1 7/0 6/1 6/1 6/0 5/1 5/0 5/1
R2 7/2 - 8/3 6/0 6/1 7/1 6/0 6/1 6/0 5/0 5/1 5/1
R3 8/2 8/2 - 7/0 7/1 8/1 7/0 7/1 7/0 6/0 6/1 6/1
R4 6/0 6/0 7/1 - 5/1 6/1 5/0 5/1 5/0 4/0 4/1 4/1
R5 6/0 6/0 7/0 5/1 - 6/0 5/1 5/1 5/0 4/1 4/0 4/1
R6 7/0 7/1 8/1 6/1 6/0 - 6/0 6/1 6/0 5/0 5/1 5/1
R7 6/1 6/0 7/0 5/0 5/1 6/1 - 5/1 5/1 4/1 4/0 4/1
R8 6/1 6/1 7/1 5/1 5/1 6/1 5/1 - 5/0 4/1 4/1 4/2
R9 6/0 6/0 7/0 5/0 5/0 6/1 5/1 5/0 - 4/0 4/0 4/0
R10 5/1 5/0 6/0 4/0 4/1 5/0 4/1 4/1 4/0 - 3/0 3/1
R11 5/0 5/0 6/0 4/0 4/0 5/0 4/0 4/0 4/0 3/1 - 3/0
R12 5/0 5/1 6/1 4/1 4/0 5/1 4/0 4/1 4/0 3/0 3/1 -

Table 8.1. The Distance Matrix of Rule 1 to Rule 12

The above Table 8.1. can be simplified to Table 8.2. by taking out all the value

which is divided by zero (i.e. no relationship identified). Note that when calculating

the Distance Matrix, we do not include the inheritance transitions, it is because this

 184

inheritance transitions will always have a higher priority (compare with rules) for

firing. (i.e. for the identification of possible anomalies among object classes)

 i
j

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12

R1 - 3.5 4 - 6 - 6 6 - 5 - 5
R2 3.5 - 2.7 - 6 7 - 6 - - 5 5
R3 4 2.7 - - 7 8 - 7 - - 6 6
R4 - - 7 - 5 6 - 5 - - 4 4
R5 - - - 5 - - 5 5 - 4 - 4
R6 - 7 8 6 - - - 6 - - 5 5
R7 6 - - - 5 6 - 5 5 4 - 4
R8 6 6 7 5 5 6 5 - - 4 4 2
R9 - - - - - 6 5 - - - - -
R10 5 - - - 4 - 4 4 - - - 3
R11 - - - - - - - - - 3 - -
R12 - 5 6 4 - 5 - 4 - - 3 -

Table 8.2. The Final Distance Matrix of Rule 1 to Rule 12

Therefore, when we refer to the Occurrence Graphs described in Chapter 6, the

effort for searching anomalies are:

8.4.1. Subsumption Case I (c.f. Figure 6.3b)

For breadth-first search, the number of nodes generated are six, and the effort

required for searching the problem node is equal to the total number of comparisons

and substitutions times the number of steps for each comparison and substitution.

(i.e. 15*630 = 4,410 (c.f. Chapter 6.3.4.1.1.))

For heuristic search, the search sequence is as follows:

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input

place Class A, and this token's slot "quality of service is Good" is TRUE and this

token's slot "seniority is High" is also TRUE.) There are two enabled transactions

 185

which are R1 and T1, given that inheritance transition always has a higher priority

than rules, therefore, T1 is fired which generate marking M1. There are two enabled

transitions in M1 which are R1 and R2, the distance between this two rules are:

D(R1,R2) = 3.5 and D(R2,R1) = 3.5. Since their distances are the same, we can

arbitrary take R1 to fire which generates marking M4. In M4, there is only one

transition being enabled which is R2, after firing this transition, we have the marking

M5. Since M5 is our goal, therefore, the total number of computation required is

3*630 = 1,890 which has a 57.15% reduction of efforts compared with the breadth-

first search.

8.4.2. Subsumption Case II (c.f. Figure 6.4b)

For breadth-first search, the number of nodes generated are six, and the effort

required for searching the problem node is equal to the total number of comparisons

and substitutions times the number of steps for each comparison and substitution.

(i.e. 9*630 = 5,670 (c.f. Chapter 6.3.4.1.2.))

For heuristic search, the search sequence is as follows:

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input

place Class A, and this token's slot "quality of service is Good" is TRUE, slot

"seniority is High" is TRUE and slot "local citizen" is also TRUE.) There are two

enabled transactions which are R1 and T1, given that inheritance transition always

has a higher priority than rules, therefore, T1 is fired which generate marking M1.

There are three enabled transitions in M1 which are R1, R2 and R3, the distance

between this three rules are: D(R1,R2) = 3.5, D(R1,R3) = 4, D(R2,R1) = 3.5,

D(R2,R3) = 2.7, D(R3,R1) = 4 and D(R3,R2) =2.7. Since the minimal distance is

between R3 and R2, therefore, we may chose either R3 or R2 to be fired, and this

generates the marking M3. In M3, there is only one transition being enabled which is

R1, after firing this transition, we have the marking M5. Since M5 is our goal,

 186

therefore, the total number of computation required is 3*630 = 1,890 which has a

67% reduction of efforts compared with the breadth-first search.

8.4.3. Cyclicity (c.f. Figure 6.5b)

For breadth-first search, the number of nodes generated are fifteen, and the effort

required for searching the problem node is equal to the total number of comparisons

and substitutions times the number of steps for each comparison and substitution.

(i.e. 29*630 = 18,270 (c.f. Chapter 6.3.4.1.2.))

For heuristic search, the search sequence is as follows:

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input

place Class A). There are two enabled transactions which are R10 and T1, given that

inheritance transition always has a higher priority than rules, therefore, T1 is fired

which generate marking M1. There are two enabled transitions in M1 which are R12

and R10, the distance between this two rules are: D(R10,R12) = Nil and D(R12,R10)

= 3. Therefore, we will fire R12 which generates marking M3. Since M3 is our goal,

therefore, the total number of computation required is 2*630 = 1,260 which has a

93% reduction of efforts compared with the breadth-first search.

8.4.4. Contradiction (c.f. Figure 6.6b)

For breadth-first search, the number of nodes generated are six, and the effort

required for searching the problem node is equal to the total number of comparisons

and substitutions times the number of steps for each comparison and substitution.

(i.e. 7*630 = 4,410 (c.f. Chapter 6.3.4.2.1.))

For heuristic search, the search sequence is as follows:

 187

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input

place Class A, this token's slot "Year of service greater than Five years" is TRUE).

There are two enabled transactions which are R5 and T1, given that inheritance

transition always has a higher priority than rules, therefore, T1 is fired which

generate marking M1. There are two enabled transitions in M1 which are R4 and R5,

the distance between this two rules are: D(R4,R5) = 5 and D(R5,R4) = 5. Since their

distances are the same, we can arbitrary take R4 to fire which generates marking

M3. In M3, there is only one transition being enabled which is R5, after firing this

transition, we have the marking M5. Since M5 is our goal, therefore, the total

number of computation required is 3*630 = 1,890 which has a 57.15% reduction of

efforts compared with the breadth-first search.

8.4.5. Unnecessary IF Condition (c.f. Figure 6.7b)

For breadth-first search, the number of nodes generated are three, and the effort

required for searching the problem node is equal to the total number of comparisons

and substitutions times the number of steps for each comparison and substitution.

(i.e. 2*630 = 1,260 (c.f. Chapter 6.3.4.2.2.))

For heuristic search, the search sequence is as follows:

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input

place Class A, this token's slot "knowledge of work is Not Good" is TRUE and slot

"English is Not Good" is also TRUE). There is only one transition being enabled

which is T1, after T1 is fired that will generate marking M1. There is only one

enabled transition in M1 which is R6, therefore, there is no need to compare the

distance with other rules. After firing R6, it will which generate marking M2. Since

M2 is our goal, therefore, the total number of computation required is 2*630 =

1,260. In this case, the effort required is the same compared with the breadth-first

search.

 188

8.4.6. Unreachability Case I (c.f. Figure 6.8b)

For breadth-first search, the number of nodes generated are two, and the effort

required for searching the problem node is equal to the total number of comparisons

and substitutions times the number of steps for each comparison and substitution.

(i.e. 1*630 = 630 (c.f. Chapter 6.3.4.3.1.))

For heuristic search, the search sequence is as follows:

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input

place Class A). There is only one transition being enabled which is T1, after T1 is

fired that will generate marking M1. Since M1 is our goal, therefore, the total

number of computation required is 1*630 = 630. In this case, the effort required is

the same compared with the breadth-first search.

8.4.7. Unreachability Case II (c.f. Figure 6.9b)

For breadth-first search, the number of nodes generated are five, and the effort

required for searching the problem node is equal to the total number of comparisons

and substitutions times the number of steps for each comparison and substitution.

(i.e. 6*630 = 3,780 (c.f. Chapter 6.3.4.3.1.))

For heuristic search, the search sequence is as follows:

Giving an initial marking of M0 (i.e. a junior office staff token deposited in input

place Class A). There is only two transitions being enabled which are T1 and T2,

since they are both inheritance transitions, we may arbitrary take T1 for firing and

this generates marking M1. There are two transition being enabled in M1, which are

R6 and T2, giving inheritance transition has a higher priority than rules, we chose T2

to be fired, and this will generate marking M4. There is only one transition enabled

in M4 which is R6, and after firing R6, this will generate marking M3. Since M3 is

 189

our goal, therefore, the total number of computation required is 3*630 = 1,890. In

this case, the effort saved is 50% compared with the breadth-first search.

Based on the above calculations, we can conclude that the average number of

computation steps saved when using the heuristic search algorithm is (57.15% +

67% + 93% + 57.15% + 0% + 0% + 50%) / 7 = 46.33% as compared with the

breadth-first search.

8.5. Summary

The analysis would not be complete without some form of performance analysis of

the SCCPN model. It should be highlighted that the complexity issue of the SCCPN

depends on a number of issues. These include the number of Object-Classes in the

Frame Hierarchy; the size of the Rule Set and their Connectivity; the Depth of

Reasoning Structure and the nature of Semantic Information; Transformation of

Rules and Object hierarchy to SCCPN and Derivation of Occurrence Graph. Among

these issues, the state space complexity of generation of the full Occurrence Graph is

the most important part because a small SCCPN may generate a very large

Occurrence Graph with exponential growth of nodes and arcs. Fortunately, recent

research has been taken to allow for a partial examination of a subportion of the

reachability graph, therefore reduce the efforts in deriving possible solutions. In the

context of searching a particular marking in the SCCPN, we have developed a

heuristic search algorithm which based on the concepts of rule clustering. The

algorithm will shorten the time to search through an Occurrence Graph for location

of errors and anomalies. Lastly, we used the Personnel Selection Expert System

described in Chapter 6 as an illustration of the comparative performance of the

breadth-first and heuristic search algorithms for Occurrence Graphs Analysis.

 190

CHAPTER 9. POTENTIAL FOR EXTENSION AND

CONCLUSION

9.1. Introduction

This is the final chapter of the thesis. We would like to spend some effort here to

provide an assessment of the proposed State Controlled Coloured Petri Nets

(SCCPNs) model and the methodology for supporting the description and

verification of Hybrid Expert Systems. A discussion on the limitations of the

approach and an investigation into potential opportunities for future research are

given.

9.2. An Assessment of SCCPN Methodology

This research set out to provide a dynamic and a state by state analysis of a

Hybrid Expert System in order to verify its correctness, consistency and

completeness in a defined domain space. It recognized the importance and a need

to search for a means of representing knowledge and its structure syntactically

and semantically that could support and automate the processes involved in

verification. With the development of the SCCPN model we have been able to

simulate the effects of possible chained inference in an object hierarchy

integrated with production rules, and considerably expand the scope of

verification.

Several constraints were introduced to simplify the verification process. First, the

verification of Rule/Frame-based Expert Systems concentrates on the problems

introduced by the inheritance mechanism within the object hierarchy. As a result

of this inheritance, various forms of errors and anomalies exist which called for

attention. The SCCPN methodology at present is designed for tackling this set of

problems. Attention was not put on other hybrid aspects although SCCPN has the

potential to describe more complicated structures, such as those mentioned in

Chapter 3, e.g. rules with demons and rules with methods.

 191

Secondly, a special feature of introducing state tokens to represent the states of a

predicate is not only to increase the expressive power of the model, but also to

allow the use of its colours as a necessary basis for verifying the knowledge base.

This characteristic together with the colours of the object tokens are used to trap

more subtle versions of anomalies, particularly contradiction and deadend.

SCCPN that supports the independent use of input and output constraints and

operations permit efficient detection of a wider set of problems and it is useful in

locating possible errors in the knowledge base.

In order to allow for greater applicability to a variety of hybridizing mechanism,

(how different types of rules are attached to the object hierarchy), a set of

schemes was provided in Chapter 5, so that all production rules had to be

transformed into the appropriate specific SCCPN format. Rules that involved

disjunction of conditions or actions needed to be decomposed into a number of

alternative rules. This constraint requires that some effort be expanded in

converting a rule set to the standard form before any verification should be

attempted.

Additional major features specific to this research are the capability of

performing constant maintenance of the predicate states as well as the slot values

of the object class instances. The former is achieved by the introduction of a self-

loop attached to an individual input place. Its significance includes an

opportunity to update the state of the predicate. The latter is done by evaluating

the corresponding arc expression functions, which provide the basis for dynamic

verification of the knowledge base.

It has been shown to be possible that all anomalies extensively outline in Chapter

7 were detectable using the SCCPN methodology. This might require exhaustive

testing of the knowledge and involve a certain degree of complexity. As such, we

recognize the importance of developing a formal model in that it allows

delineation between semantics, the property being proved, and the actual proof

itself. A number of propositions were therefore derived from the principle of

reachability markings, which provide a formal basis to give some guarantee of

the validity of the verification process.

 192

9.3. Limitation of the Research

This research has a number of limitations. The most serious one relates to the

completeness of the knowledge representation. Besides simple production rules

and frames structures, there are other kinds of knowledge which need explicit

scheme for their description and representation. E.g. Common Sense, Knowledge

about how to learn from experience, Uncertainty reasoning, Non-monotonic

reasoning, etc. These kinds of knowledge are high level knowledge whose

representation are not yet precisely defined and formalized. Should they be better

represented by some means other than the production rule and simple frame

structures? If these were the case, it would be conceptually different and beyond

the present format of SCCPN that could handle otherwise.

Furthermore, the taxonomy of anomalies so defined might not be appropriate to

cover all forms of verification problem that could arise in the knowledge base

should the knowledge be represented using different paradigms. Extra set of

principles and criteria would have to be defined to identify any possible

anomalies in other schemes such as: Abduction; Case-Based Reasoning;

Circumscription; Default Logic; Fuzzy Logic; Non-monotonic Reasoning;

Temporal Systems and the like.

Another major limitation of using SCCPN is the state space complexity of the

Occurrence Graphs. Obviously, such a graph may become very large, even for

small SCCPNs. They may grow exponentially with respect to the number of

independent processes. Although recent research (Li, X. et al., 1993; Christensen,

S. & Petrucci, L., 1995; Kemper, P. 1996; Kondratyev, A. et al, 1996) has been

taken to allow for a partial examination of a subportion of the reachability graph,

therefore reduce the efforts in deriving possible solutions, the development of the

partition algorithms, theories of sub-net analysis and reduction methodologies for

Occurrence Graphs are beyond the scope of this research.

9.4. Future Research

 193

For Expert Systems technology to gain wider acceptance, the ability to integrate

it with other forms of information technology and development methods, is

necessary. Every limitation of an Expert System presents opportunities for

further research. Hence we would like to highlight some of the potential of the

present SCCPN model at a conceptual level, that is worthy for future

development and research.

9.4.1. Extension of Methodology for Modelling Hybrid Expert Systems with

Uncertainty

Imprecision plays an important role in many Expert System applications. It is

involved in a variety of applications that are very important and potentially life

saving. Most of the more difficult problems for which experts are available have

a high amount of imprecision associated with them. In knowledge abstraction,

uncertainty might be present because of noise in observation and incompleteness

of knowledge. Thus so-called approximate, inexact, plausible reasoning methods

are strongly needed in knowledge engineering. The ability to represent and

reason about information with uncertainty is dependent upon the form and detail

of the constructs of this information. A number of numerical approaches had

been proposed in the literature (Baldwin, J. F., 1985; Buckley, J. J. et al., 1986;

Grzymala-Busse, 1991; Durkin, J., 1994). These approaches are based on various

kinds of theoretical calculi such as Bayesian inference, Dempster-Shafer's Belief

theory or Zadeh's Fuzzy Set Theory. The construction of Expert System and

other intelligent computer systems require a sophisticated mechanism for

representing and reasoning with uncertain information. The verification of these

Expert Systems with Uncertainty involves investigation of suitable measures for

consistency, correctness and completeness of "uncertain" propositions. Ordinary

and high level Petri Nets have been proposed (Chen, S. M., et al. 1990; Looney,

C. G., 1994; Scarpelli, H. & Gomide, F., 1994b; Yeung, D. S. & Tsang, E. C. C.,

1994; Cao, T., & Sanderson, A. C., 1995) as knowledge representation

formalisms where structural and behavioural properties of the net can be used to

prove properties of the system being modelled or to verify the knowledge base

integrity. These approaches consist of using the structural properties of the high

level Petri Nets model representing a Fuzzy knowledge base to verify the

 194

necessary conditions for the existence of potential conflicts. However, all these

techniques only work with Rule-based Expert Systems (i.e. Rules with certainty

factors; Fuzzy Rules; Rules with probabilities attachments). Research into how a

hybrid approach of knowledge representation will affect these "uncertain"

representations of information is necessary for future enhancement of Expert

System technology. This requires an extension of the current definitions of

SCCPNs to cover these "uncertain" cases.

9.4.2. Extension of Methodology for Modelling Hybrid Expert Systems with

Temporal Properties

In recent years, the increasing need for reasoning about time in various areas of

artificial intelligence applications (Allen, J. F., 1983; Berthomieu, B. & Diaz, M.,

1991; Yao, Y., 1994) requires models that can handle both qualitative and

quantitative temporal information. These temporal qualitative relations indicated

how two propositions related to each other in a specific time interval. (e.g. Tom

goes to school either by Train (Proposition 1 (P1)) OR by Bus (P2). Once he

arrives at the school, he either has breakfast (P3) AND read newspaper (P4) OR

goes to the classroom (P5) OR plays tennis with Peter (P6)..etc). Given such

temporal information, we want to verify the system's consistency, (e.g. Does the

proposition P holds at certain time t? Is it possible that both temporal proposition

P and Q hold at certain time t?)

Representing these concurrent, temporal relationships in Hybrid Expert Systems

will definitely be another area of future research.

 9.4.3. Extension of Methodology for Modelling Hybrid Expert Systems with

Case-Based Systems

Access to a large mental library of past cases is what it distinguishes most

experts from non-experts, particularly in subjects where there are no fundamental

models. Expertise in those subjects is applied, and evolves, by generalization

from cases or by discovery of regularities and links between cases. Any

computing scheme that accommodates cases should therefore make it as easy as

 195

possible to create, maintain and apply cases. Obviously, the validation and

verification of these Case-based Systems are never less important that the

traditional rule based Expert Systems. In Case-Based Expert Systems, Cases

typically are represented using Frames, this indicates that verification approaches

for Case-based structures could exploit the frame structure. In addition, these

systems add solved cases to their case library, and previous solutions become

part of their experience. This is a critical difference from Rule-based system

where the knowledge is in the forms of production rules and are usually static.

Errors and anomalies in a Case-Based Expert System (O'Leary, D. E. 1993) may

include: (1) Misspelling or using different names for the same Case object

(attributes); (2) Duplicate Cases; (3) Missing Cases attributes; (4) Cyclic

inheritance of Cases; (5) Conflicts in cases and (6) Problems in matching Cases.

Application of our SCCPN methodology to cope with Hybrid Expert Systems

that involves case-based reasoning seems another interesting research topic for

the future work.

9.4.4. Extension of Methodology for Modelling Hybrid Expert Systems with

Conventional Software Systems

Many real world applications are neither purely conventional nor purely

knowledge based. A beneficial consequence of extending our SCCPN model to

cover conventional software systems verification is that it will be able to tackle

problems from some large-scale hybrid systems (Preece, A. D. 1995)

(Conventional and Expert Systems integration). These may include: (1) the

problems of hybridizing the procedural and declarative problem solving

paradigm. (2) the integration of object-oriented programming method with rules.

(3) other forms of hybridization namely: Blackboard reasoning, default-based

approaches, non-monotonic reasoning, and the like.

9.5. Summary

An assessment of the proposed SCCPN methodology is given, it is followed by a

discussion on the limitations of the approach. Lastly, the potential for future

 196

research are suggested, these include: (1) Extension of Methodology for

Modelling Hybrid Expert Systems with Uncertainty; (2) Extension of

Methodology for Modelling Hybrid Expert Systems with Temporal Properties;

(3) Extension of Methodology for Modelling Hybrid Expert Systems with Case-

Based Systems, and (4) Extension of Methodology for Modelling Hybrid Expert

Systems with Conventional Software Systems.

R-1

REFERENCE

Abbott, R. J., 1987 Abbott, R. J., Knowledge Abstraction. Protocol

Analysis, published by MIT Press, Cambridge, MA,

1987.

Agarwal, R. &

Tanniru, M., 1992

Agarwal, R. and Tanniru, M., "A Petri Net Based

Approach for Verifying the integrity of Production

systems," International Journal of Man-Machine

Studies, Vol. 36, pp. 447-468, 1992.

Aikins, J. S., 1993 Aikins, J. S., "Prototypical Knowledge for Expert

Systems: a retrospective analysis". In Bobrow D.G.

(Ed.) Artificial Intelligence. Vol. 59, pp. 207-211,

Elsevier, Amsterdam, 1993.

Ali, S. S., 1993 Ali, S. S., "Node Subsumption in a Propositional

Semantic Network with Structured Variables," in

Proceedings of the 6th Australia Joint Conference on AI,

pp. 255-260, 1993.

Allen, J. F., 1983 Allen, J. F., "Maintaining Knowledge about temporal

intervals," Communications of ACM, Vol. 26, No. 11,

pp. 832-843, 1983.

Antoniou, G. &

Sperschneider, V.,

1995

Antoniou, G. and Sperschneider, V., "On the

Verification of Modular Logical Knowledge Bases,"

Expert Systems with Applications, Vol. 8, No. 3, pp.

351-357, 1995.

Ayel, M. & Vignollet,

L., 1994

Ayel, Marc and Vignollet, Laurence, "SYCOJET and

SACCO, Two tools for Verifying Expert Systems,"

International Journal of Intelligent Systems, Vol. 9, pp.

357-382, 1994.

Baase, S., 1988 Baase, S., Computer Algorithms, published by Addison-

Wesley Company, 2nd Edition, 1988.

Baldwin, J. F., 1985 Baldwin, J. F., "Fuzzy Sets and Expert Systems,"

Information Science, Vol. 36, pp. 123-156.

Barthes, J. P. A., 1994 Barthes, J. P. A., "Developing integrated object

environments for building large knowledge-based

R-2

systems," Int. J. Human Computer Studies, Vol. 41, pp.

33-58, 1994.

Beauvieux, A., 1990 Beauvieux, A., "A General Consistency Checking and

Restoring Engine for Knowledge Bases". In

Proceedings of the 9th European Conference on

Artificial Intelligence, Stockholm, Sweden, 1990.

Becker, L. et al., 1994 Becker, L., Duckworth, J. and Laznovsky, A.,

"Automated Test Generation and Evaluation for Real-

Time Expert Systems," International Journal of

Intelligent Systems, Vol. 9, pp. 659-682, 1994.

Berthomieu, B. &

Diaz, M., 1991

Berthomieu, B. and Diaz, M., "Modelling and

verification of time dependent systems using time Petri

Nets," IEEE Transactions on Software Engineering,

Vol. 17, No. 3, pp. 259-273, 1991.

Billington, J. &

Reisig, W., 1996

Billington, J. and Reisig, W., Application and Theory of

Petri Nets 1996, published by Springer-Verlag, 1996.

Bogus, P., 1991 Bogus, P., "Some problems of Frame-based Systems

Inconsistency," in Proceedings of IFIP WG5.4/IFAC

Workshop on Dependability of AI Systems (Daisy-91),

pp. 135-140, 1991.

Bose, R., 1994 Bose, R., "Strategy for integrating object-oriented and

logic programming," Knowledge-Based Systems, Vol. 7,

No. 2, pp. 66-74, 1994.

Brachman, R. J. &

Levesque, H. J. (Eds),

1985

Brachman, R. J. and Levesque, H. J. (Eds), Readings in

Knowledge Representation, published by M. Kaufmann

Publishers, 1985.

Brown, D. E. &

Pomykalski, J., 1991

Brown, D. E. and Pomykalski, J., "Reliability estimation

during prototyping of knowledge-based systems,"

Institute for Parallel Computation, School of

Engineering and Applied Science, University of

Virginia Charlottesville, VA, January 11, pp. 1-23,

1991.

R-3

Broy, M., 1991 Broy, Manfred, "Methodological Objectives for Formal

Description Techniques," In J. Quemada, & Vazquez,

M.E., (Eds), Formal Description Techniques III, pp. 1-

16, 1991.

Buchanan, B. &

Feigenbaum, E., 1978

Buchanan, B. and Feigenbaum, E., "DENDRAL and

Meta-DENDRAL: Their Applications Dimension,"

Artificial Intelligence, Vol. 11, 1978.

Buckley, J. J. et al.,

1986

Buckley, J. J., Siler, W. and Tucker, D., "A Fuzzy

Expert System," Fuzzy Sets and Systems, Vol. 20, pp. 1-

16, 1986.

Bundy, A., 1997 Bundy, Alan, Artificial Intelligence Techniques, ed. by

Bundy, A., 4th Edition, Springer Verlag, p. 43, 1997.

Canamero, D. et al.,

1995

Canamero, D., Geldof, S. and Mcintyre, A., "Coupling

Modeling and Validation in COMMET," Expert Systems

with Applications, Vol. 8, No. 3, pp. 359-369, 1995.

Cao, T., & Sanderson,

A. C., 1995

Cao, T. and Sanderson, A. C., "Task Sequence Planning

Using Fuzzy Petri Nets," IEEE Transactions on Systems,

Man, and Cybernetics, Vol. 25, No. 5, pp. 755-768,

1995.

Cardenosa, J., 1995 Cardenosa, J., "VALID: An Environment for Validation

of KBS," Expert Systems with Applications, Vol. 8, No.

3, pp. 323-331, 1995.

Catsing, J., 1991 Castaing, J., "A New Formalization of Subsumption in

Frame-Based Representation Systems," in Proceedings

of International Conference on Knowledge

Representation – (KR'91), pp. 78-88, 1991.

Chang, C. L. et al.,

1990

Chang, C. L., Combs, J. B. and Stachowitz, R. A., "A

Report on the Expert Systems Validation Associate

(EVA)". Experts Systems with Applications, Vol. 1, No.

3, pp. 219-230, 1990.

R-4

Charles, E., 1991 Charles, E., "Checking Knowledge Bases for

Inconsistencies and other Anomalies". In Workshop

Notes from the Ninth National Conference in Artificial

Intelligence, AAAI-91, Knowledge-Based Systems

Verification, Validation and Testing, 17 July, Anaheim

CA, 1991.

Chen, A. P. et al.,

1992

Chen, A. P., Hsu, Sheng-Hsurng and Tan, G. L. H.,

"Using Fuzzy Petri Net in Rule-Based Knowledge

Management," in Proceeding of 4th International HK

Computer Society Database Workshop, pp.77-93, 1992.

Chen, S. M., et al.

1990

Chen, S. M., Ke, J. S. and Chang, J. F., "Knowledge

Representation Using Fuzzy Petri Nets". IEEE

Transaction on Knowledge and Data Engineering, Vol.

2, No. 3, pp. 311-319, 1990.

Chen, Z. & Suen, C.

Y., 1994

Chen, Z. and Suen, C. Y., "Measuring the Complexity of

Rule-Based Expert System," Expert Systems with

Applications, Vol. 7, No. 4, pp. 467-481, 1994.

Chouraqui, E. &

Dugerdil, P., 1988

Chouraqui, E. and Dugerdil, P., "Conflict solving in a

frame-like multiple inheritance system," in Proceedings

of the 8th European Conference on A.I., pp. 226-231,

1988.

Christensen, S. &

Petrucci, L., 1995

Christensen, S. and Petrucci, L., "Modular State Space

Analysis of Coloured Petri Nets," In Giorgio De

Michelis, and Michel Diaz (Eds.), Application and

Theory of Petri Nets 1995, pp. 201-217, 1995.

Coenen, F. & Bench-

Capon, T., 1993.

Coenen, F. and Bench-Capon, T. Maintenance of

Knowledge-based Systems. Academic Press, 1993.

Coenen, F., 1995 Coenen, F., "Advanced binary encoded matrix

representation for rule base verification," Knowledge-

Based Systems, Vol. 8, No. 4, pp. 201-210, 1995.

R-5

Cragen, B. J. &

Steudel, H. J., 1987

Cragen, B. J. and Steudel, H. J. "A Decision Table

Based Processor for Checking Completeness and

Consistency in Rule-Based Expert Systems".

International Journal of Man-Machine Studies, Vol. 26,

pp. 633-648, 1987.

Craigen, D. et al,

1993

Craigen, D., Gerhart, S. and Ralston, T., "On the use of

formal methods in industry - an authoritative assessment

of the efficacy, utility and applicability of formal

methods to systems design and engineering by the

analysis of real industrial cases," Report to the US

National Institute of Standards and Technology, March,

1993.

Craw, S. & Sleeman,

D., 1995

Craw, S. & Sleeman, D., "Refinement in Response to

Validation," Expert Systems with Applications, Vol. 8,

No. 3, pp. 343-349, 1995.

Craw, S., 1996 Craw, Susan, "Refinement Complements Verification

and Validation," Int. J. Human-Computer Studies, Vol.

44, pp. 245-256, 1996.

Cuda, T. V. & Dolan,

C. P., 1991

Cuda, T. V. and Dolan, C. P., "Automating the

Refinement of Knowledge-Based Systems".

Proceedings ECAI-90, Stockholm, August 6-10, pp.

167-172, 1991.

Culbert, C. 1994 Culbert Chris, "NASA MMU-FDIR System," Lyndon

B. Johnson Space Centre. USA, 1994.

de Kleer, J., 1986 de Kleer, J. "An Assumption-Based TMS". Artificial

Intelligence 28, pp. 127-162, 1986.

De Michelis, G. &

Diza M., 1995

De Michelis, G. and Diza M., (Eds), Application and

Theory of Petri Nets 1995, published by Springer-

Verlag, 1995.

Dori, D. & Tatcher,

E., 1994

Dori, D. and Tatcher, E., Selective multiple inheritance.

IEEE Software. Vol. 11. No. 3, pp. 77-85, 1994.

R-6

Duchessi, P. &

O'Keefe, R. M., 1995

Duchessi, P. and O'Keefe, R. M., "Understanding Expert

Systems Success and Failure," Expert Systems with

Applications, Vol. 9, No. 2, pp. 123-133, 1995.

Durkin, J., 1994 Durkin, J., Expert Systems: Design and Development.

Published by Macmillan Publishing Company, 1994.

Evertsz, R. & Motta,

E., 1991

Evertsz, R. and Motta, E., "The Abstract Interpretation

of Hybrid Rule/Frame-based Systems," In Ardizzone, E.

Gaglio, S. & Sorbello F. (eds.) Trends in artificial

intelligence : 2nd Congress of the Italian Association

for Artificial Intelligence, AI/IA, Palermo, Italy, October

29-31, 1991, published by Springer-Verlag, 1991.

Evertsz, R., 1991 Evertsz, R. "The Automated Analysis of Rule-based

Systems Based on their Procedural Semantics". In

Proceedings of the 12th International Joint Conference

on Artificial Intelligence. Sydney, Australia, 1991.

Feigenbaum, E. A.,

1982

Feigenbaum, Edward A., Knowledge Engineering in the

1980's, Dept of Computer Science, Stanford University,

Stanford CA, 1982.

Fikes, R. & Kehler,

T., 1985

Fikes, R. and Kehler, T., "The role of Frame-Based

Representation in Reasoning," Communications of the

ACM, Vol. 28, No. 9, pp.904-920, September, 1985.

French, S. W. &

Hamilton, D., 1994

French, S. W. and Hamilton, D., "A Comprehensive

Framework for Knowledge-Base Verification and

Validation". International Journal of Intelligent

Systems. Vol. 9, pp. 809-837, 1994.

Gamble, R. F. &

Baughman D. M.,

1996

Gamble, R. F. and Baughman D. M., "A methodology to

incorporate formal methods in hybrid KBS verification".

International Journal of Human Computer Studies. Vol.

44, pp. 213-244, 1996.

Gamble, R. F. et al.,

1994

Gamble, R. F., Roman G., Ball W. E. and Cunningham

H. C., "Applying Formal Verification Methods to Rule-

Based Programs". International Journal of Expert

Systems. Vol. 7, No. 3, pp. 203-239, 1994.

R-7

Geissman, J. R. &

Schultz R. D., 1988

Geissman, J. R. and Schultz R. D., "Verification and

Validation of Expert Systems," AI Expert, Vol. 3, No. 2

Feb., pp. 26-33, 1988.

Ginsberg, A., 1988 Ginsberg, A., "Knowledge-base reduction: A new

approach to checking knowledge bases for inconsistency

and redundancy," In Proc. 7th National Conference on

Artificial Intelligence (AAAI-88), Vol. 2. pp. 585-589,

1988.

Gold, D. I. & Plant,

R. T., 1994

Gold, D. I. and Plant, R. T., "Towards the Formal

Specification of an OPS5 Production System

Architecture," International Journal of Intelligent

Systems, Vol. 9, pp. 739-768, 1994.

Graham, J. A. et al.,

1993

Graham, J. A., Drakeford, A. C. T. and Turner, C. D.,

"The verification, validation and testing of object

oriented systems," British Telecom Technology Journal,

Vol. 11, No. 3, pp. 79-88, 1993.

Grzymala-Busse,

1991

Grzymala-Busse, Managing Uncertainty in Expert

Systems, Kluwer Academic Publishers, 1991.

Gupta, U. G., 1991 Gupta, U. G., Validating and Verifying Knowledge-

based Systems. IEEE Computer Society Press. 1991

Gupta, U. G., 1993 Gupta, U.G., "Validation and Verification of

Knowledge-based Systems: A Survey". Journal of

Applied Intelligence Vol. 3, pp. 343-363, 1993.

Hors, P. & Russet, M.

C., 1995

Hors, P. and Russet, M. C., "Consistency of Structured

Knowledge: A Formal Framework Based on Description

Logics," Expert Systems with Applications, Vol. 8, No.

3, pp. 371-380, 1995.

Huen, H. S. M., 1993 Huen, H. S. M., "A Prototype Decision Support System

for Assessing The Claims for Promotion of Clerical

Officers in the Hong Kong Civil Service". M.Sc.

Dissertation, Department of Computing, Hong Kong

Polytechnic University, 1993.

R-8

Jacob, R. J. K. &

Forscher, J. N., 1991

Jacob, R. J. K. and Forscher, J. N. "A Software

engineering methodology for rule-base systems". IEEE

Transactions on Knowledge and Data Engineering, Vol.

2. No. 2, pp. 173-189, 1991.

Jang, H. C., 1995 Jang, H. C., "A Development Framework and

Verification Methodologies for Knowledge-Based

Systems," International Journal on Artificial

Intelligence Tools, Vol. 4, Nos. (1&2), pp. 219-256,

1995.

Jensen, K., 1995 Jensen, K., Coloured Petri Nets: Basic Concepts,

Analysis Methods and Practical Use. Vol. 2. Springer-

Verlag, 1995.

Jensen, K., 1996 Jensen, K., Coloured Petri Nets: Basic Concepts,

Analysis Methods and Practical Use. Vol. 1. 2nd Ed.

Springer-Verlag, 1996.

Jensen, K., 1997 Jensen, K., Coloured Petri Nets: Basic Concepts,

Analysis Methods and Practical Use. Vol. 3. Springer-

Verlag, 1997.

Kandelin, N. A. &

O'Leary, D. E., 1995

Kandelin, N. A. and O'Leary, D. E., "Verification of

Object-Oriented Systems: Domain-Dependent and

Domain Independent Approaches," J. Systems Software,

Vol. 29, pp. 261-269, 1995.

Kang, B. H. et al.,

1996

Kang, B. H., Gametta, W. and Compton, P.,

"Verification and Validation with ripple down rules,"

Int. J. Human Computer Studies, Vol. 44, pp. 257- 269,

1996.

Kemper, P., 1996 Kemper, P., "Reachability Analysis Based on Structured

Representations," In Jonathan Billington and Wolfgang

Reisig (Eds.), Application and Theory of Petri Nets

1996, pp. 269-288, 1996.

Kondratyev, A. et al.,

1996

Kondratyev, A., Kishinevsky, M., Taubin, A. and Ten,

S., "A Structural Approach for the Analysis of Petri Nets

by Reduced Unfoldings," In Jonathan Billington and

Wolfgang Reisig (Eds.), Application and Theory of Petri

R-9

Wolfgang Reisig (Eds.), Application and Theory of Petri

Nets 1996, pp. 346-365, 1996.

Laita, L. M. et al.,

1994

Laita, L. M., Couto, J., de Ledesma, L. and Margarit A.

F., "A Formal Model for Knowledge-Based Systems

Verification," International Journal of Intelligent

Systems, Vol. 9, pp. 769-786, 1994.

Laita, L. M. et al.,

1995

Laita, L. M., Ramirez, B., de Ledesma, L. and Riscos,

A., "A Formal Model for Verification of Dynamic

Consistency of KBSs," Computers and Mathematics

Applications, Vol. 29, No. 5, pp. 81-96, 1995.

Landauer, C., 1990 Landauer, C. "Correctness Principles for Rule-Based

Expert Systems". Expert Systems with Applications, Vol.

1, No. 3, pp. 291-317, 1990.

Laurent J. P. & Ayel,

M., 1989

Laurent J. P. and Ayel, M. "Off-line coherence checking

for knowledge based systems," in IJCAI-89 Workshop

Proceedings on Verification, Validation and Testing of

Knowledge-Based Systems, Detroit, 1989.

Lee, J. K. et al., 1991 Lee, J. K., Yeung, D. S., Mizoguchi R. and Narasimhalu

D. Operational Expert System Applications in the Far

East, Published by Pergamon Press, 1991.

Lee, K. M. & Lee-

Kwang, H., 1995

Lee, K. M. and Lee-Kwang, H., "Fuzzy Information

Processing for Expert Systems," International Journal

of Uncertainty, Fuzziness and Knowledge-Based

Systems, Vol. 3, No. 1, pp. 93-109, 1995.

Lee, S. & O'Keefe, R.

M., 1993

Lee, S. and O'Keefe, R. M., "Subsumption Anomalies in

Hybrid Knowledge Bases". International Journal of

Expert Systems. Vol. 6, No. 3, 299-320, 1993.

Lee, S. & O'Keefe, R.

M., 1994

Lee, S. and O'Keefe, R. M., "Developing a Strategy for

Expert System Verification and Validation," IEEE

Transactions on System, Man and Cybernetics, Vol. 24,

No. 4, pp. 643-655, 1994.

R-10

Li, X. et al., 1993 Li, X., Lai, R. and Dillon, T. S. "A New Decomposition

Method to Relieve the State Space Explosion Problem".

In Proceedings of the 5th International Conference on

Computing and Information, Sudbury, Ontario, Canada,

pp. 150-154, 1993.

Liebowitz, J., 1991 Liebowitz, J. Operational Expert System Applications in

the United States, Published by Pergamon Press, 1991.

Lin, C. et al., 1993 Lin, C., Chaudhury, A., Whinston, A. B. and Marinescu,

D. C., "Logical Inference of Horn Clauses in Petri Net

Models," IEEE Transactions on Knowledge and Data

Engineering, Vol. 5, No. 3, pp. 416-425, 1993.

Liu, N. K. & Dillon,

T. S., 1995

Liu, N. K., and Dillon, T. S., "Formal Description and

Verification of Production Systems," International

Journal of Intelligent Systems, Vol. 10, pp. 399-442,

1995.

Liu, N. K., 1991 Liu, N. K., "Formal Description and Verification of

Expert Systems". Ph.D. dissertation, Department of

Computer Science and Computer Engineering, School

of Mathematical and Information Sciences, La Trobe

University, Bundoora, Victoria, Australia, 1991.

Liu, N. K., 1993 Liu, N. K., "Formal Description Technique for the

verification of fuzzy knowledge base redundancy and

subsumption". In IEEE Proceedings of the 1st New

Zealand International Conference on Artificial Neural

Networks and Expert Systems, Dunedin, New Zealand,

November, pp. 142-145, 1993.

Liu, N. K., 1996 Liu, N. K., "Formal Verification of Some Potential

Contradictions in Knowledge Base Using a High Level

Net Approach," Applied Intelligence 6, pp. 325-343,

1996.

R-11

Liu, N.K. & Dillon,

T. S., 1991

Liu, N. K. and Dillon, T. S. "An Approach Towards the

Verification of Expert Systems Using Numerical Petri

Nets". International Journal of Intelligent Systems, Vol.

6, pp. 255-276, 1991.

Loiseau, S. &

Rousset, M. C., 1993

Loiseau, S. and Rousset, M. C., "Formal Verification of

Knowledge Bases Focused on Consistency: Two

Experiments Based on ATMS Techniques," International

Journal of Expert Systems, Vol. 6, No. 3, pp. 273-298,

1993.

Loiseau, S., 1994 Loiseau, S., "A method for checking and restoring the

consistency of knowledge bases," Int. J. Human

Computer Studies, Vol. 40, pp. 425-442, 1994.

Long, J. A. & Neale,

I. M., 1993

Long, J. A. and Neale, I. M., "Using Paper Models in

Validation, Verification & Testing," International

Journal of Expert Systems, Vol. 6, No. 3, pp. 383-400,

1993.

Looney, C. G., 1988 Looney, C. G., "Fuzzy Petri Nets for Rule-Based

Decisionmaking," IEEE Transactions on Systems, Man

and Cybernetics, Vol. 18, No. 1, pp. 178-183, 1988.

Looney, C. G., 1994 Looney, C. G., "Fuzzy Petri Nets and Applications,"

Fuzzy Reasoning in Information, Decision and Control

Systems, Kluwer Academic, pp. 511-527, 1994.

Lounis, H., 1995 Lounis, H., "Knowledge-Based Systems Verification: A

Machine Learning-Based Approach," Expert Systems

with Applications, Vol. 8, No. 3, pp. 381-389, 1995.

Lucas, P. & Van Der

Gaag, L., 1991

Lucas, Peter and Van Der Gaag, Linda, Principle of

Expert systems, published by Addison Wesley 1991.

Lunardhi, A. D. &

Passino, K. M., 1995

Lunardhi, A. D. and Passino, K. M., "Verification of

Qualitative Properties of Rule-Based Expert Systems,"

Applied Artificial Intelligence, Vol. 9. Pp. 587-621,

1995.

R-12

Marsan, M. A., 1993 Marsan, M. A., (Eds), Application and Theory of Petri

Nets 1993, published by Springer-Verlag, 1993.

Matsumoto, K. et al.,

1991

Matsumoto, K., Takano, T. and Sakaguchi, T., "A

Dynamic Verification Method for Knowledge-Based

Systems," In Proceedings IFIP WG 54/IFAC Workshop

on Dependability of AI Systems (DASIY-91), Vienna,

Austria, 27-29, May, 1991.

Mehrotra, M. & Wild,

C., 1995

Mehrotra, M. and Wild, C., "Analyzing Knowledge-

Based Systems with Multiviewpoint Clustering

Analysis," J. Systems Software, Vol. 29, pp. 235-249,

1995.

Mehrotra, M., 1991 Mehrotra, M., "Rule groupings: a software engineering

approach towards verification of expert systems". NASA

Contractor Report 4372, Washington, DC, 1991.

Meseguer, P. &

Verdaguer, A., 1993

Meseguer, P. and Verdaguer, A., "Verification of Multi-

Level Rule-Based Expert Systems: Theory and

Practice," International Journal of Expert Systems, Vol.

6, No. 2, pp. 163-192, 1993.

Meseguer, P., 1990 Meseguer, Pedro, "A new method to Checking Rule

bases for Inconsistency: A Petri Net Approach," in

Proceedings of ECAI-90, 9th European Conference on

Artificial Intelligence, pp. 437-442, 1990.

Meseguer, P., 1994 Meseguer Pedro, "The VALID Project: Goal,

Development, and Results," International Journal of

Intelligent Systems, Vol. 9, pp. 867-892, 1994.

Morell, L. J., 1988 Morell, L. J., "Use of Metaknowledge in the

Verification of Knowledge-based Systems," in

Proceedings of 1st Int. Conference of Industrial

Engineering Application of AI & ES, pp.847-857, 1988.

Murata, T., 1991 Murata, T., "A Petri Net Model for Reasoning in the

Presence of Inconsistency," IEEE Transactions on

Knowledge and Data Engineering, Vol. 3, No. 3, pp.

281-292, 1991.

R-13

Murrell, S. & Plant,

R., 1995

Murrell, S. and Plant, R., "Formal Semantics for Rule-

Based Systems," J. Systems Software, Vol. 29, pp. 251-

259, 1995.

Murrell, S. & Plant,

R., 1996

Murrell, S. and Plant, R., "On the Validation and

Verification of Production Systems: a graph reduction

approach". International Journal of Human Computer

Studies. Vol. 44, pp. 127-144, 1996.

Nazareth, D. L. &

Kennedy, M. H., 1993

Nazareth, D. L. and Kennedy, M. H., "Knowledge-

Based System Verification, Validation, and Testing: The

Evolution of a Discipline," International Journal of

Expert Systems, Vol. 6, No. 2, pp. 143-162, 1993.

Nazareth, D. L., 1993 Nazareth, D. L., "Investigating the Applicability of Petri

Nets for Rule-Based System Verification". IEEE

Transactions on Knowledge and Data Engineering. Vol.

4, No. 3, pp. 402-415, 1993.

Newell, A., 1990 Newell, A., Unified Theories of Cognition, published by

Harvard University Press, 1990.

Nguyen T. A., et al.,

1985

Nguyen, T. A., Perkins, W. A., Laffey, T. J. and Pecora,

D. "Checking an expert system knowledge base for

consistency and completeness". In Proceedings of the

9th International Joint Conference on Artificial

Intelligence, Los Angeles, CA. 1985.

Nguyen T. A., et al.,

1987

Nguyen T. A., Perkins, W. A., Laffey, T. J. and Pecora,

D. 1987, "Knowledge base verification," AI magazine,

Vol. 8. No. 2, pp. 69-75, 1987.

O'Keefe, R. E. &

O'Leary, D. E., 1993

O'Keefe, R. E. and O'Leary, D. E., "Expert System

Verification and Validation: A survey and tutorial".

Artificial Intelligence Review. Vol. 7, pp. 3-42, 1993.

O'Leary, D. E. &

Pincus, K. V., 1993

O'Leary, D. E. and Pincus, K. V., "Models of Consensus

for Validation of Expert Systems," International Journal

of Expert Systems, Vol. 6, No. 2, pp. 237-249, 1993.

O'Leary, D. E., 1988 O'Leary, D. E., "Methods of Validating Expert

Systems". Interfaces Vol. 18. No.6, pp. 72-79, 1988.

R-14

O'Leary, D. E., 1991 O'Leary, D. E., 1991, "Measuring and Managing

Complexity in Knowledge-Based Systems: A Network

and Mathematical Programming Approach." In Brown,

D.E. and White, C.C. (Eds), Operations Research and

Artificial Intelligence: The Integration of Problem-

Solving Strategies, 1991.

O'Leary, D. E., 1993 O'Leary, D. E., "Verification and Validation of Case-

Based Systems," Expert Systems with Applications, Vol.

6, pp. 57-66, 1993.

O'Leary, D. E., 1994 O'Leary, D. E., "Toward a Theory of Verification and

Validation: Artifacts," International Journal of

Intelligent Systems, Vol. 9, pp. 853-866, 1994.

O'Leary, D. E., 1995 O'Leary Daniel E., "The impact of semantic ambiguity

on Bayesian weights," European Journal of Operational

Research, Vol. 84, pp. 163-169, 1995.

O'Leary, D. E., 1996 O'Leary, D. E., "The relationship between errors and

size in knowledge-based systems," Int. J. Human

Computer Studies, Vol. 44, pp. 171-185, 1996.

O'Neal, M. B. &

Edwards, Jr. W. R.,

1994

O'Neal, M. B. and Edwards, Jr. W. R., "Complexity

Measures for Rule-Based Programs," IEEE Transactions

on Knowledge and Data Engineering, Vol. 6, No. 5, pp.

669-680, 1994.

Prakash, G. R. &

Mahabala, H. N.,

1993

Prakash, G. R. and Mahabala, H. N., "SVEPOA: A Tool

to Aid Verification and Validation of OPS5-based AI

Applications," International Journal of Expert Systems,

Vol. 6, No. 2, pp. 193-236, 1993.

Preece, A. D. &

Shinghal, R., 1991a

Preece, A. D. and Shinghal, R., "COVER: A Practical

Tool for Verifying Rule-Based Systems". Knowledge-

Based Systems Verification, Validation and Testing,

Workshop Notes from the 9th National Conference on

Artificial intelligence, AAAI-91, Anaheim CA, 17 July,

1991.

R-15

Preece, A. D. &

Shinghal, R., 1991b

Preece, A. D. and Shinghal, R. "DARC: A Procedure for

Verifying Rule-Based Systems". In Expert Systems

World Congress Proceedings, Liebowitz, J. (ed) Vol. 2,

Pergamon Press, pp. 971-979, 1991.

Preece, A. D., 1989 Preece, A. D., "Verification of rule-based expert systems

in wide domains," in Research and Development in

Expert Systems VI (Proc. Expert Systems 89), N.

Shadbolt, Ed., Cambridge University Press, pp. 66-77,

1989.

Preece, A. D., 1991 Preece, A. D. "Practical issues in specifying expert

systems," Intelligent Systems Review, Vol. 2, No.3/4, pp.

3-26,1991.

Preece, A. D., 1995 Preece, A. D., "Toward a Quality Assessment

Framework for Knowledge-Based Systems," Systems

Software, No. 29, pp. 219-234, 1995.

Preece, A. D., et al.,

1996

Preece, A. D., Grossner, C. and Radhakrishnan, T.,

"Validating dynamic properties of rule-based systems,"

Int. Journal Human-Computer Studies, Vol. 44, pp. 145-

169, 1996.

Prerau, D. S., et al.,

1993

Prerau, D. S., Papp, W. L., Bhatnagar, R. and

Weintraub, M., "Verification and Validation of Expert

Systems: Experience with Four Diverse Systems,"

International Journal of Expert Systems, Vol. 6, No. 2,

pp. 251-269, 1993.

Reimer, U. & Schek,

H. J., 1989

Reimer, U. and Schek, H. J., "A frame-based knowledge

representation model and its mapping to nested

relations," Data & Knowledge Engineering, Vol. 4, pp.

321-352, 1989.

Renard, F. X. et al.,

1993

Renard, F. X., Sterling, L. and Brosilow, C.,

"Knowledge Verification in Expert Systems Combining

Declarative and Procedural Representations,"

Computers & Chemical Engineering, Vol. 17, No. 11,

pp. 1067-1090, 1993.

R-16

Rouge, A. et al., 1995 Rouge, A., Lapicque, J. Y., Brossier, F. and Lozinguez,

Y., "Validation and Verification of KADS Data and

Domain Knowledge," Expert Systems with Applications,

Vol. 8, No. 3, pp. 333-341, 1995.

Rousset, M. C., 1988 Rousset, M. C., "On the consistency of knowledge

bases: The COVADIS system," Computation

Intelligence, Vol. 4, pp. 166-170, 1988.

Russell, S. & Norvig,

P., 1995

Russell, S. and Norvig, P., Artificial Intelligence: A

Modern Approach, Prentice Hall, 1995.

Scarpelli, H. &

Gomide, F., 1994a

Scarpelli, H. and Gomide, F., "A high level net approach

for discovering potential inconsistencies in fuzzy

knowledge bases," Fuzzy Sets and Systems, Vol. 64 pp.

175-193, 1994.

Scarpelli, H. &

Gomide, F., 1994b

Scarpelli, H. and Gomide, F., "Consistency Checking

based on High level fuzzy petri nets," in Proceedings of

3rd IEEE conference on Fuzzy Systems, Vol. 3. pp. 1957-

1962, 1994.

Shiu, S. C. K. et al.,

(to appear)

Shiu, S. C. K., Liu, J. N. K. and Yeung, D. S., "Formal

Description and Verification of Hybrid Rule/Frame-

based Expert Systems," to appear in Expert Systems with

Applications.

Shiu, S. C. K. et al.,

1995a

Shiu, S. C. K., Liu, J. N. K. and Yeung, D. S.,

"Modelling Hybrid Rule/Frame-based Expert Systems

Using Coloured Petri Nets". In Proceedings of 8th

International Conference on Industrial and Engineering

Applications of AI and ES. Melbourne, Australia, pp.

525-532, 1995.

R-17

Shiu, S. C. K. et al.,

1995b

Shiu, S. C. K., Liu, J. N. K. and Yeung, D. S., "An

Approach Towards the Verification of Hybrid

Rule/Frame-based Expert Systems using Coloured Petri

Nets". In Proceedings of 1995 IEEE International

Conference on System Man and Cybernetics.

Vancouver, pp. 2257-2262, 1995.

Shiu, S. C. K. et al.,

1996a

Shiu, S. C. K., Liu, J. N. K. and Yeung, D. S., "An

Approach Towards the Verification of Fuzzy Hybrid

Rule/Frame-based Expert Systems using Coloured Petri

Nets". In Proceedings of ECAI-96 Workshop in

Validation, Verification and Refinement of KBS.

Budapest, pp. 105-113, 1996.

Shiu, S. C. K. et al.,

1996b

Shiu, S. C. K., Liu, J. N. K. and Yeung, D. S.,

"Detection of Anomalies of Hybrid Rule/Frame-based

Expert Systems Using Coloured Petri Nets," Australian

Journal of Intelligent Information Processing Systems,

Vol. 3, No. 3, pp. 59-76, Spring, 1996.

Shiu, S. C. K. et al.,

1997

Shiu, S. C. K., Liu, J. N. K. and Yeung, D. S., "Formal

Verification of the Correctness in Hybrid Expert

Systems." In Proceedings of The First International

Conference on Conventional and Knowledge-Based

Intelligent Electronic Systems, KES' 97, 21st - 23rd

May, 1997, Adelaide, Australia, Vol. 2, pp. 419-428,

1997.

Shortliffe, E. H., 1976 Shortliffe, E. H., Computer-Based Medical

Consultations: MYCIN, New York: Elsevier, 1976.

Someren, M., 1997. Someren, Maarten van, Artificial Intelligence

Techniques, ed. by Bundy, A., 4th Edition, Springer

Verlag, p. 262, 1997.

Sowa, J. F., 1984 Sowa, J. F., Conceptual Structures: Information

Processing in Mind and Machine, published by

Addison-Wesley Publishing Company, 1984.

Srinivasan, P. &

Gracanin, D., 1993

Srinivasan, P. and Gracanin, D., "Approximate

Reasoning with Fuzzy Petri Nets," in Proceedings IEEE

R-18

Gracanin, D., 1993 Reasoning with Fuzzy Petri Nets," in Proceedings IEEE

International Conference on Fuzzy Systems, CA, USA,

pp. 396-401, 1993.

Stachowitz, R. A. &

Chang, C. L., 1988

Stachowitz, R. A. and Chang, C. L. "Verification and

Validation of Expert Systems". Tutorial note at AAAI-

88, 1988.

Stachowitz, R. A. &

Combs, J. B., 1987

Stachowitz, R. A. and Combs, J. B., "Validation of

Expert Systems". Proceedings of the 20th Annual Hawaii

International conference on Systems Sciences, pp. 686-

695, 1987.

Suen, C. Y. &

Chinghal, R., 1991

Suen, C. Y. and Chinghal, R. Operational Expert System

Applications in Canada, Published by Pergamon Press,

1991.

Suwa, M. et al., 1982 Suwa, M., Scott, A.C. and Shortliffe, E.H. "An

Approach to Verifying Completeness and Consistency

in a Rule-based Expert System". AI Magazine, pp. 16-

21, 1982.

Taylor, R. N., 1984 Taylor, R. N. Behavioural Decision Making, Scott

Foresman and Company, 1984.

Terano, T., 1994 Terano, Takao, "The JIPDEC Checklist-based Guideline

for Expert System Evaluation," International Journal of

Intelligent Systems, Vol. 9, pp. 893-952, 1994.

Twine, S., 1989 Twine, S., "Mapping between a NIAM conceptual

schema and KEE frames," Data & Knowledge

Engineering, Vol. 4, pp. 125-155, 1989.

Uma, G. & Prasad, B.

E., 1993

Uma, G. and Prasad, B. E., "Reachability Trees for Petri

Nets: a Heuristic Approach," Knowledge-Based Systems,

Vol. 6, No. 3, pp. 174-177, 1993.

Valette, R., 1994 Valette, R., (Ed), Application and Theory of Petri Nets

1994, published by Springer-Verlag, 1994.

Valiente, G., 1993 Valiente, G., "Verification of Knowledge Base

Redundancy and Subsumption using Graph

Transformations," International Journal of Expert

Systems, Vol. 6, No. 3, pp. 341-355, 1993.

R-19

Systems, Vol. 6, No. 3, pp. 341-355, 1993.

Vanthienen, J. &

Dries, E., 1994

Vanthienen, J. and Dries, E., "Illustration of a Decision

Table Tool for Specifying and Implementing

Knowledge Based Systems," International Journal on

Artificial Intelligence Tools, Vol. 3, No. 2, pp. 267-288,

1994.

Vanthienen, J., 1991. Vanthienen, J. "Knowledge Acquisition and Validation

Using a Decision Table Engineering Workbench". In

Liebowitz, J. (ed), Expert Systems World Congress

Proceedings, Pergamon Press, Vol. 3, pp. 1861-1868,

1991.

Vicat, C. et al., 1995 Vicat, C., Brezillon, P. and Nottola, C., "Knowledge

Validation in the Building of a Knowledge-Based

Systems," Expert Systems with Applications, Vol. 8, No.

3, pp. 391-397, 1995.

Vignollet, L. &

Lelouche, R., 1993

Vignollet, L. and Lelouche, R., "Test Case Generation

using KBS Strategy," in Proceedings of the 13th

International Conference on AI (IJCAI-93), pp. 483-

488, 1993.

Vranes, S. &

Stanojevic, M., 1995

Vranes, S. and Stanojevic, M., "Integrating Multiple

Paradigms within the Blackboard Framework". IEEE

Transactions on Software Engineering. Vol. 21, No. 3,

244-262, 1995.

Willis, C. P., 1996 Willis, C. P., "Analysis of inheritance and multiple

inheritance". Software Engineering Journal, pp. 215-

224, July, 1996.

Wu, C. H & Lee S. J.,

1995

Wu, Chih-hung and Lee, Shie-Jue, "Knowledge

Validation with an Enhanced High level Petri Net

Model," in Proceedings of 11th Conference on Artificial

Intelligence for Applications, pp. 126-132, 1995.

Wu, C. H., et al., Wu, C. H., Lee, S. J. and Chou, H. S., "Dependency

Analysis for Knowledge Validation in Rule-based

Expert Systems," in Proceedings of the 10th conference

on AI for Applications, pp. 327-333, 1994.

R-20

on AI for Applications, pp. 327-333, 1994.

Xu, Y. et al., 1991 Xu, Y., Paul, R.P., and Shum, H.Y., "Fuzzy Control of

Robot and Compliant Wrist System," Conference

Record of the 1991 IEEE Industry Applications Society

Annual Meeting, pp. 1431-1437, 1991.

Yao, Y., 1994 Yao, Y., "A Petri Net Model for Temporal Knowledge

Representation and Reasoning," IEEE Transactions on

SMC, Vol. 24. No.9. pp. 1374-1382, 1994.

Yeung, D. S. &

Tsang, E. C. C., 1994

Yeung, D. S. and Tsang, E. C. C., "Fuzzy Knowledge

Representation and Reasoning Using Petri Nets," Expert

Systems With Applications, Vol. 7, No. 2, pp. 281-289,

1994.

Yeung, D. S. et al.,

1993

Yeung, D. S., Lee, J. W. T. and Tsang, E. C. C. "A New

Fuzzy Reasoning Algorithm for Fuzzy Expert System,"

In Proceedings of 1994 Korean/Japan Conference on

Expert Systems, pp. 115-118, 1993.

Zarri, G. P., 1991 Zarri, G. P., Operational Expert System Applications in

Europe, Published by Pergamon Press, 1991.

Zhang, D. & Nguyen

D., 1994

Zhang, D. and Nguyen D., "PREPARE: A Tool for

Knowledge Base Verification". IEEE Transactions on

Knowledge and Data Engineering. Vol. 6, No. 6,

December, pp. 983-989, 1994.

Zheng, Z. & Li, W.,

1992

Zheng, Z. and Li, W., "A Hybrid Knowledge

Engineering Development Environment (KEDE),"

International Journal of Artificial Intelligence Tools,

Vol. 1, No. 4, pp. 463-502, 1992.

Zlatareva, N. &

Preece, A., 1994

Zlatareva, N. and Preece, A., "An Effective Logical

Framework for Knowledge-Based Systems

Verification," International Journal of Expert Systems,

Vol. 7, No. 3, pp. 239-260, 1994.

Zlatareva, N. P., 1992 Zlatareva, N. P., "Truth Maintenance Systems and Their

Application for Verifying Expert System Knowledge

Bases," Artificial Intelligence Review, Vol. 6, No. 1, pp.

67-110, 1992.

R-21

67-110, 1992.

Zlatareva, N. P., 1994 Zlatareva, N. P., "A Framework for Verification,

Validation, and Refinement of Knowledge Bases: The

VVR System," International Journal of Intelligent

Systems, Vol. 9, pp. 703-737, 1994.

