
1997 First International Conference on Knowledge-Based Intelligent Electronic Systems, 21-23 May 1997, Adelaide, Australia, Editor, L.C. Jain

Formal Verification of the Correctness in
Hybrid Expert Systems

Simon C.K. Shiu
James N.K. Liu
Daniel S. Yeung

Department of Computing

Hong Kong Polytechnic University
Hung Hom, Kowloon

Hong Kong
E-mail: {csckshiu | csnkliu | csdaniel}@comp.polyu.edu.hk

Keywords: Formal Verification, Hybrid Expert Systems

Abstract

It has been increasingly recognized over recent years
that expert systems which combine one or more
techniques greatly increase the problem solving
capability and help overcome some of the
shortcomings associated with any single technique.
The verification of these expert systems requires
methods which could tackle the multiple knowledge
representation paradigms and integrated inference
mechanisms used. This paper provides a formal
description technique for verifying the correctness
of Hybrid Expert Systems (HES) that emphasizes an
integration of object hierarchy, property inheritance
and production rules. The main idea is to convert the
HES into a State Controlled Coloured Petri Net
(SCCPN) where the object hierarchy, property
inheritance and production rules are modelled as
separated components in the same SCCPN. The
detection and analysis of the anomalies in the system
are done by constructing and examining the
reachability tree spanned by the knowledge
inference. This provides a formal basis for
automating the deduction process and a means of
verifying HES. A set of propositions is formulated
to verify errors and anomalies in HES. Lastly, future
extension of our approach is discussed.

1. Introduction

Traditionally, attention has been concentrated on
using verification techniques to tackle rule-based
systems [8,9,13,14,15]. However, these techniques

exhibit a limited range of applicability. They could
not cope with the kind of hybrid expert systems
(HES), e.g. rule-based plus frame-based, which
many of the current expert systems are being
developed [2,5,17,23]. The use of this hybrid
approach integrates the power of organizing data
objects in a class hierarchy and reasoning about the
objects through user pre-defined logical
associations. This advantage accounts for many
popular expert system development software (or
shells), such as ADS, ART, EXSYS EL, KAPPA-
PC, KBMS, NEXPERT OBJECT, LEVEL5
OBJECT, PRO-KAPPA, REMIND, which combine
some sort of frame-based representation with a rule-
based inference engine.

Recently, [19,20] have shown that HES can be
modelled and analyzed by SCCPN. As
demonstrated, the object class’s data structure is
represented by a high ordered colour set, and each
object instance is represented by a token in that set.
The production rules and property inheritance are
both represented by SCCPN transitions. Thus, the
relationship and semantic information among these
rules and the object hierarchy can be represented
explicitly in these SCCPNs. Consequently, by firing
of the enabled transitions, we have been able to
dynamically simulate the propagation of rule
inference and property inheritance in the HES. We
have also identified some defined anomalies through
the analysis of the reachability tree generated by a
sequence of transition firings. In other words, if we
use different object instances as inputs to the HES, a

0-7803-3755-7/97/$5.00 © 1997 IEEE 419

set of rules will be triggered to fire and the result
can be obtained by viewing the sequence of
transition firings in the SCCPN. This result is
formed by chaining the rules and object hierarchy
represented by SCCPN together according to the
transformation given in [19,20].

In order to allow for the automation of the
verification process, to tackle the mathematical
problems associated with the nets, and to provide
accurate detection of anomalies in the HES, a more
formal definition and discussion of the model are
necessary. It is noted that there are very few other
approaches based on Petri net theory in literature to
model or verify expert systems. The typical ones
might be [1,13,14,16,18,24]. However, none of
these approaches use the sort of Coloured Petri Nets
[10,11] that are used in our approach to resolve
some verification issues and problems as highlighted
in [20,21]. Apart from lacking Petri net-based
formal theories for verification, there is not much
attention paid on hybrid expert systems except
[7,12]. [12]’s work focuses on the post-verification
of hybrid systems. They detail the subsumption
anomalies between rules that use Parent Class
information and those rules that use Child Class
information. [12]’s definition of subsumption
anomalies in hybrid expert system is very useful for
conceptual understanding. However, they do not
provide a general framework to model other
essential properties of HES such as the integration
of rules with inheritances, rules with methods and
rules with demons. Besides, their approach is only
confined to static checking of the semantic
structures in the HES, which is not possible to be
extended to cover dynamic analysis.

[7]’s work focuses on the partial HES requirement
specification using a hybrid language combined
from Z and SWARM. It should be emphasized that
our model differs in other respects. For instance, our
model can:

• provide a graphical representation of the

relationships among the object hierarchy, object
instances, methods, demons and the production
rules.

• allow for the dynamic checking of HES which

yields information on how the system achieves
it goals.

• provide information about the current state of

transition predicates as well as the states of the
object instances while others hardly can.

• provide a clear semantics which allow for the

formal analysis of the behaviour of the
modelled HES.

• has the ability to maintain or update both the

state of predicates and slot values of the object
instances during transition firings. The
important point due to this capability is that our
model will thus have a potential to tackle
situations with relatively higher complexity and
variant conditions like temporal space,
probabilistic and fuzzy reasoning.

In this article, we will examine the sequence of
transitions and check against the properties of the
network in SCCPN. The article is organized into six
main sections. The first section gives the
introduction and motivation of our work. The
second section gives the fundamental principle,
definitions, and properties of HES and SCCPN.
Problem description and formulation of the
anomalies in a HES is provided in the third section.
Some basic description and properties of our formal
approach are described in the fourth section. Formal
verification of the correctness, consistency, and
completeness problems will be discussed in the fifth
section. The corresponding proofs of some of these
formal propositions are given in the Appendix. The
application of our formal approach to a practical
hybrid expert system for personnel selection is
described in section six. Finally, the article
concludes with a discussion of the future extension
of our proposed methodology.

2. Fundamental Principle

A Hybrid Expert System combines multiple
representation paradigms into a single integrated
environment for modelling and reasoning of
complicated real world phenomena. For a Rule- and
Frame-based integration, it models the problem
domain using the concepts of classes and rules
together. The essential key modelling features are:
Object Classes, Slot Attributes, Inheritance
Relations, Demons, Methods, Rules and Reasoning
Strategies. These features can be analyzed using
three conceptual views [6] of an expert system, they
are: (1) An Object View which encapsulates a
module of knowledge (or a concept). These
knowledge modules (concepts) are represented by
Object Classes. Inheritance Relations describe how
these knowledge modules are related. (2) A
Function View which specifies the functional
behaviour of the objects. These functions are
represented using Methods and Demons. (3) A
Control View which specifies the knowledge
inference in the expert system. These controls are
represented in terms of Rules and Reasoning
Strategies.

In practical HES development [19,20,21,22]. Frames
are used to represent domain objects, various kinds

 420

of Demons are used to implement procedures
attached to specific slots, Inheritance is used to
inherit Class properties, methods and demons among
Object Classes, Message Passing is used for
interaction among different objects and Methods are
used to perform algorithmic actions or some array
manipulation within an object. Rules are used to
describe heuristic problem-solving knowledge,
Forward and Backward chains are commonly used
to reason using rules. Therefore, in HES, the Frame
base can be seen as the one used to define the
vocabulary for the Rule base, i.e. the possible values
that slots can be defined and so specified, and the
literal used to construct rules must conform to the
restrictions imposed by what is available from the
class hierarchy. The Frame base is married together
with the Rules designed to manipulate it. The
specific integration mechanisms of HES are as
follows:

• Rules with Message Passing : Rules send or

receive messages to and from objects for testing
the Rules' premises.

• Rules with Inheritance : Rules directly read and

write data into slots in a parent object and
through inheritance of the slot's value to its
children objects, trigger other rules to fire.

• Rules with Demons : Rules directly read and

write data into slots and cause the execution of
the associated Demons, which then trigger other
rules to fire.

• Rules with Methods : Rules are embedded as

part of an object's methods. Since methods are
arbitrary pieces of code attached to an object,
they can access the rules through function calls.

• Rules with Instances : Rules can be used to

create/delete an instance of a specific Object
Class.

Based on the above concepts of integration, a
Hybrid Expert System, therefore, can be formally
defined as follows.

DEFINITION 2.1. A HES is defined as a tuple
given by: HES = (C, A, D, M, I, H, R, S) satisfying
the requirements below:

C = a finite set of object classes, where each object

class is a Cartesian product of (A x D x M).
A = a finite set of attributes. Each attribute is of a

simple data type.
D = a finite set of demon functions. Each function

is defined from A into an expression such that:
∀a∈A:D(a)∈A. (This means the demon
functions can only change a slot’s value within

the same object instance. Besides, this demon
function: D(a) generates only one output from
each given input “a”).

M = a finite set of methods. Each method is defined
as a function which takes a number of
arguments from an object∈C and returns a
result to the object∈C.

I = a specific object element from an object class
C.

H = an inheritance relation. It is defined from the
partially ordered relations in C.

R = The rules are composed of predicates which
are used as functions that map object
arguments into TRUE, FALSE values
represented by binary truth values 1,0,
respectively. (One of the predicates is the IS-A
predicate which is used to specify the class of
objects which a particular rule can be applied).
All literals used in both the condition and
action predicates must come from the attribute
set A.

S = a finite set of reasoning strategies. The two
common HES reasoning strategies are:
Backward Chain with Inheritance and Forward
Chain with Inheritance.

Explanations: Object class here is defined as having
a set of attributes, demons and methods. Each
attribute is defined as of a simple data type: e.g.
string, integer or real. Each specific object element
is called an instance of the Object Class and will
have different attribute values of the variables.
Inheritance is defined as a partial order on the set
Object Class, it is a relation that is reflexive,
antisymmetric and transitive:

• Reflexive : For every Object Class, it inherits

the properties from itself.

• Antisymmetric : For every Object Class, if A

inherits from B and if B inherits from A, it
implies that A is B.

• Transitive : For every Object Class, if A inherits

from B and if B inherits from C, it implies that
A inherits from C.

The above definition only covers simple inheritance.
In the case of multiple inheritance, the problem
becomes what characteristics the child inherits, and
from which parent? The HES has to follow some
sort of default orderings on inheritance [4,24], and
this may lead to sets of conflicting traits which are
even more complicated to verify. Therefore, our
present analysis is concentrated on simple
inheritance only.

A Demon is defined as a function which is executed
when the associated slot value is either updated, or

 421

needed. Sometimes, a Demon can also act like a
validation trigger which checks the cardinality
and/or constraints imposed on a particular slot. The
effects of a Demon are confined always locally to
the same Object Class.

Methods are functions attached to some Object
Class, that will be executed whenever a signal is
passed through. Each method is defined as a
function which takes a number of arguments and
return a result.

Rules will interact with the information contained in
the slots of the various Object Classes within the
HES.

Finally, in HES, there should be a set of reasoning
strategies. The two common ones are :

• Backward Chain with Inheritance : Goal

directed search with inheritance as one of the
means to establish the rule chains across
different Object Classes.

• Forward Chain with Inheritance : Data directed

search with inheritance as one of the means to
establish the rule chains across different Object
Classes.

As HES is modelled by SCCPN, a mapping between
the two structures is necessary, and is given in Table
1.

 Hybrid Expert System

State Controlled Coloured Petri Net

 Frame-based part
 Object Classes Places
 Object Class Types Colour Sets
 Object Instances Tokens
 Slots Variables in Tokens
 Facts in Slots Binding of Variables with Constants
 Inheritances Transitions
 Demon Arc Expressions
 Methods Arc Expressions

 Rule-based part
 Predicates Places
 Predicates States Tokens
 Rules Transitions
 Facts Binding of Variables with Constants
 Transition Operations Arc Expressions

Table 1. Conceptual interpretation of HES in SCCPNs.

As shown in Table 1 the components of the HES are
separately represented, which can be modelled
explicitly by the SCCPN. The places are taken to
correspond to predicates and object classes, and
transitions to represent rules implications as well as
inheritance. There are two major types of tokens,
one is the state token which records the state of the
predicate and the class type information. (i.e. Since
rules may be fired by either parent class instance or
child class instances). The second type of token is
the object instance token which represents a
particular object instance of a particular class within
the object hierarchy. Transitions are fired to
represent rules being executed or inheritance is
being carried out. The maximum number a rule can
be executed is equal to the total number of different
class types. (i.e. each class type object instance can
fire a particular rule once at most). Each input place
of a rule has a self-loop arc for maintaining the state
of the predicate. Similarly, the input place of an
inheritance also has a self-loop arc for recording the

inheritance execution. Methods and Demons are
represented by functions in the arc inscription of the
SCCPN. The net result is the exchange of colour
tokens from places to places and a new marking,
which is defined as the distribution of tokens over
the places of the SCCPN, is obtained.

The SCCPN notation employed in this paper is an
extension of State Controlled Petri Nets proposed by
[13, 14], and Coloured Petri Nets proposed by
[10,11] and is specified as follows.

DEFINITION 2.2. A SCCPN can be defined as a
10-tuple given by = (Σ, P, T, D, F, A, N, C, E, I),
where satisfying the requirements below:

Σ = { ω1,ω2,...,ωi }, a finite set of non-empty types,

called colour sets, i≥1,
P = {Pc, Pr} a finite set of places,

 422

Pc = { pc1, pc2, ..., pcj }, a finite set of places
that model the classes of the HES, called
class places, j≥1,

Pr = { pr1, pr2, ..., prk }, a finite set of places
that model the predicates of the
production rules, called predicate places,
k≥1,

Pc∩Pr : the intersection of Pc∩Pr represents
those IS-A predicates of the rule sets
attached to the specific classes,

T = { Tc, Tr }, a finite set of transitions,
Tc = { tc1, tc2, ..., tcl }, a finite set of transitions

that are connected to and from class
places, called inheritance transition, l≥1,

Tr = { tr1, tr2, ..., trm }, a finite set of transitions
that are connected to or from predicate
places, called predicate transition, m≥1,

Tc∩Tr=∅,
D = { d1, d2, ..., dn } , a finite set of predicates, |Pr| =

|D|, n≥1,
F = { f1, f2, ..., fn }, a finite set of classes, |Pc| = |F|,

n≥1,
A = { a1, a2, ..., ak } , a finite set of arcs, k ≥ 1, P ∩

T = P ∩ A = T ∩ A = ∅ ,
N : A → P×T∪T×P , a node function, it maps each

arc into a pair where the first element is the
source node and the second is the destination
node, the two nodes have to be of different
kinds. The node functions can be further
classified into the following eight different
types:
Inheritance : { Ãc, Äc, Ãs, Äs} where

Ãc : Tc→(Pc)MS is an input class function
for inheritance, a mapping from
inheritance transitions to the bags of class
places. MS stands for multi-set (or bags).
Äc : Tc→(Pc)MS is an output class function
for inheritance, a mapping from
inheritance transitions to the bags of class
places.
Ãs : Tc→(Pc)MS is an input state function
for inheritance, a mapping from
inheritance transitions to the bags of class
places.
Äs : Tc→(Pc)MS is an output state function
for inheritance, a mapping from
inheritance transitions to the bags of class
places.

Predicate : {Õc, Öc, Õs, Ös} where
Õc : Tr→(Pr)MS is an input class function
for predicates, a mapping from predicates
transitions to the bags of predicates.
Öc : Tr→(Pr)MS is an output class function
for predicates, a mapping from predicates
transitions to the bags of predicates.
Õs : Tr→(Pr)MS is an input state function
for predicates, a mapping from predicates
transitions to the bags of predicates.

Ös : Tr→(Pr)MS is an output state function
for predicates, a mapping from predicates
transitions to the bags of predicates.

C : P→Σ, a colour function, it maps each place into
a colour set,

E : A→expression, an arc expression function, It is
defined from A into expressions such that
∀a∈A :
[Type(E(a))=C(p(a))MS∧Type(Var(E(a)))⊆Σ]
where p(a) is the place of N(a), where MS
stands for multi-set (or bags),

I : P→expression, an initialization function. It is
defined from P into closed expressions such
that: ∀p∈P:[Type(I(p))=C(p)MS].

DEFINITION 2.3. For each transition tj∈T in a net
N,

Õs(tj)∩Ös(tj)≠∅,
Õc(tj)∩Öc(tj)=∅,
Ãc(tj)∩Äc(tj)≠∅,
Ãs(tj)∩Äs(tj)=∅,

such that
pi∈Õs(tj)⇒ pi∈Ös(tj),
pi∈Õc(tj)⇒pi∉Öc(tj),
pi∈Ãc(tj)⇒pi∈Äc(tj),
pi∈Ãs(tj)⇒ pi∉Äs(tj),

DEFINITION 2.4. A binding of a transition t is a
function b defined on Var(t), such that:
∀v∈Var(t):b(v)∈Type(v) where Var(t) denotes the
set of variables in a transition and B(t) denotes the
set of all bindings for t.

DEFINITION 2.5. A token element is a pair (p,c)
where p∈P and c∈C(p), while a binding element is a
pair (t,b) where t∈T and b∈B(t). The set of all token
elements is denoted by TE while the set of all
binding elements is denoted by BE.

DEFINITION 2.6. A marking M is a multi-set over
TE while a step is a non-empty and finite multi-set
over BE. The initial marking M0 is the marking
which is obtained by evaluating the initialization
expressions: ∀(p,c)∈TE:M0(p,c)=I(p)(c). The
markings of a SCCPN can be further classified into
the following two different types: {Mc, Ms) where
Mc represents markings of the class tokens, and Ms
represents markings of the state tokens.

DEFINITION 2.7. A step Y is enabled in a marking
M iff the following property is satisfied:
∀p∈P: where E(p,t) is the

expression of (place, transition) and E(t,p) is the
expression of (transition, place). The summation
indicates the addition of expressions. Expression
denotes the binding of the specific expression with a
set of constants b. When (t,b)∈Y, this denotes that t

∑
∈

>≤<
Ybt

pMbtpE
),(

)(),(

 423

is enabled in M for the binding b. When (t1,b1),
(t2,b2) ∈Y and (t1,b1) ≠ (t2,b2), this denotes that
(t1,b1) and (t2,b2) are concurrently enabled. (If E=1,
we refer this specific step as inheritance step. (i.e.
the “presence” of a token element will enable the
step).

DEFINITION 2.8. When a step Y is enabled in a
marking M1 it may occur, changing the marking M1
to another marking M2, defined by:
∀p∈P:M2(p) = (M1(p) -

+

∑
∈

><
Ybt

btpE
),(

),()

∑
∈

><
Ybt

bptE
),(

),(.

The first sum is the removed tokens while the
second is the added tokens. M2 is directly reachable
from M1 by the occurrence of the step Y, which can
be denoted as M1[Y>M2.

DEFINITION 2.9. A finite occurrence sequence is a
sequence of markings and steps:
M1[Y1>M2[Y2>M3……Mn[Yn>Mn+1 such than n ∈
Natural Number and Mi[Yi>Mi+1 for all i∈1…..n.
The marking M1 is called the start marking of the
occurrence sequence, while the marking Mn+1 is
called the end marking. The non-negative integer n
denotes the number of steps in the occurrence
sequence, or the length of it.

DEFINITION 2.10. A marking M” is reachable
from a marking M’ iff there exists a finite
occurrence sequence having M’ as start marking and
M” as end marking, i.e. iff for some n∈N there
exists a sequence of steps Y1,Y2…..Yn such that:
M1[Y1>M2[Y2>M3……Yn>M”. M” is reachable
from M’ in n steps. A firing or occurrence sequence
is denoted by

 σ=(Y1,Y2……Yn)

The set of markings which are reachable from M’ is
denoted by [M’>.

DEFINITION 2.11. The full occurrence graph of a
SCCPN is the directed graph OG=(V, A, N) where:
1. V=[M0>
2. A={(M1,b,M2)∈VxBExV|M1[b>M2}.
3. ∀a=(M1,b,M2)∈A: N(a)=(M1,M2).

In OG, a node is a particular marking reachable
from M0. (ie The construction of OG is using
Markings as nodes while construction of SCCPN is
using Place and Transitions as nodes) The set of
markings which are reachable from M0 is denoted by
[M0>. An arc a with N(a)=(M1,M2) is said to go
from the source node M1 to the destination node M2.
An arc with the binding element b is denoted by
(M1,b,M2).

The occurrence graph (O-graph) has a node for each
reachable marking and an arc for each step that
occurs - with a single binding element. The source
node of the arc is the start marking of the step, while
the destination node is the end marking.

3. Correctness of a HES

Although the integration of a Rule- and Frame-
based Expert System can take the advantages of
both representation paradigms. The systems are not
free from errors and anomalies. In a pure rule-based
system, errors and anomalies could include
redundancy, dead-end rules, subsumption,
duplication, circular rule sets, unsatisfiable
conditions, missing rules..etc. Their verification are
well documented in the literature [3,8,9,13,14,15].
In a pure frame-based system, errors and anomalies
may occur due to the problems of message passing
and concurrency, problems of inheritance (including
simple, repeated and multiple inheritance) and
problems of polymorphism. Instead of covering all
the possible errors and anomalies caused by the
integration of the above two representation
paradigms, we would like to focus ourselves on the
additional errors and anomalies attributed to the
integration of rules with the inheritance of object
properties.

Given that in a closed world situation in which a
common concept is derived by a HES {C, A, I, H,
D, M, R, S}. The anomalies that are relevant to the
correctness of the HES, take the following forms:

3.1. Redundancy

Case I. Conditions and Actions identical between

Parent Class and Child Classes.

In the case of rules which have identical conditions
and actions applied to the parent object class and
child object classes, this implies the existence of
redundant rules.

 Rule 1 : A∧B⇒C
 Rule 2 : A’∧B’⇒C’

(A, B & C are slots in the parent object, A’, B’ and
C’ are slots in the child object and A’=A, B’=B,
C’=C because of inheritance).

Case II. Chained inference

 Rule 3 : A⇒C
 Rule 4 : A’⇒B’
 Rule 5 : B’⇒C’

 424

In the case of a chained inference, some rules could
become redundant if the same result could be
inferred by alternative transitions even the same
input facts are given. (A’=A and C’=C because of
inheritance and B’ is not ascertainable through other
rules). Rule 3 could become redundant as C’ could
be inferred by an alternative transition, Rule 5, via
Rule 4.

3.2. Subsumption

Case I. Conditions subsumed with identical actions

between Parent Class and Child Classes.

 Rule 6 : A∧B⇒C∧D
 Rule 7 : A’⇒ C’∧D’

Case II. Conditions identical with subsumed actions

between Parent Class and Child Classes.

 Rule 8 : A∧B⇒C∧D
 Rule 9 : A’∧B’⇒ C’

Case III. Conditions and actions subsumed between

Parent Class and Child Classes.

 Rule 10 : A∧B⇒C∧D
 Rule 11 : A’⇒ C’

In a complex frame hierarchy which allows for
multiple inheritance, checking for subsumption
becomes more difficult because the problem
becomes what characteristics the child inherits, and
from which parent? The HES has to follow some
sort of default orderings in inheritance, and this may
lead to sets of conflicting traits which are even more
complicated to verify.

3.3. Ambiguity

Case I. Rule with inclusive disjunction of IS-A

conditions from different Object Classes.

 Rule 12 : A IS-A member of ClassX ∨
 A IS-A member of ClassY⇒B

Case II. Rule with inclusive disjunction of IS-A

Actions for different Object Classes.

 Rule 13 : B⇒A IS-A member of ClassX ∨
 A IS-A member of ClassY

3.4. Circular Rule Sets

If a circular loop can occur when a set of rules
among different object classes are fired, then these
rules are considered as a circular rule set within the
object hierarchy.

Case I. Self-reference rule

 Rule 14: A’⇒A∧B

Case II. Self-reference chain of inference

 Rule 15: A⇒B⇒ • • • • • • ⇒P
 Rule 16: P’⇒A

If more than one level of class hierarchy is involved,
an implicit cycle may exist where the loop is formed
from several rules and different frames' slots in the
frame hierarchy.

4. Description and Properties

The logical predicate becomes true by the presence
of a state token and the transition associated with
this predicate will become active by the presence of
the corresponding object class token (instance) and
provided that the slots attributes in the object class
instance satisfies the transition condition. The
transition is enabled and is ready for firing. For
simplicity reasons, without taking any transition
conditions or transition operations into
consideration, we can minimally enable a specific
transition and then check the reachability set for any
irregularities of predicate places. In this
representation, a marking M is composed of Mc that
depicts the marking for the class places and Ms that
depicts the marking for the state places in the
SCCPN. A transition tj is represented by a t-vector.
For verification purposes, we define that:

DEFINITION 4.1. A transition tj is minimally active
if

Mc =

 ∪∈

otherwise
ttpif jcjcci

0
))(Õ)(Ã(1

DEFINITION 4.2. A transition tj is minimally
enabled if tj is both minimally active and that

Ms =

 ∪∈

otherwise
ttpif jsjssi

0
))(Õ)(Ã(1

and

))()((),(sissicjsi pMpMbtpE ∪>≤<∑

DEFINITION 4.3. Tk that contains a group of
transitions {tn} is said to be minimally active if
∀j=1,2,..n, tj ∈ Tk , ∃ pi ∈(Ãc(tj)∪Õs(tj)) ⊆
(Ãc(Tk)∪Õs(Tk)), such that

 425

Mc =

∪∉

∪∈

otherwise
ttpand

ttpif
jsjcci

jsjcci

0
))(Ö)(Ä(

))(Õ)(Ã(1

Note that the self-loop arc corresponding to each
input place does not cause a repeated firing of
transitions. In the absence of any self-reference rule,
the set of input places and that of output places with
respect to the transition in SCCPN are always
disjointed.

DEFINITION 4.4. Tk that contains a group of
transitions {tn} is said to be minimally enabled if
∀j=1,2,..n, tj ∈ Tk , ∃ pi ∈(Ãc(tj)∪Õs(tj)) ⊆
(Ãc(Tk)∪Õs(Tk)), such that

Mc =

∪∉

∪∈

otherwise
ttpand

ttpif
jsjcci

jsjcci

0
))(Ö)(Ä(

))(Õ)(Ã(1

and

))()((),(sissicjsi pMpMbtpE ∪>≤<∑

5. Formal Verification of the

Correctness Problem

The problems of correctness about a rule set applied
to an object hierarchy might involve redundancy,
subsumption, ambiguity, and cyclicity. These are
observable either between a pair of rules applied to
an object hierarchy or rules that represent chains of
inference in the object hierarchy.

Altogether, four propositions are defined for
representing the formal properties in the SCCPN in
which each of them corresponds to some anomalies
in the HES.

5.1. Redundancy

Proposition 5.1. For a given marking M0, that
minimally enables a nontrivial transition sequence
σi, iff the HES has incorrect rules causing
redundancy between the parent and child object
classes, then ∃σj, ∃k, such that these sequences have
the following properties:

(i) σi ∩ σj=∅;
(ii) Tc∩σi =∅;Tc∩σj≠∅;
(iii) M’=δ(M0,σi), M”=δ(M0,σj);
(iv) Msk=0, M’sk>0, M”sk>0;
(v) Mck=0, M’ck>0, M”ck>0;
(vi) ∃(prk,cck)’∈M’ck, ∃(prk,cck)”∈Mck”
(vii) (prk,cck)’=(prk,cck)”

Explanation: Property (i) denotes that there should
exist two nontrivial transition sequences and they
are disjoint one another. Property (ii) denotes that
transition sequence σi does not involve any
inheritance while transition sequence σj involves
inheritance. Property (iii) denotes that marking M’ is
reachable from initial marking M0 by the first
sequence σi and marking M” is reachable from M0
by the second sequence σj. Property (iv) denotes that
no state token is deposited in Place k in the initial
marking. While in markings M’ and M”, there is at
least one state token deposited in Place k. Property
(v) is similar to (iv) except that the markings are
referring to class tokens. Property (vi) denotes that
there exists a class token element (prk,cck)’ in
predicate place k of M’. There is also a token
element (prk,cck)” which exists in predicate place k
of marking M”. Property (vii) tells us that the colour
(data value) of predicate k of this two class tokens
are the same.

5.2. Subsumption

Proposition 5.2. For a given marking M0, that
minimally enables a nontrivial transition sequence
σi, iff the HES has incorrect rules causing
subsumption between the parent and child object
classes, then ∃σj, ∃k, such that these sequences have
the following properties:

(i) σi ∩ σj=∅;
(ii) Tc∩σi =∅;Tc∩σj≠∅;
(iii) M’=δ(M0,σi), M”=δ(M0,σj);
(iv) Msk=0, M’sk>0, M”sk>0;
(v) Mck=0, M’ck>0, M”ck>0;
(vi) ∃(prk,cck)’∈M’ck, ∃(prk,cck)”∈Mck”
(vii) (prk,cck)”⊆(prk,cck)’

5.3. Ambiguity

Proposition 5.3. For a given marking M0, that
minimally enables Γ={σi, σj} for a nontrivial
transition sequence σi, σj, iff the HES has incorrect
rules causing ambiguous conditions of events
between different object classes, then ∃k,
∀prk∈Ös(Γ), ∀prk∈Öc(Γ), such that these sequences
have the following properties:

(i) σi ∩ σj=∅;
(ii) M’=δ(M0,σi), M”=δ(M’,σj);
(iii) Msk=0, M’sk≥1, M”sk>1;
(iv) Mck=0, M’ck≥1, M”ck>1;
(v) ∃(prk,cck)’∈M’ck, ∃(prk,cck)”∈Mck”
(vi) (prk,cck)’=(prk,cck)”

5.4. Circular Rule Sets

 426

Proposition 5.4. For a given marking M0, that
minimally enables transition sequence α, iff the
HES has incorrect rules causing cyclicity between
the parent and child object classes, then ∃j≥i, ∃k
such that the sequence has the following properties:

(i) Mi ∈ [M0> = {M0, M1, M2, …Mi, ..Mj},
(ii) Mj = δ(M0, α) for j>0,
(iii) Tc∩α ≠∅;
(iv) Mi

sk=0, Mi
sk>0, Mj

sk>1;
(v) Mi

ck=0, Mi
ck>0, Mj

ck>0;

6. Conclusion

In this paper, we have described a formal
description technique based on State Controlled
Coloured Petri Nets to model hybrid (rule- and
frame-based) expert systems. The technique allows
the use of reachability theory for the verification of
the systems. The paper illustrates the capability of
the technique to identify the anomalies due to the
incorrectness of the hybrid knowledge base. The
verification was done exhaustively by minimally
initiating any sequence of transitions and closely
examining the reachability markings at each
transition. A set of propositions is formulated to
verify errors and anomalies in HES.

Future work will include measuring and analyzing
the state-space complexity of HES and evaluating
our approach for modelling and verification. We
would also like to investigate further the capability
of the methodology to handle fuzzy and temporal
expert systems.

References

[1] Agarwal, R. & Tanniru, M. (1992). A Petri

Net based approach for verifying the
integrity of production systems.
International Journal of Man Machine
Studies. Vol. 36. 447-468.

[2] Aikins, J.S. (1993). Prototypical Knowledge

for Expert Systems: a retrospective analysis.
In Bobrow D.G. (Ed.) Artificial Intelligence.
Vol. 59. pp. 207-211. Elsevier, Amsterdam.

[3] Coenen, F. & Bench-Capon, T. (1993).

Maintenance of Knowledge-based Systems.
Academic Press.

[4] Dori, D. & Tatcher, E. (1994). Selective

multiple inheritance. IEEE Software. Vol.
11. No. 3, 77-85.

[5] Durkin, J. (1994). Expert Systems: Design
and Development. Macmillan Publishing
Company. 12-23;711-771.

[6] French, S.W. & Hamilton, D. (1994). A

Comprehensive Framework for Knowledge-
Base Verification and Validation.
International Journal of Intelligent Systems.
Vol. 9. 809-837.

[7] Gamble, R. F. & Baughman D. M. (1996).

A methodology to incorporate formal
methods in hybrid KBS verification.
International Journal of Human Computer
Studies. Vol. 44, 213-244.

[8] Gamble, R.F., Roman G., Ball W.E. &

Cunningham H.C. (1994). Applying Formal
Verification Methods to Rule-Based
Programs. International Journal of Expert
Systems. Vol. 7, no. 3, 203-239.

[9] Gupta, U. (Ed.) (1991). Validating and

Verifying Knowledge-based Systems. IEEE
Computer Society Press.

[10] Jensen, K. (1995). Coloured Petri Nets:

Basic Concepts, Analysis Methods and
Practical Use. Vol 2. Springer-Verlag.

[11] Jensen, K. (1996). Coloured Petri Nets:

Basic Concepts, Analysis Methods and
Practical Use. Vol. 1. 2nd Ed. Springer-
Verlag.

[12] Lee, S. & O’Keefe, R.M. (1993).

Subsumption Anomalies in Hybrid
Knowledge Bases. International Journal of
Expert Systems. Vol. 6, No. 3, 299-320.

[13] Liu, N. K. & Dillon T. (1995). Formal

Description and Verification of Production
Systems. International Journal of Intelligent
Systems. Vol. 10, 399-442.

[14] Liu, N. K. & Dillon, T. (1995). Formal

Description and Verification of Production
Systems. International Journal of Intelligent
Systems. Vol. 10, 399-442.

[15] Murrell, S. & Plant, R. (1996). On the

Validation and Verification of Production
Systems: a graph reduction approach.
International Journal of Human Computer
Studies. Vol. 44, 127-144.

 427

[16] Nazareth, D. L. (1993). Investigating the
Applicability of Petri Nets for Rule-Based
System Verification. IEEE Transactions on
Knowledge and Data Engineering. Vol. 4,
No. 3, 402-415.

[17] O’Keefe, R.E. & O’Leary, D.E. (1993).

Expert System Verification and Validation:
A survey and tutorial. Artificial Intelligence
Review. Vol. 7, 3-42.

[18] Scarpelli, H. & Gomide, F. (1994). A high

level net approach for discovering potential
inconsistencies in fuzzy knowledge bases.
Fuzzy Sets and Systems. Vol. 64, 175-193.

[19] Shiu, S., Liu, J. & Yeung, D. (1995a).

Modelling Hybrid Rule/Frame-based Expert
Systems Using Coloured Petri Nets. In
Proceedings of 8th International
Conference on Industrial & Engineering
Applications of AI & ES. Melbourne,
Australia. 525-532.

[20] Shiu, S., Liu, J. & Yeung, D. (1995b). An

Approach Towards the Verification of
Hybrid Rule/Frame-based Expert Systems
using Coloured Petri Nets. In Proceedings
of 1995 IEEE International Conference on
SMC. Vancouver. 2257-2262.

[21] Shiu, S., Liu, J. & Yeung, D. (1996a). An
Approach Towards the Verification of
Fuzzy Hybrid Rule/Frame-based Expert
Systems using Coloured Petri Nets. In
Proceedings of ECAI-96 Workshop in
Validation, Verification and Refinement of
KBS. Budapest, 105-113.

[22] Shiu, S., Liu, J. & Yeung, D. (1996b).

Proofs of the Formal Verification of Hybrid
Rule/Frame-based Expert Systems using
SCCPN. Unpublished Manuscript.
Department of Computing, Hong Kong
Polytechnic University.

[23] Vranes, S. & Stanojevic, M. (1995).

Integrating Multiple Paradigms within the
Blackboard Framework. IEEE Transactions
on Software Engineering. Vol. 21, No. 3,
244-262.

[24] Willis, C.P. (1996). Analysis of inheritance

and multiple inheritance. Software
Engineering Journal. July.

[25] Zhang, D. & Nguyen D. (1994). PREPARE:

A Tool for Knowledge Base Verification.
IEEE Transactions on Knowledge and Data
Engineering. Vol. 6, No. 6, December, 983-
989.

 428

	Hybrid Expert Systems
	Department of Computing
	Hung Hom, Kowloon

	Abstract

