
Formal Verification of Some Potential Contradictions in
Hybrid Expert Systems

Simon C.K. Shiu, James N.K. Liu, Daniel S. Yeung

Department of Computing

Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

E-mail: {csckshiu | csnkliu | csdaniel}@comp.polyu.edu.hk

ABSTRACT

With increasingly complex, sophisticated and changing real-
world situations, it has been recognized that expert systems
which combine one or more techniques greatly increase the
problem solving capability and help overcome some of the
shortcomings associated with any single technique. The
verification of these expert systems requires methods that
could tackle the multiple knowledge representation
paradigms and integrated inference mechanisms used. This
paper describes a formal technique based on State
Controlled Coloured Petri Nets (SCCPNs) for verifying
some potential contradictions in Hybrid Expert Systems
(HES) that emphasize an integration of object hierarchy,
property inheritance and production rules. The main idea of
our approach is to convert the HES into a State Controlled
Coloured Petri Net where the object hierarchy, property
inheritance and production rules are modelled as separated
components in the same SCCPN. The detection and analysis
of the potential contradictions in the system are done by
constructing and examining the reachability tree spanned by
the knowledge inference. Propositions are formulated to
verify such potential contradictions, and their mathematical
proofs are explained.

1. INTRODUCTION

Traditionally, attention has been concentrated on using
verification techniques to tackle rule-based systems [8], [9],
[13], [14]. However, these techniques exhibit a limited range
of applicability. They could not cope with the kind of
Hybrid Expert Systems (HES), e.g. Rule-based plus Frame-
based, which many of the current Expert Systems are being
developed [2], [5], [16], [22]. The use of this hybrid
approach integrates the power of organizing data objects in a
class hierarchy and reasoning about the objects through user
pre-defined logical associations. This advantage accounts
for many popular Expert System development software (or
shells), such as ADS, ART, EXSYS EL, KAPPA-PC,
KBMS, NEXPERT OBJECT, LEVEL5 OBJECT, PRO-
KAPPA, REMIND, which combine some sort of Frame-
based representation with a Rule-based inference engine.

The verification of these Hybrid Expert Systems requires
methods that could tackle the multiple knowledge
representation paradigms and integrated inference
mechanisms used. This paper presents a formal description
technique based on State Controlled Coloured Petri Nets for
verifying some potential contradictions in Hybrid Expert
Systems that emphasizes an integration of object hierarchy,
property inheritance and production rules.

2. A HYBRID EXPERT SYSTEM (HES)

A Hybrid Expert System combines multiple representation
paradigms into a single integrated environment. For a Rule-
and Frame-based integration, it composes of the following
key features: Object Classes, Slot Attributes, Inheritance
Relations, Demons, Methods, Rules and Reasoning
Strategies. These features can be analyzed using three
conceptual views [6] of an Expert System, they are: (1) An
Object View which encapsulates a module of knowledge (or
a concept). These knowledge modules (concepts) are
represented by Object Classes. Inheritance Relations
describe how these knowledge modules are related. (2) A
Function View which specifies the functional behaviour of
the objects within the Expert System. These functions are
represented using Methods and Demons. (3) A Control
View which specifies the sequence of knowledge inference
in the Expert System. These controls are represented in
terms of Rules and Reasoning Strategies.

In practical HES development [18], [19], Frames are used to
represent domain objects, various kinds of Demons are used
to implement procedures attached to specific slots,
Inheritance is used to inherit Class properties, Methods and
Demons among Object Classes, Message Passing is used for
the interaction among different objects and Methods are
used to perform algorithmic actions or some array
manipulation within an object. Rules are used to describe
heuristic problem-solving knowledge, Forward and
Backward chains are commonly used to reason using rules.
Therefore, in HES, the Frame base can be seen as being
used to define the vocabulary for the Rule base, i.e. the
possible values that slots can be defined and so specified,
and the literal used to construct rules must conform to the
restrictions imposed by what is available from the class
hierarchy. The Frame base is married together with the
Rules designed to manipulate it. The specific integration
mechanisms of HES are as follows:

• Rules with Message Passing: Rules send or receive

messages to and from objects for testing the Rules'
premises.

• Rules with Inheritance: Rules directly read and write

data into slots in a parent object and through inheritance
of this slot's value to its children objects, trigger other
rules to fire.

• Rules with Demons: Rules directly read and write data

into slots and cause the execution of the associated
Demons, which then trigger other rules to fire.

• Rules with Methods: Rules are embedded as part of an

object's methods. Since methods are arbitrary pieces of
code attached to an object, they can access the rules
through function calls.

0-7803-4053-1/97/$10.00 © 1997 IEEE
4424

mailto:csdaniel}@comp.polyu.edu.hk

• Rules with Instances: Rules can be used to create/delete

an instance of a specific Object Class.

• Backward Chain with Inheritance: Goal directed search

with inheritance as one of the means to establish the rule
chains linking up different Object Classes.

• Forward Chain with Inheritance: Data directed search

with inheritance as one of the means to establish the rule
chains linking up different Object Classes.

3. SCCPN REPRESENTATION OF HES

As shown in Table 3.1 the components of the HES are
separately represented, which can be modelled explicitly by
the SCCPN. The places are taken to correspond to predicates
and object classes, and transitions to represent rules
implications as well as inheritance. There are two major
types of tokens, one is the state token which records the state
of the predicate and the class type information. (i.e. Since
rules may be fired by either parent class instance or child
class instances). The second type of token is the object
instance token which represents a particular object instance
of a particular class within the object hierarchy. Transitions
are fired to represent rules being executed or inheritance is
being carried out. The maximum number a rule can be
executed is equal to the total number of different class types.
(i.e. each class type object instance can fire a particular rule
once at most). Each input place of a rule has a self-loop arc
for maintaining the state of the predicate. Similarly, the
input place of an inheritance also has a self-loop arc for
recording the inheritance execution. Methods and Demons
are represented by functions in the arc inscription of the
SCCPN. The net result is the exchange of colour tokens
from places to places and a new marking, which is defined
as the distribution of tokens over the places of the SCCPN,
is obtained.

Hybrid Expert System

State Controlled Coloured
Petri Net

Frame-based part
Object Classes Places
Object Class Types Colour Sets
Object Instances Tokens
Slots Variables in Tokens
Facts in Slots Binding of Variables with

Constants
Inheritances Transitions
Demon Arc Expressions
Methods Arc Expressions

Rule-based part

Predicates Places
Predicates States Tokens
Rules Transitions
Facts Binding of Variables with

Constants
Transition Operations Arc Expressions

Table 3.1. Conceptual interpretation of HES in SCCPNs.

The SCCPN notation employed is an extension of State
Controlled Petri Nets proposed by [13], and Coloured Petri
Nets proposed by [10], [11], and is specified as follows.

DEFINITION 3.1. A SCCPN can be defined as a 10-tuple
given by = (Σ, P, T, D, F, A, N, C, E, I), where satisfying the
requirements below:

Σ = { ω1,ω2,...,ωi }, a finite set of non-empty types, called

colour sets, i≥1,
P = {Pc, Pr} a finite set of places,
Pc = { pc1, pc2, ..., pcj }, a finite set of places that model the

classes of the HES, called class places, j≥1,
Pr = { pr1, pr2, ..., prk }, a finite set of places that model the

predicates of the production rules, called predicate
places, k≥1,

Pc∩Pr : the intersection of Pc∩Pr represents those IS-A
predicates of the rule sets attached to the specific
classes,

T = { Tc, Tr }, a finite set of transitions,
Tc = { tc1, tc2, ..., tcl }, a finite set of transitions that are

connected to and from class places, called
inheritance transition, l≥1,

Tr = { tr1, tr2, ..., trm }, a finite set of transitions that are
connected to or from predicate places, called
predicate transition, m≥1,

Tc∩Tr=∅,
D = { d1, d2, ..., dn }, a finite set of predicates, |Pr| = |D|, n≥1,
F = { f1, f2, ..., fn }, a finite set of classes, |Pc| = |F|, n≥1,
A = { a1, a2, ..., ak }, a finite set of arcs, k ≥ 1, P ∩ T = P ∩

A = T ∩ A = ∅,
N : A → P×T∪T×P, a node function, it maps each arc into a

pair where the first element is the source node and
the second is the destination node, the two nodes
have to be of different kinds. The node functions can
be further classified into the following eight different
types:

Inheritance : { Ãc, Äc, Ãs, Äs} where
Ãc : Tc→(Pc)MS is an input class function for inheritance, a

mapping from inheritance transitions to the bags of
class places. The word MS stands for multi-set (or
bags).

Äc : Tc→(Pc)MS is an output class function for inheritance, a
mapping from inheritance transitions to the bags of
class places.

Ãs : Tc→(Pc)MS is an input state function for inheritance, a
mapping from inheritance transitions to the bags of
class places.

Äs : Tc→(Pc)MS is an output state function for inheritance, a
mapping from inheritance transitions to the bags of
class places.

Predicate : {Õc, Öc, Õs, Ös} where
Õc : Tr→(Pr)MS is an input class function for predicates, a

mapping from predicates transitions to the bags of
predicates.

Öc : Tr→(Pr)MS is an output class function for
predicates, a mapping from predicates transitions to
the bags of predicates.

Õs : Tr→(Pr)MS is an input state function for predicates, a
mapping from predicates transitions to the bags of
predicates.

Ös : Tr→(Pr)MS is an output state function for predicates, a
mapping from predicates transitions to the bags of
predicates.

C : P→Σ, a colour function, it maps each place into a colour
set,

E : A→expression, an arc expression function, It is defined
from A into expressions such that ∀a∈A :
[Type(E(a))=C(p(a))MS∧Type(Var(E(a)))⊆Σ] where
p(a) is the place of N(a), where MS stands for multi-
set (or bags),

4425

I : P→expression, an initialization function. It is defined
from P into closed expressions such that:
∀p∈P:[Type(I(p))=C(p)MS].

4. SCCPN Representation of HES

Case I. Self-contradictory rule

 Rule 1 : A⇒C
 Rule 2 : A'⇒¬C

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance

Figure 4.1

Initially, if we have a Parent token in Parent Class A is True,
then Rule 1 will fire, and a Parent token will be created in
State C with both A and C being True. At the same time, a
Child token will be created in Child Class, having A' being
True, because of inheritance. This enables Rule 2, and after
firing, a Child token is also created in State C but with C'
being FALSE.

Case II. Self-contradictory chain of inference

 Rule 1: B'⇒¬C
 Rule 2 : C'⇒D
 : :
 Rule N: N'⇒B

State token
Parent token
Child token

Rule 1

Rule N.......................Rule 2

State C

Parent Class

Child Class

Inheritance

Figure 4.2.

Initially, if we have a Parent token in State C with C is True,
then Rule 2 will fire, after the chain inference from Rule 2 to
Rule N, a Parent token will be created in Parent Class with
B being True. After inheritance, a Child token will be
created in Child Class with B' being True, and this will
enables Rule 1 to fire. This time, the State C is asserted to be
FALSE by Rule 1 contradicting to the initial fact C which is
TRUE.

Case III. Contradictory pairs of rules

 Rule 1 : A∧B⇒C
 Rule 2 : A'∧B'⇒¬C

State token
Parent token
Child token

Rule 1

Rule 2

State C

Parent Class

Child Class

Inheritance State B

Figure 4.3.

If we have a Parent token in Parent Class with A is TRUE,
and a State token in State B indicating State B is TRUE,
State C will be asserted to be TRUE by Rule 1 but FALSE
by Rule 2 indicating contradictory state of inference.

Case IV. Contradictory chains of rules

State token
Parent token
Child token

Rule 1

Rule 2.......................Rule N

State C

Parent Class

Child Class

Inheritance

Figure 4.4.

 Rule 1: A'⇒¬P
 Rule 2 : A⇒B
 : :
 Rule N : N⇒P

Proposition 4.1. For a given marking M0, that minimally
enables a nontrivial transition sequence σi, iff the HES has
inconsistent rules causing contradiction between the parent
and child object classes, then ∃σj, ∃k, such that these
sequences have the following properties:

(i) σi∩σj=∅;
(ii) Tc∩σi =∅; Tc∩σj≠∅;
(iii) M'=δ(M0,σi), M"=δ(M0,σj);
(iv) Msk=0, >0, >0; '

skM "
skM

(v) Mck=0, >0, >0; '
ckM "

ckM

(vi) ∃(prk,cck)'∈ , ∃(p'
ckM rk,cck)"∈ "

ckM

4426

(vii) (prk,cck)'=¬(prk,cck)"

If there exists incorrect rules applied to the object hierarchy
of the following cases:

Case (I): Identical Conditions but Contradict Actions

between Parent Class and Child Class.

Let E(Φ) be the arc expression function of the predicate IS-
A member of Parent Class and
Let E(φ) be the arc expression function of the predicate IS-A
member of Child Class.

In SCCPN representation, there should exists tr0, tr1 and tc
such that

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)
E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1))

Õc(tr0)=Ãc(tc), Äc(tc)=Õc(tr1), Öc(tr0)=Öc(tr1),
Õs(tr0)=Ãs(tc), Äs(tc)=Õs(tr1), Ös(tr0)=Ös(tr1)

Choose M0 with a class token element (pr0,cc0) and a state
token (pr0,cs0) s.t. tr0 is minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.
And Mck=1 if pck∈Õc(tr0), 0 otherwise.

Since Õs(tr0)=Ãs(tc) and Õc(tr0)=Ãc(tc), tc is enabled.
Since tc is enabled, the new marking in Äc(tc)=1 and
has a colour of (pr1,cc1) which is inherited from (pr0,cc0).
Where E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ).
Since E(Õc(tr1),tr1)=E(Õc(tr0),tr0) - E(Φ) + E(φ), therefore tr1
is enabled.

Therefore, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and
σi=(tr0), σj=(tc,tr1).

Therefore

'
skM =



 ∈

otherwise
)}(t),Ö(t{Õpif rsrssk

0
1 00

'
ckM =



 ∈

otherwise
)(tÖpif rcck

0
1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM =



 ∈

otherwise
)}(t),Ö(t{Õpif rsrssk

0
1 11

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0
1 1

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)),
therefore (prk,cck)'=¬(prk,cck)"

Thus, for psk∈Ös(tr0), Msk=0, >0, >0, and for

p

'
skM

'
ck

"
skM
"
ckMck∈Öc(tr0), Mck=0, >0, >0, and

(p

M

rk,cck)'=¬(prk,cck)", implying inconsistency with σi=(tr0),
σj=(tc,tr1) in the object classes.

Case (II): Contradictory pair of rules between Parent Class

and Child Class.

Let E(Φ) be the arc expression function of the predicate IS-
A member of Parent Class and
Let E(φ) be the arc expression function of the predicate IS-A
member of Child Class.

In SCCPN representation, there should exists tr0, tr1 and tc
such that

Σ{E(Õc(tr0),tr0)} - E(Φ)=Σ{E(Õc(tr1),tr1)} - E(φ)
E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1))

Ãc(tc)⊂Õc(tr0), Äc(tc)⊂Õc(tr1), Öc(tr0)=Öc(tr1),
Ãs(tc)⊂Õs(tr0), Äs(tc)⊂Õs(tr1), Ös(tr0)=Ös(tr1)

Choose M0 with a class token element (pr0,cc0) and a state
token (pr0,cs0) s.t. tr0 is minimally enabled,

then Msk=1 if psk∈Õs(tr0), 0 otherwise.
And Mck=1 if pck∈{Õc(tr0)∩Ãc(tc)}, 0 otherwise.

Since Ãs(tc)⊂Õs(tr0) and Ãc(tc)⊂Õc(tr0), tc is enabled.
Since tc is enabled, the new marking in Äc(tc)=1 and has a
colour of (pr1,cc1) which is inherited from (pr0,cc0). Where
E(pr0,tc) - E(Φ)=E(tc,pr1) - E(φ).
Since Σ{E(Õc(tr0),tr0)} - E(Φ)=Σ{E(Õc(tr1),tr1)} - E(φ),
therefore tr1 is enabled.

Therefore, ∃M', ∃M" s.t. M'=δ(M0,σi), M"=δ(M0,σj) and
σi=(tr0), σj=(tc,tr1).

Therefore

'
skM = 



 ∈
otherwise

)}(t),Ö(t{Õpif rsrssk

0
1 00

'
ckM = 



 ∈
otherwise

)(tÖpif rcck

0
1 0

And the colour of the class token at Öc(tr0)=(prk,cck)'

"
skM = 



 ∈
otherwise

)}(t),Ö(t{Õpif rsrssk

0
1 11

"
ckM = 



 ∈
otherwise

)(tÖpif rcck

0
1 1

And the colour of the class token at Öc(tr1)=(prk,cck)"

Since E(tr0,Öc(tr0))=¬E(tr1,Öc(tr1)),
therefore (prk,cck)'=¬(prk,cck)"

Thus, for psk∈Ös(tr0), Msk=0, >0, >0, and for

p

'
skM

'
ck

"
skM
"
ckMck∈Öc(tr0), Mck=0, >0, >0, and M

4427

(prk,cck)'=¬(prk,cck)", implying inconsistency with σi=(tr0),
σj=(tc,tr1).

Case(III): Contradictory chains of rules between the parent

and child object classes.

Let E(Φ) be the arc expression function of the predicate IS-
A member of Parent Class and
Let E(φ) be the arc expression function of the predicate IS-A
member of Child Class.

In SCCPN representation, there should exists
σi=(tr1,tr2,….trj) and σj =(tc,tr0) such that

E(Õc(tr0),tr0) - E(Φ)=E(Õc(tr1),tr1) - E(φ)
E(tr0,Öc(tr0))=¬E(trj,Öc(trj))

Ös(tr(m))=Õs(tr(m+1)) for m=1,2,…..j-1.
Öc(tr(m))=Õc(tr(m+1)) for m=1,2,…..j-1.
Õc(tr1)=Ãc(tc), Äc(tc)=Õc(tr0),
Õs(tr1)=Ãs(tc), Äs(tc)=Õs(tr0),

Choose M0 with a class token element (pr0,cc0) and a state
token (pr0,cs0) s.t. σi =(tr1,tr2,….trj) is minimally enabled, i.e.,
∀m=1,2,3,….j-1,

then Msk= 


 ∈
otherwise

)(tÃpif cssk

0
1

And Mck=


 ∈

otherwise
)(tÃpif ccck

0
1

The execution of transition sequence, σi, gives M' s.t.
∀m=1,2,3,….j, Ös(tm)∈Ös(σi)

'
skM =



 ∈

otherwise
)}(),Ö(t{Õpif isrssk

0
1 1 σ

And the colour of the class token at Öc(tj)=(prk,cck)'

Since Ãs(tc)=Õs(tr1) and Ãc(tc)=Õc(tr1), tc is enabled.
Since tc is enabled, the new marking in Äc(tc)=1 and has a
colour of (pr1,cc1) which is inherited from (pr0,cc0). Where
E(pr1,tc) - E(Φ)=E(tc,pr0) - E(φ).
Since E(Õc(tr1),tr1) - E(Φ)=E(Õc(tr0),tr0) - E(φ), therefore tr0
is enabled.

Let M =δ(,t"

ck
'
ckM r0),

"
ckM =



 ∈

otherwise
)(tÖpif rcck

0
1 0

And the colour of the class token at Öc(tr0)=(prk,cck)"

E(tr0,Öc(tr0))=¬E(trj,Öc(trj)), therefore (prk,cck)'=¬(prk,cck)"

Case (IV): Self Contradictory chain of inference between

the parent and child object classes.

Proposition 4.2. For a given marking M0, that minimally
enables transition sequence α, iff the HES has inconsistent
rules causing self-contradictory chain of inference between

the parent and child object classes, then ∃j, ∃k such that the
sequence has the following properties:

(i) Mi∈[M0>={M0,M1,M2,…Mi,..Mj},
(ii) Mj=δ(M0,α) for j>0,
(iii) Tc∩α≠∅;

(iv) M [Õ]=0, M 0
sk [Õ]>0, M [Õ]>1. sk

j
sk

(v) ∃(prk,cck)'∈M0
ck, ∃(prk,cck)"∈Mj

ck
(vi) (prk,cck)'=¬(prk,cck)"

In SCCPN representation, there should exist α=(tr1,tr2,....tr(l-

1),tc,trl,...trm) forming a connected path such that

Õs(tr(l+1))⊆Ös(trl) for l=1,2,.....m-1,
Õs(tr1)⊆Ös(trm).
E(Õc(tr1),tr1)=¬E(trm,Öc(trm))

Choose M0 with a class token element (pr0,cc0)' and a state
token (pr0,cs0)' s.t. α=(tr1,tr2,....tr(l-1),tc,trl,...tm) is minimally
enabled,i.e., ∀l=1,2,....m-1,

then Msk=1 if psk∈Õs(tr1), 0 otherwise.
And Mck=1 if pck∈Õc(tr1), 0 otherwise.

M = 0
sk 



 =∈

otherwise
)(p),where M(tÕpif ckrssk ck

0
11 0

1

i.e. M 0 [Õsk s(tr1)]=1 if psk∈Õs(tr1)

Since Õs(tr1)⊆Ös(trm), and Mm=δ(M0,αi). Therefore the
execution of transition sequence, α, gives Mm s.t.
∀l=1,2,....m-1.

M = m
sk









∈

∈

otherwise
)}(t), Ö(t{Öpif

)(tÕpif
rmsrssk

rssk

0
1
2

1

1

And the colour of the class token at Öc(trm)=(prk,cck)"

Since E(Õc(tr1),tr1)=¬E(trm,Öc(trm))
therefore (prk,cck)'=¬(prk,cck)"

Thus for psk∈Õs(tr1), M [Õ]=0, M [Õ]>0, M [Õ]>1,

∃(p
sk

0
sk

j
sk

rk,cck)'∈M0
ck, ∃(prk,cck)"∈Mj

ck and (prk,cck)'=¬(prk,cck)",
implying inconsistent rules causing self-contradictory chain
of inference between the parent and child object classes.

5. SUMMARY AND CONCLUSION

In this paper, we have described a formal description
technique based on State Controlled Coloured Petri Nets to
model hybrid (rule- and frame-based) expert systems. The
technique allows the use of reachability theory for the
verification of the systems. The paper illustrates the
capability of the technique to identify the anomalies due to
the contradictions of the hybrid knowledge base. The
verification was done exhaustively by minimally initiating
any sequence of transitions and closely examining the
reachability markings at each transition. Propositions are
formulated to verify errors and anomalies in HES.

4428

Future work will include measuring and analyzing the state-
space complexity of HES and evaluating our approach for
modelling and verification. We would also like to
investigate further the capability of the methodology to
handle fuzzy and temporal expert systems.

6. REFERENCES

[1] Agarwal, R. & Tanniru, M. (1992). A Petri Net
based approach for verifying the integrity of production
systems. International Journal of Man Machine Studies.
Vol. 36. 447-468.

[2] Aikins, J.S. (1993). Prototypical Knowledge for
Expert Systems: a retrospective analysis. In Bobrow
D.G. (Ed.) Artificial Intelligence. Vol. 59. pp. 207-211.
Elsevier, Amsterdam.

[3] Coenen, F. & Bench-Capon, T. (1993). Maintenance
of Knowledge-based Systems. Academic Press.

[4] Dori, D. & Tatcher, E. (1994). Selective multiple
inheritance. IEEE Software. Vol. 11. No. 3, 77-85.

[5] Durkin, J. (1994). Expert Systems: Design and
Development. Macmillan Publishing Company. 12-
23;711-771.

[6] French, S.W. & Hamilton, D. (1994). A
Comprehensive Framework for Knowledge-Base
Verification and Validation. International Journal of
Intelligent Systems. Vol. 9. 809-837.

[7] Gamble, R. F. & Baughman D. M. (1996). A
methodology to incorporate formal methods in hybrid
KBS verification. International Journal of Human
Computer Studies. Vol. 44, 213-244.

[8] Gamble, R.F., Roman G., Ball W.E. & Cunningham
H.C. (1994). Applying Formal Verification Methods to
Rule-Based Programs. International Journal of Expert
Systems. Vol. 7, no. 3, 203-239.

[9] Gupta, U. (Ed.) (1991). Validating and Verifying
Knowledge-based Systems. IEEE Computer Society
Press.

[10] Jensen, K. (1995). Coloured Petri Nets: Basic
Concepts, Analysis Methods and Practical Use. Vol 2.
Springer-Verlag.

[11] Jensen, K. (1996). Coloured Petri Nets: Basic
Concepts, Analysis Methods and Practical Use. Vol. 1.
2nd Ed. Springer-Verlag.

[12] Lee, S. & O’Keefe, R.M. (1993). Subsumption
Anomalies in Hybrid Knowledge Bases. International
Journal of Expert Systems. Vol. 6, No. 3, 299-320.

[13] Liu, N. K. & Dillon, T. (1995). Formal Description
and Verification of Production Systems. International
Journal of Intelligent Systems. Vol. 10, 399-442.

[14] Murrell, S. & Plant, R. (1996). On the Validation
and Verification of Production Systems: a graph
reduction approach. International Journal of Human
Computer Studies. Vol. 44, 127-144.

[15] Nazareth, D. L. (1993). Investigating the
Applicability of Petri Nets for Rule-Based System
Verification. IEEE Transactions on Knowledge and
Data Engineering. Vol. 4, No. 3, 402-415.

[16] O’Keefe, R.E. & O’Leary, D.E. (1993). Expert
System Verification and Validation: A survey and
tutorial. Artificial Intelligence Review. Vol. 7, 3-42.

[17] Scarpelli, H. & Gomide, F. (1994). A high level net
approach for discovering potential inconsistencies in
fuzzy knowledge bases. Fuzzy Sets and Systems. Vol.
64, 175-193.

[18] Shiu, S., Liu, J. & Yeung, D. (1995a). Modelling
Hybrid Rule/Frame-based Expert Systems Using
Coloured Petri Nets. In Proceedings of 8th International
Conference on Industrial & Engineering Applications of
AI & ES. Melbourne, Australia. 525-532.

[19] Shiu, S., Liu, J. & Yeung, D. (1995b). An
Approach Towards the Verification of Hybrid
Rule/Frame-based Expert Systems using Coloured Petri
Nets. In Proceedings of 1995 IEEE International
Conference on SMC. Vancouver. 2257-2262.

[20] Shiu, S., Liu, J. & Yeung, D. (1996a). An Approach
Towards the Verification of Fuzzy Hybrid Rule/Frame-
based Expert Systems using Coloured Petri Nets. In
Proceedings of ECAI-96 Workshop in Validation,
Verification and Refinement of KBS. Budapest, 105-113.

[21] Shiu, S., Liu, J. & Yeung, D. (1996b). Proofs of the
Formal Verification of Hybrid Rule/Frame-based Expert
Systems using SCCPN. Unpublished Manuscript.
Department of Computing, Hong Kong Polytechnic
University.

[22] Vranes, S. & Stanojevic, M. (1995). Integrating
Multiple Paradigms within the Blackboard Framework.
IEEE Transactions on Software Engineering. Vol. 21,
No. 3, 244-262.

[23] Willis, C.P. (1996). Analysis of inheritance and
multiple inheritance. Software Engineering Journal.
July.

[24] Zhang, D. & Nguyen D. (1994). PREPARE: A
Tool for Knowledge Base Verification. IEEE
Transactions on Knowledge and Data Engineering. Vol.
6, No. 6, December, 983-989.

4429

	Department of Computing
	Hung Hom, Kowloon, Hong Kong

	ABSTRACT

