
Detection of Anomalies of Hybrid Rule/Frame-based Expert
Systems Using Coloured Petri Nets

Simon C.K. SHIU, James N.K. LIU, Daniel S. YEUNG
Department of Computing, Hong Kong Polytechnic University

Hung Hom, Kowloon, Hong Kong
Email: {csckshiu|csnkliu|csdaniel}@comp.polyu.edu.hk

Abstract

High level Petri Nets have recently been used for many Artificial Intelligence applications, particularly for modelling
traditional rule-based expert systems. The major effect is to facilitate the analysis of the knowledge inference during the
reasoning process, and to support the system verification which increasingly becomes an integral part of expert system
development. Nevertheless, there is not much attention being put on systems other than the traditional ones. In this paper,
we described an approach to model hybrid (rule- and frame-based) expert systems using Coloured Petri Nets and the
concept of controlled state tokens. The additional anomalies caused by the integration of the object hierarchy, property
inheritance and production rules are defined. The detection and analysis of the anomalies of proposed model is done by
constructing and examining the reachability tree spanned by the knowledge inference. An algorithm is also given to allow
for the generation of such a reachability set of the nets. Our approach can provide formal verification of the correctness,
consistency, and completeness of the hybrid knowledge base. A practical expert system for personnel selection is used
throughout this paper to illustrate the application of our approach.

Keywords: Hybrid Expert System, Knowledge Verification, Coloured Petri Nets

1 Introduction

Expert Systems (ES) have reached the stage where they are
implemented and used in a wide variety of organizations
and industries, a selection of operational expert systems in
US, Europe, Canada and the Far East can be found in
[15][16][22] and [29]. There is increasing need for expert
systems validation and verification (V&V) because
erroneous advice may lead to invaluable economic loss and
even fatal loss of life in some domain applications.
Traditionally, attention has been concentrated on using
verification techniques to tackle rule-based systems
[1][8][17][19][26]. However, these techniques exhibit a
limited range of applicability. They could not cope with
the kind of hybrid expert systems (HES), rule-based plus
frame-based, which many of the current expert systems are
being developed [7][20][28]. The use of this hybrid
approach integrates the power of organizing data objects in
a class hierarchy and reasoning about the objects through
user pre-defined logical associations. This advantage
accounts for many popular expert system developing
software, such as ADS, ART, EXSYS EL, KAPPA-PC,
KBMS, NEXPERT OBJECT, LEVEL5 OBJECT,
PROKAPPA, REMIND, which combine some sort of
frame-based representation with a rule-based inference
engine. Although this approach benefits from the
advantages of both representation techniques, it
complicates the V&V of the expert systems.

Traditionally, there are a few approaches in modelling
expert systems, such as [3]’s Normal Form approach,
[5][27]’s Decision Table Method, [12]’s Incidence Matrix

Method, [6]’s Truth Maintenance Systems and [2][25]’s
Generic Rule Systems. One of the major criticisms of the
above techniques is that none or very little consideration is
given to allow for the dynamic checking of the knowledge
inference. On the other hand, Coloured Petri Nets
(CPN)[11], can support a formal description for modelling
systems, which consists of concurrent and synchronous
activities. Besides, they also have a graphical
representation and a well-defined semantics, allowing for
dynamic analysis of the modelled system. In this paper, a
contribution is made to the modelling and analyzing of
hybrid rule/frame-based expert systems for the detection of
anomalies. We will introduce an approach based on CPN
plus the concept of state tokens[18] for the representation
of knowledge inference in HES, thus enhancing the quality
and reliability of the modelled system. We will examine
the transition sequences and check against the properties of
the network in CPN for HES modelling.

The paper has seven main sections. Next section describes
the knowledge representation and inference of a hybrid
expert system, the third section gives the definitions of
CPN and illustrates how HES can be modelled by CPN.
Section four uses a practical expert system as an example
to illustrate the potential errors and anomalies in HES due
to the integration of rules with inheritance. Section five
describes the algorithm for generation of the reachability
set of the CPN. Section six describes the methods for
detection of anomalies in the HES by analyzing the net
properties concerned. The last section gives the conclusion
and discussion.

Australian Journal of Intelligent Information Processing Systems Spring 1996

 60

2 A Hybrid Expert System

A Hybrid Expert System combines multiple representation
paradigms into a single integrated environment. For a
Rule- and Frame-based integration, it composes of the
following key features: Object Classes, Slot Attributes,
Inheritance Relations, Demons, Methods, Rules and
Reasoning Strategies. These features can be analyzed using
three conceptual views [9] of an expert system, they are:
(1) An Object View which encapsulates a module of
knowledge (or a concept). These knowledge modules
(concepts) are represented by Object Classes. Inheritance
Relations describe how these knowledge modules are
related. (2) A Function View which specifies the
functional behaviour of the objects within the expert
system. These functions are represented using Methods
and Demons. (3) A Control View which specifies the
sequence of knowledge inference in the expert system.
These controls are represented in terms of Rules and
Reasoning Strategies.

In practical HES development [23][24], Frames are used to
represent domain objects, various kinds of Demons are
used to implement procedures attached to specific slots,
Inheritance is used to inherit Class properties, methods and
demons among Object Classes, Message Passing is used
for interaction among different objects and Methods are
used to perform algorithmic actions or some array
manipulation within an object. Rules are used to describe
heuristic problem-solving knowledge, Forward and
Backward chains are commonly used to reason using rules.
Therefore, in HES, the Frame base can be seen as being
used to define the vocabulary for the Rule base, i.e. the
possible values that slots can be defined and so specified,
and the literal used to construct rules must conform to the
restrictions imposed by what is available from the class
hierarchy. The Frame base is married together with the
Rules designed to manipulate it. The specific integration
mechanisms of HES are as follows:

• Rules with Message Passing : Rules send or receive

messages to and from objects for testing the Rules'
premises.

• Rules with Inheritance : Rules directly read and write

data into slots in a parent object and through
inheritance of this slot's value to its children objects,
trigger other rules to fire.

• Rules with Demons : Rules directly read and write

data into slots and cause the execution of the
associated Demons, which then trigger other rules to
fire.

• Rules with Methods : Rules are embedded as part of

an object's methods. Since methods are arbitrary
pieces of code attached to an object, they can access
the rules through function calls.

• Rules with Instances : Rules can be used to

create/delete an instance of a specific Object Class.

Based on the above concepts of integration, a Hybrid
Expert System, therefore, can be formally defined as a
tuple HES = (C, A, I, In, D, M, R, S) satisfying the
requirements below:

C = a finite set of object classes, where each object
class is a Cartesian product of (A x D x M).

A = a finite set of attributes. Each attribute is of a simple
type.

I = a specific object element from an object class C.
In= an inheritance relation. It is defined from the

partially ordered relations in C.
D = a demon function. It is defined from A into an

expression such that: ∀a∈A∧∀c∈C:a∧f(a)∈c. (This
means the demon functions can only change a slot’s
value within the same object instance, besides, this
demon function: f(a) generates only one output from
each given input “a”,).

M = a finite set of methods. It is defined as procedures in
C.

R = a finite set of rules. Each rule is defined as a
function from A such that a∧f(a)∈A. (This means
the literal used to construct rules must come from
the attribute set A).

S = a finite set of reasoning strategies.

Object class here is defined as having a set of attributes,
demons and methods. Each attribute is defined as of a
simple data type: e.g. string or integer. Each specific object
element is called an instance of the Object Class and will
have different attribute values. Inheritance is defined as a
partial order on the set Object Class, it is a relation that is
reflexive, antisymmetric and transitive:

• Reflexive : For every Object Class, it inherits the

properties from itself.

• Antisymmetric : For every Object Class, if A inherits

from B and if B inherits from A, it implies that A is B.

• Transitive : For every Object Class, if A inherits from

B and if B inherits from C, it implies that A inherits
from C.

The above definition only covers simple inheritance, in the
case of multiple inheritance, more elaborate definition is
required.

A Demon is defined as a function which is executed when
the associated slot value is either updated, or needed.
Sometimes, a Demon can also act like a validation trigger
which checks the cardinality and/or constraints imposed on
a particular slot. The effects of a Demon are confined
always locally to the same Object Class.

Methods are procedures attached to some Object Class,
that will be executed whenever a signal is passed through.
This way of executing a method is known as Message
Passing.
Rules will interact with the information contained in the
slots of the various Object Classes within the HES.

Spring 1996 Australian Journal of Intelligent Information Processing Systems

 61

Finally, in HES, there should be a set of reasoning
strategies. Some common ones are :

• Backward Chain with Inheritance : Goal directed

search with inheritance as one of the means to
establish the rule chains which across different Object
Classes.

• Forward Chain with Inheritance : Data directed search

with inheritance as one of the means to establish the
rule chains which across different Object Classes.

Other important inference strategies include : Pattern
Matching, Unification, Resolution and Heuristic Search.

3 Modelling the HES Using CPN

3.1 Definition of Coloured Petri Net

A Coloured Petri Net can be defined as a tuple CPN = (Σ,
P, T, A, N, C, G, E, I) satisfying the requirements below:

Σ = a finite set of non-empty types, called colour sets.
P = a finite set of places.
T = a finite set of transitions.
A = a finite set of arcs such that : P∩T=P∩A=T∩A=∅.
N = a node function. It is defined from A into PxT∪TxP.
C = a colour function. It is defined from P into Σ.
G = a guard function. It is defined from T into

expressions such that: ∀t∈T
:[Type(G(t))=B∧Type(Var(G(t)))⊆Σ]

E = an arc expression function. It is defined from A into
expressions such that : ∀a∈A :
[Type(E(a))=C(p(a))ms∧Type(Var(E(a)))⊆Σ].

I = an initialization function. It is defined from P into
closed expressions such that ∀p∈P :
[Type(I(p))=C(p)ms].

The set of colour sets determines the types, operations and
functions that can be used in the net inscriptions. The
places, transitions and arcs are described by three sets P, T
and A which are required to be finite and pairwise
disjointed. The node function N maps each arc into a pair
where the first element is the source node and the second
the destination node. The two nodes have to be of different
kind (i.e. one of the nodes must be a place while the other
is a transition). Several arcs may be allowed to link
between the same ordered pair of nodes. The colour
function C maps each place, p, to a colour set C(p). This
means that each token on p must have a token colour that
belongs to the type C(p). The guard function G maps each
transition, t, to an expression of type Boolean, i.e., a
predicate. All variables in G(t) must have types that belong
to Σ. A guard is allowed to be a list of Boolean expressions
[Bexpr1, Bexpr2..etc]=B. This means that the binding must
fulfill each of the Boolean expression in the list. The arc
expression function E maps each arc, a, into an expression
which must be of type C(p(a))ms. This means that each
evaluation of the arc expression must yield a multi-set over
the colour set that is attached to the corresponding place.

The initialization function I maps each place, p, into a
closed expression which must be of type C(p)ms, ie a multi-
set (a set which may contain multiple occurrences of the
same element) over C(p).

3.2 Hybrid Expert System Model

3.2.1 Object Classes

Each object class’s data structure is represented by a
compound colour set, and each object instance is
represented by a token in that set. For instance, if there are
fifteen sets of non-empty types or colour sets being used to
represent one object class’s data structure, i.e. Σ =
AA,BB,....OO; Color AA may be defined as text strings;
Color BB may be as Boolean; ...and Color OO may be
defined from some already declared coloured sets, e.g.
Color OO = Product AA * BB * CC. Each object class
instance is declared as a variable of a particular colour set,
i.e. var Instance-1 : OO (var denotes variable declaration
which introduces one or more variables). Here we have
one variable, Instance-1, which is with colour OO. We
may use var Instance-1, Instance-2, Instance-3 : OO for
declaring three different instances of the same object class
with colour OO. In the following sections, we will use
three variables, object “a”, which is a particular instance of
a Super Class A, object “a1”, which is a particular instance
of Class A. (ie. “a” IS-A superclass instance while “a1” IS-
A class instance) and State “s” which is the state token.
State “s” is used to carry the information that identify
which object instance had fired from which transition. (i.e.
var a : OO, var a1 : OO and var s : text string)

3.2.2 Rules with Inheritance

In CPN, the transition operations are represented by the arc
expression functions. By defining the arc expression
functions differently, it can help us to model different
events in the HES. Therefore, places in the CPN are taken
to correspond to two different elements in the HES. First,
places are taken to correspond to predicates of the
production rules which are pre-defined earlier by the user.
Secondly, places are taken to correspond to the Objects
class in the HES's Frame hierarchy. Similarly, transitions
in the CPN correspond to two different events in the HES.
First, the transitions correspond to the implications of the
rules. Secondly, the transitions correspond to the
inheritance of the properties from Classes. The transition
operations are represented by the arc expression functions.
(e.g. A Rule R can be represented in CPN as shown in
Figures 1a, 1b and 1c)

Australian Journal of Intelligent Information Processing Systems Spring 1996

 62

Figure 1a : Rule R with Inheritance (before firing) with an
input token “a” & “s” in Super Class A.

Figure 1b : Rule R with Inheritance (after firing
Inheritance T) with an input token “a” & “s” in Super
Class A.

Figure 1c : Rule R with Inheritance (after firing both Rule
R and Inheritance T) with output token “a” & “s” in State
R and output token “a1” & s” in Class A1. A state token
“s” is also created in Super Class A.

Super Class A is a CPN Place with colour set that was used
to represent the data structure of all object instances in
Super Class A. Class A1 is a CPN Place with colour set

that was used to represent the data structure of all object
instances in Class A1. Rule R is a CPN Transition which is
enabled iff the input arc expression fR(x) is evaluated to be
true (i.e., the premise X IS-A member of super class A
AND X’s slot-1 is ‘Y’ is true). If fR(x) is true then Rule R
is fired, it implies that Rule R is executed. All tokens will
be removed from Super Class A and a new token “a” will
be created in State R with new data values determined by
the output arc expression fR(y). (i.e. fR(y) will assign 'Y' to
X’s slot-2). Inheritance T is a CPN Transition which is
enabled whenever there is an “a” token in Super Class A,
after firing this transition, a token “a1” is created in Class
A1 with all the attributes inherited from A. (ie. a child
token is created with the same attributes of its father).
These two tokens (“a”, “a1”) can be used for further
inference (if any) in the HES. In this way, we can trace the
execution path of these two tokens by examining the
information carried by the state tokens created within the
CPN network. Moreover, we can also examine the contents
of this two tokens to see if any attributes are in conflict
with each other. These could serve as an indication of the
existence of anomalies within the HES. A detail
description of this detection method is given in section
four later. (Note that in order to preserve the state of the
predicate in Rule R, a state token is created in Super Class
A via the self-loop of Rule R and an “a” token is created in
Super Class A via the self-loop of inheritance T.)

3.2.3 Rules with Message Passing

Places in the CPN are taken to correspond to predicates of
the production rules and the transitions in corresponding to
the implications of the rules. Since the object class
instance’s data structure is represented by the token of a
particular colour set, we can define arc expression such
that they directly read and write data in the token's data
slots. This can be illustrated by the following simple
example: Pass the message “OK” to the object Class A’s
slot-promotion.

Colour sets:

 Color Classes = with ClassA | Class B;
 Color Promotion = String;
 Color Objects = product Classes * Promotion;
 var x : Classes;

Arc expression:

 IF x=ClassA THEN 1`(ClassA, “OK”) ELSE empty.

This will serve the purpose of sending or receiving
messages (data value) to and from object instance for
testing the rules' premises.

3.2.4 Rules with Demons

Similarly, a Rule with Demon can also be represented by a
Places/Transition tuple, e.g. if a demon is attached with
object X's slot-overtime, whenever the value of slot-
overtime is updated to 'Y' then the demon will execute and

Spring 1996 Australian Journal of Intelligent Information Processing Systems

 63

compute the slot-salary value by the formula 1.2*basic
salary. This can be represented by Figure 2a and 2b.

Figure 2a : Rule R with Demon (before firing) with an
input token “a” and a state token “s” in Super Class A.

The demon function, dR(y), is represented as an arc
expression. The firing of Rule R will trigger the demon
function to execute.

Figure 2b : Rule R with Demon (after firing) with output
token “a” & “s” in State R and output token “a1” & “s” in
Class A1. A state token “s” is also created in Super Class
A.

3.2.5 Rules with Methods

Methods are procedures attached to an Object class, they
can be represented by the Functions and Operations
declarations in CPN. The function takes a number of
arguments and returns a result. The arguments and the
result have a type which is a declared colour set, the set of
all multi-sets over a declared colour set. A declared
function can be used in arc expressions, guards and
initialization expressions in the CPN. For example, a
typical function which tells whether the argument is even
or not might be:

 fun Even(n:integers)=((n mod 2)=0).

Operations can also be used to represent Methods. In both
Functions and Operations declarations, different kinds of
control structures can be built. e.g. CASE statments; IF b is
true THEN statement 1 ELSE statement 2; WHILE b is
true DO; REPEAT statement 3 UNTIL b is true. The Rules
with Methods can thus be represented by CPN as follows
(Figures 3a-d, the self loops are omitted for clarity reason)

Figure 3a : Rule with Method (before firing) with an input
token “a” and a state token “s” in P1.

Figure 3b : Rule with Method (Rule is called by the
Method). The token “a” was passed to P2 and a state token
“s” was created in P1, P2 and P3 respectively.

Figure 3c : Rule with Method (After firing). The token “a”
is in P4 and a state token “s” in P1, P2 and P3 and P4
respectively.

Australian Journal of Intelligent Information Processing Systems Spring 1996

 64

Figure 3d : Rule with Method (Method resumes control).
The token “a” was passed to P5. A state token “s” was
subsequently created in P1, P2, P3, P4 and P5 respectively.

The modelling of methods is divided into two parts. First
the state of the method. (i.e. (1) executed some of the
program codes and waiting to pass the control to the Rule,
(2) waiting for the Rule to pass back the control, (3)
executed all the program codes and waiting to pass the
control to other process.) Secondly, the actual program
codes of the method itself. (i.e. Represented by the arc
expression functions.) In Figure 3a-d, P1 to P3 to P5
represent three states of the Method describe above. P2 to
P4 represent the Rule embedded within the Method. Arc
expression function F1 is the first part of the Method
which executes first, then control is passed to the Rule by
F2 which will create the “a” in P2. After firing of the Rule
(T2 is enabled and fired), P3 and P4 will allow T3 to be
fired. F8 represented the remaining part of the Method
which will act on Object A correspondingly. After
execution of this Rule with Method, a state token “s” is
deposited in all the Places, P1, P2, P3, P4 and P5 for
preservation of the states.

3.2.6 Rules with Instances

This is represented in CPN by the arc expressions because
the number of removed/added tokens and the colours of
these tokens are determined by the value of the
corresponding arc expressions.

Although the integration of a Rule- and Frame-based
Expert System can take the advantages of both
representation paradigm, this systems are not free from
errors and anomalies. In a pure rule-based system, errors
and anomalies are redundancy, dead-end rules,
subsumption, duplication, circular rule sets, unsatisfiable
conditions, missing rules..etc. In a pure frame-based
system, error and anomalies may occur due to the
problems of message passing and concurrency, problems
of inheritance (including simple, repeated and multiple
inheritance) and problems of polymorphism. Instead of
covering all the possible errors and anomalies caused by
the integration of the above two representation paradigms,
we would like to focus ourselves on the additional errors
and anomalies attributed to the integration of rules with

inheritance of object properties. Details will be discussed
in the following Section.

4 Errors and Anomalies in HES due to

Integration of Rules with Inheritance

To illustrate the HES modelling by our proposed CPN
methodology, we adopt a simplified version of a personnel
selection expert system currently being used in Hong Kong
[10]. This system is used to find out, among all the clerks
in the organization, who should be promoted to senior
clerk. The organization's employee data structure is
represented in a frame-based hierarchy as shown in Figure
4 and details of relevant frames in the hierarchical
structure are given below.

Junior staff

Junior office staff

ClerkTypistOffice Boy

Figure 4 : The Frame Hierarchy

A Junior Staff Frame :

 Slot Name Value Type Demons

Job Title Junior Staff String
Office Hours 9am - 5pm Time
Qualification
Requirement

Five passes
in HKCEE

String

Salary Pay
Scale

1 to 10 String

Department General
Secretariat

String

Annual leave 21 days Integer
Father Frame -
Son Frame Junior

Office Staff

A Junior Office Staff Frame :

 Slot Name Value Type Demons

*Job Title Junior
Office Staff

String

Name String
Address and
Telephone

 String

Spring 1996 Australian Journal of Intelligent Information Processing Systems

 65

HKID# String IF possess
HKID no.
THEN
Privilege is
Local ELSE
Privilege is
Overseas.

Privilege Local/
Overseas

Sex M/F
*Office Hours 9am-5pm Time
*Qualification
Requirement

Five passes
in HKCEE

String

*Department General
Secretariat

String

*Salary Pay
Scale

1 to 10 String

Present Salary
Point

 Integer Present
Salary Point
must
between 1
to 10
inclusive.

Years of
Service

 Integer

*Annual leave 21 days Integer
Leave taken Integer
Leave balance Integer Leave

balance =
Annual
leave -
Leave taken

Knowledge of
Work

 G/M/L
(Good,
Medium,
Low)

Acceptance of
Responsibility

 G/M/L

Organization
of Work

 G/M/L

Initiative G/M/L
Relations with
Colleagues

 G/M/L

Relations with
Public

 G/M/L

Expression on
Paper

 G/M/L

Oral
Expression

 G/M/L

Supervisory
Skills

 G/M/L

Leading Skills G/M/L
Performance G/M/L
Experience G/M/L
Ability G/M/L
Quality of
Services

 G/M/L

Seniority G/M/L
Promotion Yes /Wait

/Reject

Father Frame Junior Staff
Son Frame Clerk,

Typist and
Office boy

* denotes slots inherited from parent frame

A Clerk frame is similar to a Junior Office Staff frame
except that more detailed information about the various
types of Clerk duties are included such as Purchasing
Clerk, Book Keeping Clerk, Sales Clerk, Inventory Clerk,
Customer Services Clerk, Data Entry Clerk...etc. For the
purpose of this modelling exercise, we can treat the Class
Junior Office Staff as the common job grade in the
organization, and the Class Clerk, Office Boy and Typist
as specific job categories all belonging to the same job
grade. Any new employment regulations and promotion
rules that apply to Junior Office Staff grade will be
applicable to all Clerks, Office Boys and Typists in the
organization. The major problems of verifying this HES is
due to the fact that some rules are applicable to the general
class (Super Class : Junior Office Staff) and through
inheritance these rules are applicable to specific classes as
well (Classes : Clerks, Office Boy and Typists). Anomalies
exist whenever rules specifically applied to a class are in
conflict with those rules that are applied to their superclass.
Furthermore, these rules may be in a subsumbed situation
and some of them may be unreachable. We will illustrate
how to detect them in the following sections.

First, we model the above example using our proposed
methodology described in previous sections. It is noted
that a frame is equivalent to a data structure with various
types declarations, (or an object with different attributes).
Demons are declared as methods or procedures within
some frame. In the above expert system example, the two
frames are Class frames. Each individual clerk's
information is inferred by the creation of a clerk frame
instance. The data value of Clerk Name, Sex, Address...etc
are input via the user interface. The data values and
demons in the slots with a * are inherited from the parent
frame; the data value of Privilege and Leave balance are
updated by firing the demons in HKID# and Leave
balance. The data values for slots between Knowledge of
Work and Leading Skills inclusively are input by the
individual clerk's supervisor at the beginning of the
inference process. The data value of Performance,
Experience, Ability, Quality of Services and Seniority are
being inferred by the execution of the rules pre-defined
earlier by the personnel manager of the organization. The
goal is to find out the data value of the slot Promotion,
which can be inferred by forward chaining or backward
chaining within the rule sets. (Over 100 rules were
constructed for the original expert system based on the
Multiple Criteria Decision Model). Detail data structure of
a clerk token and some typical rules are given as follows:

Australian Journal of Intelligent Information Processing Systems Spring 1996

 66

A clerk token’s colour is :

Color AA = string; (all text strings)
Color BB = with Local | Overseas; (colours explicitly

specified)
Color CC = with Male | Female;
Color DD = time; (date)
Color EE = integer with 0..10;(between 0&10)
Color FF = integer;
Color GG = with Good | Medium | Low;
Color HH = with Yes | Wait | Reject;
Color II = list AA with 4; (a list of four strings)
Color JJ = list AA with 3;
Color KK = list FF with 5;
Color LL = list GG with 15;
Color MM = with Clerk | Typist | Office Boy;
Color NN = product II * BB * CC * DD * JJ * KK *

LL * HH; (all tuples (i,b,c,d,j,k,l,h) where i∈II,
b∈BB,....h∈HH)

Color OO = with Yes | No; (for state token, if the
value is Yes, it denotes that the predicate is true,
else if the value is No, the negation of the
predicate is true.)

Var i:II; var b:BB; var c:CC; var d:DD; var j:JJ; var k:KK;
var l:LL; var h:HH; var clerk : NN; (var denotes variable
declaration which introduces one or more variables. Here
we have one variable, clerk, which is with colour NN. We
may use var clerk1, clerk2, clerk3 : NN for declaring three
different clerks for example.)

Some typical rules are :

Rule 1: IF X is a junior office staff
 AND X’s quality of service is Good
 AND X’s seniority is High
 THEN X’s promotion is Yes.

Rule 2: IF X is a clerk
 AND X’s quality of service is Good
 AND X’s seniority is High
 THEN X’s promotion is Yes.

Rule 3: IF X is a clerk
 AND X’s quality of service is Good
 AND X’s seniority is High
 AND X is a local citizen
 THEN X’s promotion is Yes.

Rule 4: IF X is a clerk
 AND X’s year of service is greater than Five
 THEN X’s seniority is Not High.

Rule 5: IF X is a junior office staff
 AND X’s year of service is greater than Five
 THEN X’s seniority is High.

Rule 6: IF X is a clerk
 AND X’s knowledge of work is Not Good
 AND X’s English is Not Good
 THEN X needs to attain training course.

Rule 7: IF X is a junior office staff
 AND X needs to attain training course
 THEN X’s experience is Low.

Rule 8: IF X is a clerk
 AND X is a junior office staff
 THEN X is entitled to 14 days annual leave.

Rule 9: IF X is a office boy
 AND X needs to attain training course
 THEN X is on Probation.

Rule 10: IF X is a junior office staff
 THEN X is required to do typing.

Rule 11: IF X is required to do typing
 THEN X is a clerk.

Rule 12: IF X is a clerk
 THEN X is a junior office staff.

These rules can be rewritten as :

Rule 1: A∧B∧C⇒X
Rule 2: A1∧B∧C⇒X
Rule 3: A1∧B∧C∧D⇒X
Rule 4: A1∧E⇒¬C
Rule 5: A∧E⇒C
Rule 6: A1∧¬F∧¬G⇒Y
Rule 7: A∧Y⇒H
Rule 8: A1∧A⇒K
Rule 9: A2∧Y⇒Z
Rule 10: A⇒L
Rule 11: L⇒A1
Rule 12: A1⇒A

Where the meanings of the literals used in the above rules
are as follows:

A = Junior Office Staff
A1 = Clerk
A2 = Office Boy
B = Quality of service is Good
C = Seniority is High
¬C = Seniority is Not High
D = Local citizen
E = Years of service is greater than Five
¬F = Knowledge of work is Not Good
¬G = English is Not Good
H = Experience is Low
K = Entitled to 14 days annual leave
L = Required to do Typing
X = Promotion is Yes
Y = Needs to attain training course
Z = On Probation

Spring 1996 Australian Journal of Intelligent Information Processing Systems

 67

Figure 6 : CPN representation of the given HES

The Hybrid Expert System is represented by a Coloured
Petri Net shown in Figure 6, according to the methodology
proposed in section three. Note that for simplicity, the self-
loop associated with each input place is not shown in the
net. The rules are labelled R1 to R12. The inheritance
relations are represented by T1 to T3. S1 to S7 represents
the predicates of these rules.

5 Analysis of Coloured Petri Nets

The major analysis technique, within the context of expert
system verification, is the use of reachability tree which
represents the reachability set of the CPN (or occurrence
graph in Jensen's terminology). The basic idea behind is to
construct a tree/graph containing a node for each reachable
marking and an arc for each occurring binding element. In
expert system verification, it refers to exhaustively
exploring all the useful and relevant interactions of
predicates within the model. From a given initial state, all
possible transitions are generated, leading to a number of
new states. This process is repeated for each of the newly
generated states until no new states are generated.
Obviously such a tree/graph may become very large even
for a small CPN. However, research [13] has been taken to
allow for a partial examination of a subportion of the
reachability graph, therefore reduce the efforts in deriving
possible solutions. For simplicity reason, without taking
any transition conditions or transition operations into
consideration, we concentrate our analysis by enabling a
specific transition (i.e. corresponds to some meaningful

initial facts) and then check the reachability set for any
irregularities of the associated predicate places. The
checking of the irregularities and anomalies can be done
exhaustively or heuristically by adequately initiation of the
sequence of transitions and closely examining the
reachability markings. The problems can be located
through the trace of the sequence of transitions which may
provide alternative or multiple marking effects. Therefore,
we propose the following algorithm for generating the
reachability set of a CPN as follows:

 Reachability Set = {M0}, where M0 is the initial
 marking
 Reachability Graph ={}
 UnfiredMarkingList = [M0]
 repeat
 select some marking M in the UnfiredMarkingList
 for each transition t which is enabled at M
 do begin
 generate marking M’ which results from
 firing t at M
 if M’ is not an element of ReachabilitySet
 then
 begin
 add M’ to ReachabilitySet
 append M’ to UnfiredMarkingList
 end
 add arc (M,T,M’) to ReachabilityGraph
 end
 until UnfiredMarkingList is empty

Australian Journal of Intelligent Information Processing Systems Spring 1996

 68

In most automated CPN simulations, the first element of
the UnfiredMarkingList is always selected, and so the
reachability graph is produced in breadth-first order.

In verifying the HES against the problems of correctness,
consistency, and completeness, we use an automated
computer aid for the generation of the reachability set. The
CPN is initialized by placing tokens in the place and
setting the values of data variables. The operation of the
net can be investigated by the program either in a step by
step manner or in an automatic mode.

6 Detection of Errors and Anomalies

in HES

6.1 Correctness

6.1.1 Subsumption

Analysis of the network will show the presence of
subsumption in the HES (Figure 7a). Suppose we have a
Junior Office Staff with good quality of service and high
seniority, we want to infer whether he should be promoted
or not in our HES. This inference process will be as
follow: initially, we have a Junior Office Staff token in the
input place Class A (Junior Office Staff), and this token’s
slot “quality of service is Good” is TRUE and this token’s
slot “seniority is High” is also TRUE. This enables both
R1 and T1 to be fired, as a result, a Clerk token is created
in place Class A1 (clerk) by the T1 transition and a Junior
Office Staff token is created in S1 by f1(y). Next, R2 is
also enabled since R2’s antecedent is the same as R1. After
firing the two rules, S1 consists of both a Junior Staff
Token and a Clerk token.

Figure 7a : CPN representation showing the events of subsumption, Case I

Figure 7b represents the reachability graph as the results of
the execution of R1 and R2. The graph is a directed graph
from which we can see the marking M1, M2, M3, M4 and
M5 are reachable from marking M0. In marking M5, both
a Clerk token and a Junior Office Staff token is created in
S1, by examining the slot “promotion” in this two tokens
reveals that they have the same value, ie ‘YES’. Since in
the place Class A1, the Clerk token inherited all his
attributes from the initial Junior Office Staff token, this
means that R1 and R2 are using the same set of initial
attributes for inference, therefore, we can conclude that R2

subsumes R1 because R2 is just a more specific case of
R1. (ie. Clerk is the child of Junior Office Staff).

Spring 1996 Australian Journal of Intelligent Information Processing Systems

 69

Figure 7b : Reachability graph due to the firing of R1 and
R2

In general, if we have two rules:

 Rule X : A∧B⇒C
 Rule Y : A’∧B⇒C

If the value of slot A inherits to slot A' (i.e. A is the parent
and A' is the child), then Rule Y subsumes Rule X because
Rule Y is just a more specialized case of Rule X. (i.e.
whenever Rule Y succeeds, Rule X will always succeed).
In a complex frame hierarchy which allows for multiple

inheritance, checking for subsumption becomes more
difficult because of ambiguity in the behaviour of multiple
inherited subclasses.

Next, we consider a more complicated subsumption
situation as in Figure 8a. Suppose initially, we have a
junior office staff token in the input place Class A (Junior
Office Staff), with slot “quality of service is Good” is
TRUE, slot “seniority is High” is TRUE and slot “local
citizen” is also TRUE. This enables both R1 and T1 to be
fired, as a result, a Clerk token is created in place Class A1
(Clerk) by the T1 transition and a Junior Office Staff token
is created in S1 by f1(y). Next, R2 and R3 are also enabled.
After firing either one of the two rules, S1 consists of both
a Junior Staff Token and a Clerk token.

Figure 8b represents the reachability graph as the results of
the execution of Rule1 followed either by R2 or R3. Since
M5 is reachable from M4 either by R2 or R3, by
examining the slot “promotion” in the Clerk token and
Junior Office Staff Token reveal that they have the same
value, ie ‘YES’. Therefore, these two rules must be in a
subsumption relationship because the two transitions R2
and R3 can be enabled in A1 and their final marking is the
same.

Figure 8a : CPN representation showing the events of subsumption, Case II

Australian Journal of Intelligent Information Processing Systems Spring 1996

 70

Figure 8b : Reachability graph due to the firing of R1, R2
and R3

6.1.2 Cyclicity

If a circular loop can result when a set of rules are fired,
then these rules are considered as a circular rule set. For
example :

 Rule X : B⇒C
 Rule Y : C’⇒B

If slot C is the parent of C', Rule X and Rule Y will form a
circular loop. If more than one level of class hierarchy is
involved, an implicit cycle may exist where the loop is
formed from several rules and different frames' slots in the
frame hierarchy.

In our example, Rule 10, Rule 11 and Rule 12 will form
such a cyclicity. In Figure 9a, if we have a Junior Office
Staff token in Class A then R10 is enabled and fired, this
will further enable R11 and a Clerk token is deposited in
A1 (Clerk). As a result, R12 will be enabled and a Junior
Office Staff token will be deposited in Class A. This
process will continue within a loop with no end.
Reachability analysis will show that there exists an infinite
tree which has the branching pattern repeated after four
levels. (Marking M7, M13 and M12 are repeated)

Figure 9a : CPN representation showing the events of cyclicity.

Spring 1996 Australian Journal of Intelligent Information Processing Systems

 71

Figure 9b : Reachability graph due to the firing of R10,
R11 and R12

6.2 Consistency

6.2.1 Contradiction

If two rules have duplicated antecedents but in the
consequence a clause is both affirmed and denied, we refer
the situation as inconsistency. The following two rules are
in conflict.

 Rule X : A∧B⇒C
 Rule Y : A’∧B’⇒¬C

Since both A’ and B’ are slots values inherited from his
parent A and B, Rule X is in conflict with Rule Y. In
practical expert system development, this problem is dealt
with by the concepts of overriding.(ie. Rule Y overrides
Rule X). This overriding behaviour is normally considered
as an anomaly unless it is with the expert’s true intent.

In our example, Rule 4 and Rule 5 are in conflict. In Figure
10a, if we have a Junior Office Staff token to start off in
Class A with “year of service greater than five years”, after
firing Rule 4, then his seniority is High. A token clerk will
be created in Class A1 with the same attributes, but this
time after firing Rule 5, his seniority is Not High. This
situation is revealed when we check the reachability graph
in Figure 10b. Marking M5 is reachable from M0. In M5,
we got both a Clerk token and a Junior Office Staff token
in S2. When examining the state of S2 in these two tokens,
we could see one is confirmed and the other is denied. This
reflects that we have two conflicting rules applied to two
different Object Classes.

Figure 10a : CPN representation showing the events of contradiction

Australian Journal of Intelligent Information Processing Systems Spring 1996

 72

Figure 10b : Reachability graph due to the firing of R4 and
R5

6.2.2 Unnecessary IF condition

If we have two rules which contain the same conclusion
but with conflicting conditions, then this situation is

referred to as having unnecessary IF conditions in the
knowledge base. Eg. consider the following two rules

 Rule X : A∧B⇒C
 Rule Y : A∧¬B⇒C

These two rules can be combined to form a simple rule :

 Rule X : A⇒C

The second IF condition becomes unnecessary. In our
example HES (Figure 11a), additional unnecessary
conditions can occur when an action in one rule becomes a
condition of another rule and these two rules’ condition
parts are in an inheritance relationship (ie. Rule 6 and Rule
7).

Figure 11a : CPN representation showing the events of unnecessary IF condition

Consider the following two rules

 Rule X : A∧B⇒C
 Rule Y : A’∧C⇒D

When Rule Y is backward chained to Rule X, (i.e. inorder
that C is true, we have to check whether A is true and B is
true.) Rule Y is equivalent to the testing of A’, A and B:

 Rule Y : A’∧(A∧B)⇒D

Since, A’ and A are in inheritance relation, we may want
to remove either the condition IF A’ or IF A.

Refer to our example, when we check the reachability
graph generated by the initial Junior Office Staff token in
Class A, we only have three markings which S6 never gets
inferred with any token. The reason is because R6 and R7
are indirectly asking the variable X to be instantiated, both

Spring 1996 Australian Journal of Intelligent Information Processing Systems

 73

to Junior Office Staff and Clerk simultaneously. Therefore,
we have an unnecessary IF condition for X. (ie. IF X is a
Junior Office Staff AND IF X is a Clerk.)

Figure 11b : Reachability graph due to the firing of R6 &
R7

6.3 Completeness

6.3.1 Unreachability, Case I

When a rule requires an object instance to be bound with
two mutually exclusive classes, or two classes in an
inheritance hierarchy. This rule cannot be fired. Eg.

 Rule X : A∧A’⇒C
 Rule Y : A1∧A2⇒C

In Rule X, if A is the parent and A’ is the Child, it is not
possible for an object instance to be both belonging to
Class A and Class A’. Similarly, in Rule Y, A1 and A2 are
both children of A, it is not possible for an object instance
to both belonging to two different mutually exclusive
classes. Referring to our example (Figure 12a), Rule 8 is
found to be in this situation. Examining the reachability
tree (Figure 12b), no token is ever deposited in S4 in all
reachability Markings from M0.

Furthermore, if the antecedent part of a rule cannot be
satisfied because it contains a literal which cannot be
matched to a fact or a literal in the consequent part of any
other rule, then this case also leads to unreachability.

 Figure 12a : CPN representation showing the events of unreachability

Figure 12b : Reachability graph due to the firing of R8

6.3.2 Unreachability, Case II

Consider a more complicated situation with involves chain
rules (Figure 13a), Rule 6’s action part will forward chain
to Rule 9’s condition part. Now this causes an unreachable
condition because Rule 6’s condition part and Rule 9’s
condition part are having mutually exclusive class
instantiation.

Australian Journal of Intelligent Information Processing Systems Spring 1996

 74

Figure 13a : CPN representation showing the events of unreachability

Figure 13b : Reachability graph due to the firing of R6 &
R9

By examining the reachability graph in Figure 13b it
shows that S5 never has any token reached from Marking
M0. This means this rule is unreachable.

7 Conclusion and Discussion

In this paper, we have described an approach to model
hybrid (rule- and frame-based) expert systems using

Coloured Petri Nets and the concept of controlled state
tokens. We have defined the additional anomalies caused
by the integration of the object hierarchy, property
inheritance and production rules. The detection and
analysis of the anomalies of proposed model is done by
constructing and examining the reachability tree spanned
by the knowledge inference. An algorithm is also given to
generate such a reachability set of the nets. Our approach
allows for formal verification of the correctness,
consistency, and completeness of the hybrid knowledge
base.

Future work will include formalizing our approach and
developing of algorithms and proof to detect irregularities
in the HES. We would also like to investigate further the
capability of the methodology to handle fuzzy systems and
the complexity involved against the traditional approaches.

8 References

[1] Beauvieux, A. “A General Consistency Checking

and Restoring Engine for Knowledge Bases”. In
Proceedings of the 9th European Conference on
Artificial Intelligence, Stockholm, Sweden, 1990.

[2] Chang, C.L., Combs, J.B. and Stachowitz, R.A. “A

Report on the Expert Systems Validation Associate
(EVA)”. Experts Systems with Applications, Vol.
1, No. 3, pp219-230, 1990.

Spring 1996 Australian Journal of Intelligent Information Processing Systems

 75

[3] Charles, E. “Checking Knowledge Bases for
Inconsistencies and other Anomalies”. In
Workshop Notes from the Ninth National
Conference in Artificial Intelligence, AAAI-91,
Knowledge-Based Systems Verification,
Validation and Testing, 17 July, Anaheim CA.
1991.

[4] Coenen, F. and Bench-Capon T., Maintenance of

Knowledge-Based Systems, Academic Press,
1993.

[5] Cragen, B.J. and Steudel, H.J. “A Decision Table

Based Processor for Checking Completeness and
Consistency in Rule-Based Expert Systems”.
International Journal of Man-Machine Studies, Vol
26, pp633-648, 1987.

[6] de Kleer, J. “An Assumption-Based TMS”.

Artificial Intelligence 28, pp127-162, 1986.

[7] Durkin, J. Expert Systems: Design and

Development, Macmillan Publishing Company,
pp.12-23, pp.711-771, 1994.

[8] Evertsz, R. “The Automated Analysis of Rule-

based Systems Based on their Procedural
Semantics”. In Proceedings of the 12th
International Joint Conference on Artificial
Intelligence. Sydney, Australia, 1991.

[9] French, S.W. and Hamilton, D. “A Comprehensive

Framework for Knowledge-Base Verification and
Validation”. In International Journal of Intelligent
Systems, Vol. 9, John Wiley & Sons, Inc., pp.809-
837, 1994.

[10] Huen, H.S.M. A Prototype Decision Support

System for Assessing The Claims for Promotion of
Clerical Officers in the Hong Kong Civil Service.
M.Sc. Dissertation, Department of Computing,
Hong Kong Polytechnic University, 1993.

[11] Jensen, K. Coloured Petri Nets : Basic Concepts,

Analysis Methods and Practical Use, Vol. 1,
Springer-Verlag, 1992. Vol. 2, Springer-Verlag,
1995.

[12] Landauer, C. “Correctness Principles for Rule-

Based Expert Systems”. Expert Systems with
Applications, Vol 1, No. 3, pp291-317, 1990.

[13] Li, X., Lai, R. and Dillon, T.S. “A New

Decomposition Method to Relieve the State Space
Explosion Problem”. In Proceedings of the 5th
International Conference on Computing and
Information, Sudbury, Ontario, Canada, pp.150-
154, 1993.

[14] Lee, S. and O’Keefe, R.M., “Subsumption
Anomalies in Hybrid Knowledge Bases”.
International Journal of Expert Systems, Vol. 6,
No. 3, pp.299-320, 1993.

[15] Lee, J.K., Yeung, D.S., Mizoguchi R. and

Narasimhalu D. Operational Expert System
Applications in the Far East, Published by
Pergamon Press, 1991.

[16] Liebowitz, J. Operational Expert System

Applications in the United States, Published by
Pergamon Press, 1991.

[17] Liu, N.K. and Dillon, T.S. “An Approach Towards

the Verification of Expert Systems Using
Numerical Petri Nets”. International Journal of
Intelligent Systems, 6, pp. 255-276, 1991.

[18] Liu, N.K. and Dillon T.S. “Formal Description and

Verification of Production Systems”, International
Journal of Intelligent Systems, Vol. 10, No.4,
pp.399-442, 1995.

[19] Nguyen, T.A., Perkins, W.A., Laffey, T.J. and

Pecora, D. “Checking an expert system knowledge
base for consistency and completeness”. In
Proceedings of the 9th International Joint
Conference on Artificial Intelligence, Los Angeles,
CA. 1985.

[20] O'Keefe, R.E. and O'Leary, D.E. “Expert System

Verification and Validation: A Survey and
Tutorial”, Artificial Intelligence Review 7, pp.3-
42, 1993.

[21] Preece, A.D. and Shinghal, R. “DARC: A

Procedure for Verifying Rule-Based Systems”. In
Expert Systems World Congress Proceedings,
Liebowitz, J. (ed) Vol. 2, Pergamon Press, pp971-
979, 1991.

[22] Suen, C.Y. and Chinghal, R. Operational Expert

System Applications in Canada, Published by
Pergamon Press, 1991.

[23] Shiu, S.C.K., Liu, J.N.K. and Yeung, D.S.

“Modelling Hybrid Rule/Frame-based Expert
Systems using Coloured Petri Nets”, In
Proceedings of the 8th International Conference on
Industrial & Engineering Applications of Artificial
Intelligence and Expert Systems, IEA/AIE-95,
Melbourne, June 6-8, pp.525-531, 1995.

[24] Shiu, S.C.K., Liu, J.N.K. and Yeung, D.S. “An

Approach Towards the Verification of Hybrid
Rule/Frame-based Expert Systems using Coloured
Petri Nets”, In Proceedings of 1995 IEEE
International Conference on Systems, Man and
Cybernetics, pp.2257-2262, Vancouver, Canada,
October 22-25,1995.

Australian Journal of Intelligent Information Processing Systems Spring 1996

 76

[25] Stachowitz, R.A. and Chang, C.L. Verification and

Validation of Expert Systems. Tutorial note at
AAAI-88.

[26] Suwa, M., Scott, A.C. and Shortliffe, E.H. “An

Approach to Verifying Completeness and
Consistency in a Rule-based Expert System”. AI
Magazine, pp.16-21, 1982.

[27] Vanthienen, J. “Knowledge Acquisition and

Validation Using a Decision Table Engineering
Workbench”. In Expert Systems World Congress
Proceedings, Liebowitz, J. (ed), Pergamon Press,
Vol 3, pp1861-1868, 1991.

[28] Vranes, S. and Stanojevic, M. “Integrating
Multiple Paradigms within the Blackboard
Framework”. IEEE Transactions on Software
Engineering, Vol. 21, No. 3, pp.244-262, March
1995.

[29] Zarri, G.P. Operational Expert System

Applications in Europe, Published by Pergamon
Press, 1991.

Spring 1996 Australian Journal of Intelligent Information Processing Systems

	Abstract
	1Introduction
	2A Hybrid Expert System
	3Modelling the HES Using CPN
	4Errors and Anomalies in HES due to Integration of Rules with Inheritance
	6Detection of Errors and Anomalies in HES
	6.1 Correctness
	6.1.1 Subsumption
	6.1.2 Cyclicity
	In our example, Rule 10, Rule 11 and Rule 12 will form such a cyclicity. In Figure 9a, if we have a Junior Office Staff token in Class A then R10 is enabled and fired, this will further enable R11 and a Clerk token is deposited in A1 (Clerk). As a resu

	6.2 Consistency
	6.2.1 Contradiction

	6.3 Completeness

	7Conclusion and Discussion
	8References

