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Abstract
Modeling case-base competence is a crucial issue in the
field of CBR. In fact it has led to a number of important
developments in CBR recently, the most well known being
in case deletion and case-base visualization and authoring
support. This is highlighted by Smyth and Keane’s
competence model (called the S-K model in this paper),
which was shown to be efficient. In this paper, we argue
that the model is not always a good predictor of
competence, especially when problem distributions are non-
uniform. Consequently, a new competence model based on
fuzzy (non-linear) integral is proposed to address such a
problem. The main idea is to repartition competence groups
to ensure that the distribution of each group is nearly
uniform, and more importantly to use the fuzzy integral with
respect to a fuzzy measure (non-additive set function) to
compute the overall competence. The interaction among
new competence groups is considered to be reflected in the
non-additive set function. The advantage of the newly
proposed model is its high accuracy for predicting
competence especially in the situation of non-uniform
distributed case-base.

1 Introduction

In the field of artificial intelligence, case-based reasoning
(CBR) is an effective and efficient problem-solving
technique by reusing the solutions to similar problems
stored as cases in a case-base [1]. With the growing use of
the CBR system, there is a surge of research on case-base
maintenance (CBM), whose aim is to achieve optimal
performance. Case-base competence (coverage), the range
of target problems that can be successfully solved, is a
critical factor contributing to the performance of a CBR
system. The idea that one can accurately model the
competence of a case-base is a powerful one. In fact, it has
led to a number of important applications in the area of
CBM, especially in competence-based CBM [2], which
focuses on increasing the overall competence of the case-
base.
   The most frequently used competence model is proposed
by Smyth and Keane [3]. In their model, statistical
properties such as the size and density of cases, as well as
the problem-solving  properties of  the given  CBR system
such as retrieval  and adaptation  characteristics  have been
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taken into account. However, the more important idea in
the model is to regard a competence group instead of a
single case as the fundamental unit of competence. In fact,
the definition of competence group implies that different
groups have no interaction (overlap) with each other.   The
model was empirically shown to be competent and
efficient.
   In this paper, we present a detailed analysis of the S-K
competence model and show that it does not always work
well on real problems since it assumes a uniform
distribution of case-bases. We argue that in the situation of
non-uniform distributed case-bases, the S-K model gives a
bad prediction of case-base competence. In response, we
have developed a different competence model that is based
on fuzzy integrals (non-linear integrals) with respect to a
fuzzy measure (or a non-addition set function). The main
idea is to repartition competence groups to ensure that the
distribution of each group is nearly uniform, and more
importantly to use fuzzy integrals with respect to a fuzzy
measure  (a non-additive set function) to compute the
overall competence. The model developed in this paper
consists of four steps. First, we identify competence groups
in a given case-base according to the S-K model. Second,
we formulate the concept of non-uniform distribution (or
uneven distribution), which is related to case-base
coverage. Third, we seek weak links in every given
competence group, and repartition the competence groups.
Fourth, we use fuzzy integrals with respect to a fuzzy
measure (or a non-additive set function) to compute the
overall coverage of a given case-base. The interaction
among the new competence groups is considered to be
reflected in the non-additive set function. Compared with
the S-K model, the advantage of our competence model is
that we can deal with more general case-bases, especially
non-uniform distributed case-bases.

2 Related work

For the artificial intelligence community especially CBR
systems, the competence or coverage of a given system is a
fundamental evaluation criterion. Recently, the issue of
competence has received much attention from the
perspective of the so-called case-base maintenance
problem, that is, the issue of how best to manage the
organization and contents of a case-base in order to
optimize future reasoning performance.



   The importance of case competence has been brought
sharply into focus since many maintenance policies are
directly linked to heuristics that attempt to measure case
competence to guide maintenance procedures [4-7].
However, these competence heuristics have provided only
coarse-grained estimates of competence. For example,
Smyth and Keane employed a category-based competence
model that classifies cases as belonging to one of only four
possible competence categories; Zhu and Yang described
case coverage based on a rather rough concept of case
neighborhood.
   The most recently explicit algorithmic model of
competence for case-based reasoning systems was
suggested by Smyth and Keane [3]. Several innovative
solutions to problems based on their model have been
developed, such as the construction of compact competent
case-bases [2], the case retrieval problem [8], and the
provision of case authoring support and case-base
visualization [3].

3 Analyzing the competence model

In this section, a detailed analysis of Smyth and Keane’s
case-base competence model is presented. It shows that the
original model does not always work well in real world
problems.

3.1 A Review of Case-base Competence

The competence of a case-base system (the range of
problems it can solve) depends critically on the cases in the
case-base, but the relationship between cases and overall
competence is very complex. To address this problem,
Smyth and Keane suggest a competence model based on
the concept of competence group, which implies that
different groups have no interaction (overlap) with each
other. In their model, both statistics and problem-solving
properties are considered. Two key involved fundamental
concepts are coverage and reachability. Coverage of a case
refers to the set of problems that the case can solve.
Reachability is the set of cases that can be used to provide
solutions for a problem. And to characterize the
competence of a case-base in a tractable fashion, a
reasonable assumption is made, which considers the case-
base a representative sample of the problem space. With
this technique, a given case-base can be partitioned to
several different competence groups. The competence of a
competence group G (group coverage) depends on the
number and density of cases in G (see Equation 1).
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where group density is defined as the average case density
of the group (see Equation 2).
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The local density of a case c within a group of cases G is
considered to be the average similarity of c to any other
cases in the group G.
For a given case-base, with competence groups

},...,,{ 21 nGGGG = , the total coverage is defined by
Equation 3.
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It obvious from Equation 2 that the S-K model assumes a
uniform distribution. In other words, the more uniform the
cases distributed in the group, the more suitable the
competence model for the given case-base. Here, uniform
distribution means that the case density for each case in a
competence group is the same. However, for many case-
bases in the real world, this condition is too strict to satisfy.
Hence, the model is not always accurate, especially in the
situation of non-uniform distributed case-bases.

3.2 Non-uniform Distribution

We can show that the S-K model is not a good predictor
when the case-base is non-uniform distributed. Here, we
only need to give an example to illustrate this point.
Suppose that, in some domain, we have the graph structure
as shown in Figure 1.

 To make the point clear,  in Figure 1, suppose that the
densities of group G1 and group G2 are both 0.8, and are
both assumed to be uniform-distributed (i.e. the case
density of each case in either G1 and G2 respectively, is
0.8) while the density of the whole group
G=G1 ∪ G2 ∪ { *c } is 0.2, and the coverage of *c is 3
cases, but the overlap coverage of *c and G1 ∪ G2 is 2,
and *c is a pivotal case. Intuitively, we can
straightforwardly obtain the coverage of the whole
competence group G as follows:
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However, according to the above competence model, the
results are as follows:
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We can see that the two results are very different from each
other. Since G1 and G2 fit the competence model
perfectly, the coverage of G1 and G2 can be computed
using the S-K model, so the GroupCoverage1 should
perform well according to our conditions given in advance.
The problem is in the process of computing
GroupCoverage2, which assumes that group G is also
uniform-distributed, resulting in a computing error that
cannot be ignored.
   In cases such as Figure 1, the difference between
GroupCoverage1 and GroupCoverage2 (which can be
regarded as the computing error of the S-K model) is as
follows:

According to the above results, if we let the number of
cases (which satisfy given conditions in competence group
G1 or G2) tend to ∞ ,

tyGroupDensiGtyGroupDensi −)1([ )](G  increases at the
same time, and as a result, the computing error tends to ∞ .
It is the group density difference between G1/G2 and G
which causes this competence error.

4 Fuzzy integral competence model
In the example, we see that for a non-uniform distribution,
the S-K model is not a good predictor of case-base
competence. It’s reasonable to compute the competence of
G1, G2 and *c respectively. The competence of the original
competence group G is considered to be their summation. In
fact, we can easily see that case *c has an important role in
given competence group G. It is the case that mainly affects
the overall distribution of a competence group, and further
affects the precision of computing overall competence using
the S-K model. Thus, the idea is very natural for recursively
detect such cases as *c  (which can intuitively be called
weak-links) and repartitioning the competence group G to
several smaller groups such as G1 and G2, whose
distributions are regarded to be uniform. Their competence
can then be computed by using the S-K model. The
competence of the weak-links can be considered to be their
individual coverage respectively, which reflects the
relationship among the several new groups.
   However, the conditions given in the example are too
restricted to be satisfied for a common competence group.
More generally, new groups 1G  and 2G  are not necessarily
strictly uniform-distributed, and the weak link case *c is not
necessarily a pivotal case. To deal with this situation,
without influencing the results in Equation 4,

)1(GtyGroupDensi  can be replaced by the average group
density of group G1 and G2, which can be denoted by
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tyGroupDensi∆ .
   We then introduce a concept called quasi-uniform
distribution to describe the distribution closed to uniform
distribution, which relaxes the condition of strict uniform
distribution of each group. Consider another assumption that

*c is a pivotal case in the example, this is not necessarily
true in many cases. To address this problem, just consider
the individual competence of *c as its relative coverage,
which is defined as follows (Equation 6):
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Hence, according to Equation 4 and 5,
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According to inequality 7, since )(Re *cragelativeCove  is
limited, so we can see that it is tyGroupDensi∆  which leads
to the competence error. In other words, it is the assumption
of uniform distribution of the competence group that makes
the performance of the S-K model turn bad in some
situations.

4.1 Detecting weak-links
To improve the predicting performance of the S-K model,
what we should first to do is to identify the weak-links in
each competence group in the S-K competence model.  The
next task is to compute the overall coverage of the given
competence group. To complete this task, an explicit
definition of weak-link should be given in advance.
   Since our aim is to predict case-base competence (or
coverage) more accurately, in this paper, the definition of
weak-link, as well as several relative concepts, is more
directly related to the competence of the group in question.

Def. Let },...,{ 21 ncccG = be a given competence group in a

case base GcC ∈*, , is called a weak-link if
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where α is a parameter which is different according to
different requests. If Gc ∈∃ * , *c is a weak-link, then the
competence group G  is called a non-uniform distributed
competence group. Otherwise, if for

α≤∈∀ )(, MErrorCompetenceGc , then G is called a
quasi-uniform distributed competence group.
   It’s obvious that ∑ −= }{ *cGGi . With the definition,
we propose the recursive method to detect weak-links in a
given competence group G, which is described by the
following algorithm:

Weak-link Detection Algorithm:
1. ;{},{}, GiSETGSETW =←−←−
2. If ( 0≠i )
 {Consider each given competence group G in the S-K
competence model, compute )(cErrorCompetence ,

;Gc ∈∀  1−= ii }

3. If there is no weak-link, add G  to SETG − , end;
4.If there is a weak-link *c , identify the competence groups      

)1(,,...,1 ≥nGG n  in }{ *cG − using the S-K competence

model, and add *c to the set of weak-links  W-SET.
5. For )1( ni ≤≤
{ ;iGG ←  repeat step1 to step4}.

Thus, we can obtain the set of weak-links SETW − in a
given competence group G and the set of new competence
groups SETG − . Obviously, a given competence group G
is repartitioned by identifying weak-links in it. The groups
in SETG − are called new competence groups.

4.2 Computing overall coverage of the given
competence group using fuzzy integral
After detecting weak-links in a competence group G,
several new competence groups )1(,...,1 ≥nGG n  are
produced. According to the definition of a weak-link, each
new produced group is sure to be quasi-uniform
distributed. The next task is to compute overall coverage of
G. In the example described in Figure 1, we just add the
competence of )1( niGi ≤≤  and the relative coverage of

*c , but this method has no representativeness. There are
more complicated situations, one of which is illustrated in
Figure 2. It’s difficult to clearly identify the contribution of
each weak-link. In fact, in Figure 2, *c has much more
influence on coverage of G than **c has, which reflects
different relationship among new competence groups. To
describe the complex relationship, a powerful tool called
fuzzy integral (or non-linear integral) with respect to a
fuzzy measure (a non-additive set function) is applied.

4.2.1 Non-additive set function
Let Χ be a nonempty set and )(ΧΦ be the power set of Χ .
We use the symbol µ to denote a non-negative set function
defined on )(ΧΦ with the properties 0)( =Θµ . If

µµ ,1)( =Χ is said to be regular. It is a generalization of
classic measure [9]. When Χ is finite, µ is usually called a
fuzzy measure if it satisfies monotonicity, i.e.,

( ) ( ) ( )ΧΦ∈ΒΑΒ≤Α⇒Β⊆Α ,forµµ
For a non-negative set function µ , there are some
associated concepts. µ is said to be additive
if )()()( Β+Α=Β∪Α µµµ for )(, ΧΦ∈ΒΑ ;to be sub-
additive if )()()( Β+Α≤Β∪Α µµµ for )(, ΧΦ∈ΒΑ ; to
be super-additive if )()()( Β+Α≥Β∪Α µµµ  for

)(, ΧΦ∈ΒΑ .
   Let },...,{ 1 nGG=Χ be the space of the new competence
groups, Α  and Β are two subsets of the power set of X.
Here, A, B respectively can be a single new group iG  or the



union of several groups. If we consider )(Αµ as the
importance of subset Α , then the additivity of the set
function means that the joint importance of the several
groups is just the sum of their respective importance,
which implies that there is no interaction among
competence groups. However, this is not true in the
considered problem. In fact, most measures of importance
are non-additive.
 Sub-additivity and super-additivity are two special types
of non-additivity. Super-additivity means that the joint
importance of two sets is greater than or equal to the sum
of their respective importance, which indicates the two sets
enhance each other. In contrast, sub-additivity means that
the joint importance of two sets is less than or equal to the
sum of their respective importance, which indicates that
the two sets resist each other.
 In our problem, consider },...,{ 1 nGG=Χ  to be the factor
space. There are weak-links among the competence groups
which link them to one group G. Here, weak-links such as

*c and **c are sure to enhance the overall coverage of G.
Hence, the importance measure µ defined on the power set

)(ΧΦ is a super-additive measure. So here we have
)()()( Β+Α≥Β∪Α µµµ  for )(, ΧΦ∈ΒΑ

For example, in Figure 2, *c enhances the importance of

21 GG ∪ , **c enhances the contribution of 31 GG ∪ , and
there is no case to enhance or reduce the contribution of

32 GG ∪ , so we have
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   Using fuzzy integral to compute the overall coverage of
the original competence groupG , the importance measure
µ should be determined in advance. However, for a factor
space including n  factors, there are ( 12 −n ) parameters to
decide [10]. In the situation of Figure 2, 7 values of the
importance measure should be determined, say, ),( 1Gµ

),( 2Gµ ),( 3Gµ and ),( 21 GG ∪µ ),( 31 GG ∪µ ),( 32 GG ∪µ
)( 321 GGG ∪∪µ  should be given.

 To reduce the load, we apply a kind of fuzzy measure
called fuzzy−λ  measure, which is in the following form:

( ) ( ) ( ) ( ) ( )Β⋅Α⋅+Β+Α=Β∪Α µµλµµµ  ),1( ∞−∈λ
if ,0≤λ  µ is a sub-additive measure; if ,0≥λ  µ is a
super-additive measure; if and only if ,0=λ  µ is additive.
So here we have 0≥λ . Applying fuzzy−λ  measure to
determine the importance measure µ , what we need to do
is just to determine the n  importance on each single factor
and λ .

4.2.2 Determining fuzzy−λ measure µ
In this paper, we consider that the importance of each
competence group is equal to 1, i.e. )1(,1)( niGi ≤≤=µ .
This assumption is reasonable because each group makes
unique contribution to the overall coverage, that is, the
status of each group is considered to be equal.
Next task is to determine the parameter λ , which is critical
to determine µ . It’s obvious that the properties of the
weak-links between the two groups are important factors
for determining λ . In our model, coverage of a group
refers to the area of the target problem space covered by
the group. In this sense, the value of λ is closely related to
the coverage of the weak-links and the density of their
coverage sets. Consider arbitrary two new groups iG  and

jG , the SETW −  between them is },...,{ **
1

*
hccC = .

Define )( *CCoverage  and )( *CDensity  as follows:
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where )( *
icCov is the coverage set of one of the weak-links

between iG and jG .
   The coverage contribution of ji GG ∪  must be directly

proportional to )( *CCoverage  and inversely proportional
to )( *CDensity . With these preparations, the parameter
λ is given by the formula in Equation 8.

 ))(1()( ** CDensityCCoverage −⋅=λ                            (8)

Then the fuzzy−λ  measure µ  is determined.

4.2.3 Using Choquet integral to compute overall group
competence
Due to the non-additivity of the set function µ , some new
types of integrals (known as non-linear integrals) have to
be used, which can be considered to be the generalization
of the weighted mean [9]. The advantage of using fuzzy
integrals is that the interactions of all factors in a factor
space can be taken into account. Fuzzy integrals have
found a few applications in CBR systems [11-12]. X. Z.
Wang and D. S. Yeung used fuzzy integrals to compute the
overall similarity between problems and each stored case
in the case-base for each feature, interactions among the
features are considered. In a Cash Flow Forecasting
system, Rosina Weber Lee et al. made use of fuzzy
integrals in the same way to choose the best match for a
problem in the retrieved cases.
   A common type of nonlinear integral with respect to non-
negative monotone set functions is the Choquet integral.



   Let f  be a non-negative real-valued measurable
function defined on Χ , and µ  be a non-negative
monotone set function introduced in the above section. The
Choquet integral of f on Χ with respect to µ , (c) ∫ µfd ,

is defined by the formula

αµµ α dFfdc )()(
0

∫ ∫
∞

= ,

where αα ≥= )({ xfxF for any ),0[ ∞∈α . When Χ  is
finite, the Choquet integral can also be defined in the same
way with respect to a non-negative set function that is not
necessarily monotone.
   In our model, },...,{ 1 nGG=Χ  is finite,

),( ii GageGroupCoverf =  importance measure µ
satisfies:

);1(1)( niGi ≤≤=µ
)()()()()( Β⋅Α⋅+Β+Α=Β∪Α µµλµµµ ( )0≥λ

 where λ  is determined by Equation 8.

   The process of calculating the value of Choquet integral
is as follows:
(1) rearranging },...,,{ 21 nfff into a non-decreasing order
such that
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The value of Choquet integral is considered as the
coverage of the considered competence group. Each
competence group in the S-K model is considered in the
same way, the sum of all group coverage is the overall
coverage of the given case-base.

5 Simulation
In previous sections, a new model using fuzzy integral for
modeling the competence of case-bases has been
presented. In this section, empirical evidence is needed to
support this model. In short, we demonstrate that the model
proposed in this paper closely match the actual
competence. At the same time the S-K model is shown not
to be a good predictor when the case-base is not uniform
distributed.
   In this section, we use a small case-base, which contains
120 cases. Each case is chosen randomly such that the
case-base satisfies non-uniform distribution. Every case is

a two-dimension vector. For experimental reasons, 50
randomly chosen cases in the case-base are used as unseen
target problems, a further 70 cases are used to form the
experimental case-bases.
   In our experiment, the success criterion used is a
similarity threshold: if the system does not retrieve any
cases within this threshold, a failure is announced. True
competence is regarded as the number of successfully
solved problems.
   The experiment is repeated 100 different times, and the
average results are computed which are shown in Table 1.
The results positively support our model.
   We use “Error_number”, “Error_percentage” as evaluate
indexes, which represent the relative error of coverage
computed by using the S-K model and the fuzzy integral
model(new model) respectively. Here, Error_percent =
Error_number /True_competence

Index True S-K model New model
Density - 0.4 0.6

Competence 34.5 49.6 38.9
Error_number 0 15.1 4.4
Error_percent 0 43.8% 12.8%

                                        Table 1.

Clearly the results are very positive. The error_percentage
of our fuzzy integral model is rather lower than using the
S-K model. When the number of cases increases, our
model can strikingly reduce the competence error
compared to the S-K model.
   We should also point out that in our experiment, the
case-base considered has a non-uniform distribution, but in
the situation of uniform distributed case-bases, the fuzzy
integral competence model can still be used. Because if
there is no weak-link, the competence computed by the
fuzzy integral model is equal to the results of the S-K
model, which has been proved to be effective. Thus, the
uniform distributed case-base is a special case for our
model.

6 Conclusions and Discussion
In this paper, a novel competence model of case-bases is
proposed. A type of fuzzy integral (called choquet integral)
with respect to the fuzzy−λ  measure is used as a tool.
We consider the non-uniform distributed case-bases, and
prove that the competence model proposed by Barry Smith
and Keane is not a good predictor in such a situation. The
results of experiments conducted are very positive for our
model. It shows that the new model proposed in this paper
has extended the scope of modeling case-base competence.

7 Acknowledgement
This project is supported by the Hong Kong Polytechnic
University research grants G-T144 and H-ZJ90.



References

[1] J.Kolodner,Case-Based Reasoning, Morgan Kaufmann:
San Mateo, CA, 1993.
[2] B.Smyth    and     E.McKenna,   Building        Compact
Competent  Case-Bases,  Case-Based Reasoning  Research
and Development.  Lecture Notes in  Artificial Intelligence
(Althoff, K-D, Bergmann, R. and Branting, L, K. eds.),
Springer Verlag, 1999, pp. 343-357.
[3] B.Smyth and E.McKenna, Modeling the Competence
of Case-bases, Advances in Case-Based  Reasoning.
Lecture Notes in Artificial Intelligence, pp.208-220, 1998
[4] B.Smyth and E.McKenna, Remember to Forget: A
Competence Preserving Case Deletion Policy for CBR
Systems, Proceedings of the 14th International Joint
Conference on Artificial Intelligence, pp.377-382, 1995
[5] B.Smyth, Case-based Maintenance, Proceedings of the
11th International Conference on Industrial & Engineering
Applications of AI Expert Systems, Springer Verlag.
[6] J. Zhu and Q. Yang, Remembering to Add:
Competence-preserving Case-Addition Policies for Case-
Base Maintenance. Proceedings of the 16th International
Joint Conference on Artificial Intelligence, 1999, pp. 234-
239.
[7] D.Leake and D.Wilson, Remembering Why to
Remember: Performance-Guided Case-base Maintenance,
Advances in Case-based Reasoning. Lecture Notes in
Artificial Intelligence, pp.161-172
[8]  B. Smyth and E. McKenna, Footprint-Based Retrieval,
Case-Based Reasoning Research and Development.
Lecture Notes in Artificial Intelligence (Althoff, K-D,
Bergmann, R. and Branting, L. K. eds.), Springer Verlag,
1999, pp. 329-342.
[9]  Z.  Wang  and  G.J.Klir,   Fuzzy    Measure      Theory,
Plenum, New York, 1992
[10]Z. Wang, K.S. Leung and J. Wang, A genetic
algorithm for determining non-additive set  functions in
information fusion, Fuzzy Sets and Systems. Vol.102,  pp.
463-469, 1999.
[11]X. Z. Wang and D.S.Yeung, Using Fuzzy Integral to
Modeling Case-based Reasoning with Feature Interaction,
2000 IEEE International Conference on Systems, Man, and
Cybernetics, Vol. 5, 2000, pp.3660 –3665
[12]W. L. Rosina, M. B. Ricardo, and K. K. Suresh,
proceedings of the first international conference of Case-
based Reasoning, ICCBR-1995, (eds.) Manuela Veloso
and Agnar Aamodt, Springer Verlag,  pp. 510-519.
[13]K.Racine, and Q. Yang, Maintaining Unstructured
Case. Proceedings of the 2nd International Conference on
Case Based Reasoning, pp. 553-564 RI, USA.


