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The growing use of CBR applications has increased 
the awareness of the importance of Case-Base 
Maintenance (CBM). CBM is the process of refining a 
CBR system’s case-base to improve its performance, 
i.e., CBM implements policies for revising the 
organization or contents of the case-base in order to 
facilitate future reasoning for a particular set of 
performance objectives [2]. Nowadays many large-
scale CBR systems with case-base sizes ranging from 
thousands to millions have been developed [4,5,6]. 
Large case-base size raises the problem of case 
retrieval, and various case deletion policies have been 
proposed to control the case-base growth [1,8]. Many 
anomalies such as redundant cases, conflicting cases, 
ambiguous cases, subsumed cases and unreachable 
cases may exist in the case-base [3,7]. Techniques that 
can automatically detect problematic cases in the case-
base are therefore crucial to the future success of CBR 
technologies.  
 
This paper presents a CBM methodology for 
clustering and classification of cases in case-base 
systems which use little or no domain-specific 
knowledge. It consists of two phases. The first phase is 
to evaluate feature importance, i.e., learning global 
feature weights from the case-base. This phase can 
recognize salient features and eliminate irrelevant 
features from the case-base. Its results are helpful in 
providing a reasonable clustering of the case-base. The 
second phase is to partition the case-base; the clusters 
identified convey different concepts within the case-
base. Experimental analyses of our methodology show 
promising results, i.e., the performance of clustering 
with learned global feature weights is much better than 
the performance without global feature weights.  This 
paper is organized into different sections. In section 2, 
global weight concept is presented and a method to 
learn these weights is provided. Section 3 presents a 
technique to partition a case-base into several clusters 
while in section 4 an experiment to justify our method 
is given. The experimental results and its analyses are 
mentioned in section 5. Finally a conclusion is 
wrapped up in section 6. 
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2.  Global Feature Weight Concept And Its 
Learning Algorithm 

The structure of a case in a case library is determined 
by problem domain and solution. The solution is 
considered as an action but the problem domain is 
usually characterized by a collection of features. 
Suppose that the number of features is n, then the 
global feature weight refers to a vector (w1, w2, ……, 
wn) each of its components is a real number in [0,1]. It 
can be interpreted that, for the entire case library, 
different features have different degrees of importance 
to the solution. It is different from a local feature 
weight concept. A global feature weight is assigned to 
each feature in a case and for the same feature in all 
cases they have the same global weight. A local 
feature weight is assigned to each feature in a case and 
for the same feature in all cases, they have different 
local weights. 
 
2.1 Learning Global Feature Weights 
Let be the case library. Each case 
in the library is identified by an index of 
corresponding features. We use a collection of features 

to index the cases and a variable v to 

denote the action. The i-th case  in the library is 
represented as a n+1-dimensional vector, i.e. 

 where  corresponds to the 

value of feature  and v  corresponds to 

the action .  
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Suppose that for each  a weight )1( njj ≤≤

( )]1,0[∈jj ww  has been assigned to the j-th feature to 
indicate the degree of importance of the feature. Then, 
for any pair of cases e  and  in the library, a 
weighted distance metric can be defined as  
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When all the weights are equal to 1 the distance metric 
defined above degenerates to Euclidean measure, 
denoted by , in short, denoted by .  )1(
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By using the weighted distance, a similarity measure 
between two cases, , can be defined as follows: )(w
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where  is a positive parameter. When all weights 
take value 1 the similarity measure is denoted by 

.  

α

)1(
pqSM

)1(
)1(

1
1

pq
pq d

SM
⋅+

=
α

              (4) 

In this section, a feature evaluation function (in which 
the feature weights are regarded as the variables) is 
defined. The smaller the evaluation value, the better 
the corresponding features. Thus we would like to find 
the weights such that the evaluation function attains its 
minimum. The task of minimizing the evaluation 
function with respect to weights is performed using a 
gradient-decent technique.  
 
We formulate this optimization problem as follows. 
For a given collection of feature weights 
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A feature evaluation index function E is defined as: 
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One may notice that the feature evaluation index 
function E(w) will gradually become zero when 

or 1, we hope to find a collection of 
weights such that the feature evaluation function 
attains its minimum. To minimize equation (5), we use 
a gradient-decent technique. The change in  

(denoted by ) is computed as  
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for , where η  is the learning rate.  nj ,,1 L=
 

For the computation of 
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The Global Feature Weights Training Algorithm 
To obtain the optimal global feature weights, we need 
to minimize E and the training algorithm is described 
as follows. 

Step 1. Select the parameter  and the 
learning rateη . 

α

Step 2. Initialize  with random values in 
[0, 1]. 

jw

Step 3. Compute for each j using 
equation (6). 

jw∆

Step 4. Update  with +  for each 
j. 

jw jw jw∆

Step 5. Repeat step 3 and step 4 until 
convergence, i.e., until the value of 
E becomes less than or equal to a 
given threshold, or until the number 
of iterations exceeds a certain 
predefined number.  

 
After training, the function E(w) attains a local 
minimum. We expect that, in average, the similarity 
values  with trained 
weights are closer to 0 or 1 than that without trained 
weights such as { .  
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3.  Partition Case-Base Into Several Clusters 
In this section we attempts to partition the case library 
into several clusters by using the weighted distance 
metric with the weights learned in phase 1.  
 
Since the considered features are considered to be real-
valued, many methods such as C-Mean clustering [9] 
and Kohonen’s self-organized network [11] can be 
used to partition the case library. However, this paper 
adopts a typical approach of clustering, i.e., similarity 
matrix [10] which uses only the information of 
similarity between cases. This approach first 
transforms the similarity matrix into an equivalent 
matrix and then considers the cases being equivalent to 
each other as one cluster. The procedure is as follows: 
 
Give a significant level (threshold)   ]1,0[∈β

Step 1. Determine the similarity matrix 
( ))(w

pqSMSM =  according to 
equations (1) and (3). 

Step 2. Compute ( )pqsSMSMSM == o1  
where 

( )),min( )()( w
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w
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Step 3. If then go to Step 5, else 
replace SM with SM1 and go to Step 
3. 

SMSM ⊂1

Step 4. Determine several clusters based on 
the rule “case p and case q belong to 
the same cluster if and only if 

”  β≥pqs
 
The clusters identified are considered to have different 
concepts within the case-base, and each concept 
identifies a subset of the problem domain that differs 
characteristically from the rest of the problem domain. 
Since the clustering result of phase 2 is crisp (not 
fuzzy), we require the clustering with m clusters 

 to satisfy the following property: },,,{ 21 mLLL L
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Equation (10) describes such a situation that the 
similarity between a case and the cluster to which the 
case belongs is bigger than the similarity between the 
case and any other cluster. 
 
3.1  Clustering Evaluation 
It is worth noting that the result of clustering depends 
strongly on the feature weights that are used in 
computing the similarity between two cases. We 
evaluate the performance of clustering by the 
following three indexes, namely, the intra-similarity, 
the inter-similarity and the number of clusters. These 
indexes measure the quality of a partition by ensuring 
that it will not favor large number of clusters. They are 
based on the idea that for a partition to be a good 
cluster it has small intra-cluster distances and large 
inter-cluster distances. Therefore they can be used as a 
criterion to optimize the clustering result. 
 
Intra-similarity  
For a given cluster L, the intra-similarity of L is 
defined as  
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where r is the number of cases in the cluster L.  For a 
clustering with m clusters { , the intra-
similarity is defined as the average of all its cluster 
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intra-similarities, i.e.,  
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It is clear that the value of  is in [0, 1]. The 

bigger the value of , the better the 
performance of the clustering. 
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Inter-similarity  
For a pair of clusters  and , the inter-similarity is 
defined as 
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where  and  are numbers of cases in  and  
respectively. For a clustering with m clusters 

, the inter-similarity is defined as the 
average of all pairs of inter-similarities, i.e.,  
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Obviously, the value of  is in [0, 1]. The 

smaller the value of , the better the 
performance of the clustering. 
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Number of clusters  
To have an acceptable accuracy, i.e., the intra-
similarity of clustering is bigger than or equal to a 
threshold (>0.5) and the inter-similarity of clustering is 
smaller than or equal to a threshold (<0.5), one can 
interpret that the smaller the number of clusters, the 
better the performance of the clustering. 
 
4.  An Experiment 
Boston Housing Data is used as the testing data set in 
this experiment. This data set is taken from the StatLib 
library that is maintained at Carnegie Mellon 
University. Boston Housing Data concerns about the 
housing values in the suburbs of Boston; it contains 
506 records and 14 attributes, including 13 continuous 
attributes and one binary-valued attribute. Attribute 
information is shown in Table 1. 
In this experiment, the raw data testing file was 
converted into a case-base that our algorithm can 
handle by converting all rows into cases and all 
columns into features. To test the scale up ability of 
the methodology, we used Boston Housing Data as the 
testing case-base. There is a recursive loop in the 
experiment for recording the results for each 
significance level ( ) values beginning from 0.65. 
We investigate the influence of  on the quality of 
resulting partitions. This experiment is designed to 

generate the global feature weights of the case-base, to 
partition the case-base into several clusters and to find 
out the three clusters evaluation indexes against the 
case-base with learned global feature weights and 
without it. 

β
β

Attribute Name Meaning
CRIM Per capita crime rate by town 
ZN Proportion of residential land 

zoned for lots over 25,000 
sq.ft. 

INDUS Proportion of non-retail 
business acres per town 

CHAS Charles River dummy variable 
(= 1 if tract bounds river; 0 
otherwise) 

NOX Nitric oxides concentration 
(parts per 10 million) 

RM Average number of rooms per 
dwelling 

AGE Proportion of owner-occupied 
units built prior to 1940 

DIS Weighted distances to five 
Boston employment centres 

RAD Index of accessibility to radial 
highways 

TAX Full-value property-tax rate 
per $10,000 

PTRATIO Pupil-teacher ratio by town 
B 1000(Bk – 0.63)2 where Bk is 

the proportion of blacks by 
town 

LSTAT % lower status of the 
population 

MEDV Median value of owner-
occupied homes in $1000’s 

Table 1: Boston Housing Data Attribute Information. 

Feature Name Feature
CRIM 0.668691
ZN 0.438765
INDUS 0.577563
CHAS 0
NOX 0.992728
RM 0
AGE 0.766656
DIS 0.607898
RAD 0.887387
TAX 0
PTRATIO 0.616901
B 0.356120
LSTAT 0
MEDV 0

Table 2: Boston Housing Data Feature 
Weight Information. 
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Fig. 4: Experimental result of clustering accuracy 
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Fig. 1: Experimental result of number of classes 

 
 
 

 
5.  Experimental Results And Its Analyses 
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Fig. 2: Experimental result of Intra-Similarity 

After applying the learning feature weights algorithm 
mentioned in section 2, the feature weights results 
shown in Table 2 were obtained (training time: 
568minutes). Those features with zero feature weight 
are taken as irrelevant features and can be deleted 
from the target case-base. The experimental parameter 
settings are: alpha (α ) = 0.015, learning Rate (η ) = 
0.150, threshold = 0.015. 
Figure 1 reveals two important observations. Firstly, 
the curve for the testing case-base with global feature 
weights is uniformly better (i.e. smaller number of 
clusters) than those without it. It is expected since the 
global feature weights do take into consideration the 
degree of importance of the feature weights of the 
attributes in the case-base. The algorithm eliminates 
those irrelevant features if its learned feature weights 
approach zero.  
Secondly, as the value of  increases, the number of 
clusters produced increases. It implies that the cluster 
size drop as  increases. Initially, when the value of 

 is 0.65, the number of clusters is pretty small. 
After increases to over 0.8, the number of clusters 
approaches to the maximum which is equal to the 
number of cases in the case-base. This phenomenon 
explains the fact that the variation of  is closely 
related to the number of clusters. 

β
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A large intra-similarity implies a good quality of the 
clusters. Therefore, we focus on finding the maximum 
value of intra-similarity. One may observe from Figure 
2 that the curve for the testing case-base with global 
feature weights is uniformly better  (i.e. higher) than 
those without it. This result shows that our 
methodology does improve the quality of the clusters.  
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Fig. 3: Experimental result of Inter-Similarity 
Moreover, there is a decreasing trend of the intra-
similarity as increases. This phenomenon can be β



explained by the fact that when we partition the case-
base into larger number of clusters, the size of the 
clusters becomes smaller and hence smaller intra-
similarity. The intra-similarity attains minimum value 
when is 1. Consequently, when only intra-similarity 
is considered, the optimal  that maximizes the intra-
similarity should be less than or equal to 0.75. 
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Contrary to intra-similarity, we look for  that 
minimizes inter-similarity. Inter-similarity shows the 
measurement of the cluster density between clusters; a 
smaller value corresponds to good quality of the 
clusters. One may observe from Figure 3 that there is 
an increasing trend of the inter-similarity as  
increases. This phenomenon is due to the result of 
“Number of clusters” showing that the number of 
clusters is small when  become small and vice versa. 
Therefore, this implies that the inter-similarity attains 
maximum value when  is 1. 

β

β

β

β
Figure 4 also shows that as the value of  increases, 
the clustering accuracy decreases gradually. Initially, 
when the value of  is less than or equal to 0.75, the 
graph attains maximum clustering accuracy. After  
increases to over 0.8, the clustering accuracy drops 
gradually. This phenomenon can be explained by the 
fact that the clustering accuracy is closely related to 
the number of clusters.  
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6.  Conclusion 
In this paper a systematic methodology for clustering 
and classification of cases from scratch with minimal 
user intervention has been developed and 
implemented. The proposed methodology is efficient 
and effective in dealing with large case-bases and is 
necessary for maintaining a case-base. The main idea 
of this methodology is to partition case-bases into 
clusters where the cases within the cluster are more 
similar than cases in other clusters. A method to learn 
global feature weights is used for weighting features 
and selecting salient features. The global feature 
weight information can help eliminate irrelevant 
features from the case-base, thereby improving 
retrieval efficiency and helping to get reasonable 
clusters. The learned global feature weights with 
Euclidean metric are then used for discovering the 
clusters (concepts) of the case-base.  
After applying the proposed methodology, we 
obtained a new partitioned case-base in which each 
cluster contains cases that are closely related to each 
other, while between different clusters the cases are 
farther apart from each other. The results obtained are 
encouraging: the dimension of the Boston Housing 
Data was reduced from 14 to 9, and when using global 
feature weights approach, the performance of 

clustering is much better than without the learned 
global feature weights. 
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