

AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models

DAI Xuelong, LIANG Kaisheng, XIAO Bin

Presenter: DAI Xuelong

August 21, 2024

- ▶ Motivation
- ▶ Contribution
- \blacktriangleright Method
- ▶ Evaluation
- \blacktriangleright Conclusion

- AdvDiff is an unrestricted adversarial attack with the reverse generation process of diffusion models.
- AdvDiff utilizes interpretable adversarial guidances to achieve high-quality sampling.
- AdvDiff outperforms SOTA attacks on both image quality and ASR.

\blacktriangleright Motivation

▶ Contribution

\blacktriangleright Method

▶ Evaluation

\blacktriangleright Conclusion

Motivation

• Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks.

 $+.007 \times$

 \boldsymbol{x}

"panda" 57.7% confidence

 $\mathrm{sign}(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$

"nematode" 8.2% confidence

=

Motivation

- Deep Neural Networks (DNNs) are known to be vulnerable to adversarial attacks.
- However, even with a small perturbation budget, these attacks can be identified by humans.

• Unrestricted adversarial attacks aim to generate natural adversarial examples using generative models.

Motivation

- Unrestricted adversarial attacks aim to generate natural adversarial examples using generative models.
- Previous attacks directly inject PGD-like gradient into the sampling of generative models, which harms the generation quality.

▶ Motivation

\blacktriangleright Contribution

- \blacktriangleright Method
- ▶ Evaluation

\blacktriangleright Conclusion

- Two new effective adversarial guidance techniques to the diffusion sampling process that incorporate adversarial objectives to the diffusion model without re-training the model.
- Theoretical analysis reveals that AdvDiff can generate unrestricted adversarial examples while preserving the high-quality and stable sampling of the conditional diffusion models.
- Supports both DDIM and DDPM sampler and is easy to transfer to any diffusion model.

- ▶ Motivation
- ▶ Contribution
- \blacktriangleright Method
- ▶ Evaluation
- \blacktriangleright Conclusion

Method: Adversarial Guidance

- Benign diffusion models reverse generation process recovers the data x_0 with a sequence of noisy data $\{x_{T-1}, \ldots, x_1\}$ by sampling from $p_{\theta}(x_{t-1}|x_t)$.
- Our aim is to generate the adversarial examples with the target label y_a for conditional sampling.

$$p(x_{t-1}^*|x_t, y_a) = \frac{p(y_a|x_{t-1}^*, x_t)p(x_{t-1}^*|x_t)}{p(y_a|x_t)}$$
(1)

with AdvDiff

Method: Adversarial Guidance

• Assume $p(x_{t-1}^*|x_t) = \mathcal{N}(x_{t-1}^*; \mu(x_t), \sigma_t^2 \mathbf{I}) \propto e^{-(x_{t-1}^* - \mu(x_t))^2/2\sigma_t^2}$, we can deduce:

$$x_{t-1}^* = \mu(x_t, y) + \sigma_t \varepsilon + \sigma_t^2 s \nabla_{\mu(x_t)} \log p_f(y_a | \mu(x_t)) \approx x_{t-1} + \sigma_t^2 s \nabla_{x_{t-1}} \log p_f(y_a | x_{t-1})$$
(2)

• The first term represents benign diffusion sampling, and the second term represents adversarial guidance.

Reverse Generation Process with AdvDiff

Method: Noise Sampling Guidance

• We further improve the reverse process by adding an adversarial label prior to the noise data x_T .

$$p(x_T|y_a) = \frac{p(y_a|x_T)p(x_T)}{p(y_a)} = \frac{p(y_a|x_T, x_0)p(x_T|x_0)}{p(y_a|x_0)}$$
$$= p(x_T|x_0)e^{\log p(y_a|x_T) - \log p(y_a|x_0)}$$
(3)

• We can infer the x_T with the adversarial prior, i.e.,

$$x_T = (\mu(x_0, y) + \sigma_t \varepsilon) + \bar{\sigma}_T^2 a \nabla_{x_0} \log p_f(y_a | x_0)$$
(4)

Method: Noise Sampling Guidance

• We can infer the x_t with the adversarial prior, i.e.,

$$x_T = (\mu(x_0, y) + \sigma_t \varepsilon) + \bar{\sigma}_T^2 a \nabla_{x_0} \log p_f(y_a | x_0)$$

(5)

everse Generation Proc with AdvDiff

- ▶ Motivation
- ▶ Contribution
- \blacktriangleright Method

\blacktriangleright Evaluation

\blacktriangleright Conclusion

- Dataset: MNIST and ImageNet •
- Comparisons: •
 - Perturbation-based attacks: PGD, C&W, and AutoAttack
 - GAN-based unrestricted attacks: U-GAN
 - Diffusion-based unrestricted attacks: DiffAttack, and AdvDiffuser
- Implementation: DDPM model for MNIST and DDIM model for ImageNet •
- Because existing diffusion model attacks are all untargeted attacks, we include • the untargeted version of AdvDiff for a clear comparison, which is represented by "AdvDiff-Untargeted".

	ASR(%)							
Method	ResNet50			WideResNet50-2			Time (s)	
	Clean	DiffPure	PGD-AT	Clean	DiffPure	PGD-AT		
AutoAttack	95.1	22.2	56.2	94.9	20.6	55.4	0.5	
U-SAGAN	99.3	30.5	80.6	98.9	28.6	70.1	10.4	
U-BigGAN	96.8	40.1	81.5	96.5	35.5	78.4	11.2	
AdvDiffuser	95.4	28.9	90.6	94.6	26.5	88.9	38.6	
DiffAttack	92.8	30.6	88.4	90.6	27.6	85.3	28.2	
AdvDiff	99.8	41.6	92.4	99.9	38.5	90.6	9.2	
AdvDiff-Untargeted	99.5	75.2	94.5	99.4	70.5	92.6	9.6	

- Our methods outperform all existing methods on white-box attacks and against effective defenses.
- The time efficiency of the proposed methods is also improved.

Method	FID (\downarrow)	LPIPS (\downarrow)	SSIM (\uparrow)	BRISQUE (\downarrow)	TRES (\uparrow)
AutoAttack	26.5	0.72	0.21	34.4	69.8
U-BigGAN	25.4	0.50	0.32	19.4	80.3
AdvDiffuser	26.8	0.21	0.84	18.9	75.6
DiffAttack	20.5	0.15	0.75	22.6	67.8
AdvDiff	16.2	0.03	0.96	18.1	82.1
AdvDiff-Untargeted	22.8	0.14	0.85	16.2	76.8

- Our methods significantly outperform the perturbation-based method, i.e., AutoAttack in image quality.
- We achieve solid improvements over existing unrestricted adversarial attacks, which validates the need for theoretically supported adversarial guidance.

Benign

DiffAttack

AdvDiffuser

AdvDiff

• Compared with existing diffusion-based adversarial attacks, the perturbation of our method is remarkably smaller.

- ▶ Motivation
- ▶ Contribution
- \blacktriangleright Method
- ▶ Evaluation

- AdvDiff is an effective and interpretable unrestricted adversarial attack using diffusion models.
- AdvDiff can be utilized in any pre-trained diffusion model without re-training or modifying the benign sampling method.
- AdvDiff achieves state-of-the-art performance on white-box attack, transfer attack, and generation quality.

Thank you for listening! Your feedback will be highly appreciated!