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Abstract
The rapid progress of generative AI models has yielded substantial breakthroughs in AI, 
facilitating the generation of realistic synthetic data across various modalities. However, 
these advancements also introduce significant privacy risks, as the models may inadver-
tently expose sensitive information from their training data. Currently, there is no com-
prehensive survey work investigating privacy issues, e.g., attacking and defending privacy 
in generative AI models. We strive to identify existing attack techniques and mitigation 
strategies and to offer a summary of the current research landscape. Our survey encom-
passes a wide array of generative AI models, including language models, Generative Ad-
versarial Networks, diffusion models, and their multi-modal counterparts. It indicates the 
critical need for continued research and development in privacy-preserving techniques for 
generative AI models. Furthermore, we offer insights into the challenges and discuss the 
open problems in the intersection of privacy and generative AI models.

Keywords Generative AI models · Privacy issues · Language models · Generative 
adversarial networks · Attack and defense
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1 Introduction

In an era where data is akin to currency, safeguarding the privacy of personal informa-
tion has become an overriding priority. The widespread adoption of digital technology has 
resulted in a surge of personal data, a significant portion of which is collected and processed 
by artificial intelligence models, particularly generative AI models. These models are dis-
tinguished by their capacity to produce synthetic data that closely mimics real-world data. 
This encompasses language models that can produce human-like text and vision models that 
can create lifelike images. As these models find their way into a variety of applications, from 
generating content to analyzing data, they raise a fundamental challenge: privacy.

This survey embarks on methodical research of the privacy landscape within generative 
AI models, including language models, Generative Adversarial Networks, diffusion models, 
and multi-modal models. We start by offering an introduction to generative AI models and 
discussing their architectures and training methodologies. We then narrow our focus to the 
privacy these generative AI models raise. Membership privacy is a key concern, where the 
goal is to prevent the inference of whether or not a specific individual’s data was utilized for 
training a model. We explore the techniques used to launch membership inference attacks 
and the defenses that have been developed to counteract them. Next, we discuss model 
inversion attacks, which aim to use the model itself to rebuild or deduce important training 
data properties. Another significant portion of this survey is dedicated to the privacy con-
siderations in distributed learning systems. With the rise of collaborative AI systems, where 
models are trained across decentralized data sources, the threat landscape has evolved. We 
discuss the innovative attacks that exploit vulnerabilities in these systems, such as leverag-
ing gradients and model updates to infer sensitive information. Lastly, we review differen-
tial privacy (DP), which ensures privacy by injecting noise into data or model outputs. We 
consider the use of DP in generative AI models and how well it preserves privacy without 
sacrificing usefulness.

The objective of this paper is to organize and synthesize the most recent advancements 
in privacy attacks and mitigation strategies against generative AI models. This will help 
researchers create stronger privacy attacks to evaluate model robustness, develop more 
resilient generative AI models, and ensure privacy in real-world applications. To identify 
relevant literature for the review, we initially define the scope of the review and conduct a 
meticulous search of papers published in related top conferences and journals over the past 
few years. We then choose highly cited or notable works that pertain to privacy attacks and 
defenses on generative AI models.1

1.1 Related work

In the Machine Learning (ML) domain, with the continuous advancements of algorithms 
and models, especially in handling and analyzing large amounts of personal data, privacy 
protection issues are increasingly prominent. This is why many works (Liu et al. 2021; 
Rigaki and Garcia 2023; Cristofaro 2020) have sought to summarize the most recent perti-
nent research in ML privacy. Among them, Hu et al. (2022b) specifically explore the impact 
of membership inference attacks in ML. Deep learning, a subfield of ML, has made notable 

1 GPT-4 was utilized to polish and translate during the initial drafting phase of this manuscript to improve 
language expression. The authors have conducted a comprehensive review of the AI-edited content.

1 3

   33  Page 2 of 47



Generative AI model privacy: a survey

advances in domains like Natural Language Processing (NLP) through its powerful data 
processing capabilities. However, these deep learning models have also raised serious con-
cerns about privacy breaches when handling sensitive textual data. To better comprehend 
this, some work (Mireshghallah et al. 2020; Bae et al. 2018; Liu et al. 2020) investigate 
privacy and security issues in deep learning from different perspectives. Moreover, Boulem-
tafes et al. (2020) specialize in collecting various privacy-preserving techniques for deep 
learning. Recently, Golda et al. (2024) provided a comprehensive introduction to many 
privacy protection algorithms from the perspective of optimization algorithms, but they lack 
explanation from the model perspective.

For generative AI models, some work (Brown et al. 2022; Sousa and Kern 2023; Huang 
et al. 2024) conducted a survey on the privacy issues and countermeasures associated with 
language models. On the other hand, Cai et al. (2021); Zhang et al. (2022a) perform an 
investigation into the privacy challenges and defensive strategies associated with Genera-
tive Adversarial Networks.

In contrast to the related surveys above, this work encompasses a wider scope of topics 
to review privacy attacks and defenses surrounding generative AI models. This is dem-
onstrated in Table.1, which compares this review against other studies in the literature 
addressing privacy issues related to generative AI models. For instance, a few studies have 
concentrated solely on the privacy concerns surrounding specific models, such as GANs 
(Hu et al. 2022b) or language models (Brown et al. 2022; Sousa and Kern 2023; Huang et 
al. 2024). However, our work broadens this scope to encompass additional generative AI 

Work Year GAIM Detailed 
privacy 
attack

Detailed 
privacy 
defense

NLP CV

Bae et al. 
(2018)

2018 Specific General

Cristofaro 
(2020)

2020 Specific

Mireshghal-
lah et al. 
(2020)

2020 Specific Specific Specific

Liu et al. 
(2020)

2020 Specific

Cai et al. 
(2021)

2021 Specific General General

Liu et al. 
(2021)

2021 Specific

Brown et al. 
(2022)

2022 General General

Zhang et al. 
(2022a)

2022 Specific

Hu et al. 
(2022b)

2022 General Specific General

Sousa and 
Kern (2023)

2023 General General

Rigaki and 
Garcia (2023)

2023 Specific General General

Golda et al. 
(2024)

2024 Specific Specific

This review 2024 General General General General

Table 1 A comparative analysis 
of this review with pertinent 
surveys and their respective 
content scopes
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models, including diffusion models. We even pay attention to privacy issues in multi-modal 
models. Additionally, there is a lack of in-depth exploration of various privacy attack and 
defense methods on generative AI models, which prompted us to write this survey.

1.2 Contributions

(1) To the best of our knowledge, we present the first comprehensive technical survey of 
the privacy works associated with generative AI models.

(2) We identify the existing privacy attack techniques and mitigation methods to defend 
against these attacks in generative AI models.

(3) At the end of this review, we emphasize open problems and areas of concern that war-
rant further investigation, such as the memorization capabilities and architectural con-
siderations of generative AI models.

1.3 Paper structure

The paper structure is shown in Fig. 1.

2 General terminology

In this survey, we utilize a variety of acronyms to denote concepts and models prevalent 
in the fields of privacy and generative AI model research. Each acronym will be defined at 
its initial mention; however, for convenience, Table.2 presents a compilation of the most 
frequently encountered and significant terms.

Numerous large-scale datasets are compiled by scraping vast quantities of text from 
the internet, while others are collected from domain-specific sources, such as the MNIST 
(LeCun et al. 1998) for handwritten digits classification, CIFAR-10 (Krizhevsky et al. 2009) 
for image classification tasks, FaceScrub (Schuhmann et al. 2021) and Celeb (Liu et al. 
2015) for face recognition, SST-2 (Socher et al. 2013) for sentiment analysis. We endeavor 
to provide a foundational framework, thereby enabling the academic community to system-
atically advance the development of benchmarks within the field.

3 Preliminaries

3.1 Large language model

Language models have become much more capable thanks to important advances in pre-
training, fine-tuning methods, and prompting strategies. The approach of pre-training and 
fine-tuning entire models gained significant traction in NLP following the groundbreaking 
introductions of ELMo (Peters et al. 2018) and ULMFiT (Howard and Ruder 2018). Both 
of them are built upon the foundation of the Long Short-Term Memory (LSTM) (Hochreiter 
and Schmidhuber 1997) architecture, which forms the backbone of their powerful capabili-
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ties. ELMo (Peters et al. 2018) is a deep contextual word representation system based on 
pre-trained biLMs. Universal Language Model Fine-tuning (ULMFiT) (Howard and Ruder 
2018) enables effective transfer learning across various NLP tasks.

The momentum behind this paradigm shift was significantly amplified by Vaswani et al. 
(2017), which introduced the architecture of Transformer. This innovative design quickly 
established itself as the go-to architecture for pre-trained language models, leading to a swift 
and profound transformation in NLP. The Transformer architecture not only initiated a new 
era of research and innovation but also facilitated the creation of more advanced and resil-
ient natural language understanding and generation systems. As a result, the Transformer 
has become the foundational element of nearly all leading Pretrained Language Models 
(PLMs) in NLP, including the GPT series (Brown et al. 2020; Radford et al. 2018, 2019), 
Gopher (Rae et al. 2021), BERT (Devlin et al. 2019) and its derivatives, XLM-R (Con-
neau et al. 2020), BART (Lewis et al. 2020), T5 (Raffel et al. 2020), and T0 (Sanh et al. 
2022). The widespread adoption of the Transformer underscores its unmatched versatility 
and effectiveness in advancing NLP, positioning it as the preferred choice for developing 
cutting-edge Pretrained Language Models (PLMs).

Fig. 1 The structure of this survey
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3.1.1 Large language model architectures

Different structures of Large Language Models are shown in Fig. 2.

 ● Encoder-decoder models

When considering the structure of an encoder-decoder model, BART (Lewis et al. 
2020) and T5 (Raffel et al. 2020) stand out for their innovative architectures. BART 
(Lewis et al. 2020), with its bidirectional and autoregressive Transformer design, offers 
a robust solution for processing input sequences and generating coherent output. Simi-
larly, T5 (Raffel et al. 2020) has revolutionized NLP by adapting the Transformer archi-
tecture to a text-to-text format, enabling it to tackle diverse tasks such as translation, 

Fig. 2 Different structures of large language models 
(Lewis et al. 2020)
 

Acronym Description
GAIM Generative AI model
VGM Vision generative model
LMM Large multi-modal model
ML Machine learning
NLP Natural language processing
LSTM Long short-term memory
MLM Masked language model
PLMs Pretrained language models
CNNs Convolutional neural networks
PEFT Parameter-efficient fine-tuning
LMs Language models
VAE Variational auto-encode
GAN Generative adversarial network
MIA Model inversion attack
DP Differential privacy
DP-SGD Differentially-private stochastic gradient descent
RGP Reparametrized gradient perturbation
DDPM Denoising diffusion probabilistic model
CLIP Contrastive language-image pre-training

Table 2 List of acronyms com-
monly used in this survey
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summarization, and text classification. These models embody the shift towards versatile 
and generalizable models that can efficiently handle multiple tasks with a single pre-
trained architecture, thus reducing the need for task-specific models and simplifying the 
integration of machine learning in language processing tasks.

 ● Encoder models

Encoder models are pivotal in NLP for extracting textual representations. BERT (Devlin 
et al. 2019) is a key model that employs next-sentence prediction (NSP) and a masked 
language model (MLM) to comprehend sentence and context relationships. RoBERTa 
(Liu et al. 2019b) enhanced BERT (Devlin et al. 2019) with hyperparameter tuning and 
a larger dataset, while ALBERT (Lan et al. 2020) reduced parameters to train large mod-
els efficiently, enabling deployment even in resource-constrained settings.

 ● Decoder models

Modern decoder language models, such as GPT (Radford et al. 2018) and GPT2 (Rad-
ford et al. 2019), employ attention mechanisms to weigh input parts for generating 
coherent output. Subsequently, GPT-4 (Achiam et al. 2023), released in 2023, is a multi-
modal giant that is trained on vast online data with 175 billion parameters. It can process 
diverse media, like text and images, into a unified semantic space, enabling tasks such as 
role-playing and visual question answering with comprehensive context understanding. 
Moreover, GPT-4 (Achiam et al. 2023) has notably improved in reducing hallucinations 
or incorrect information compared to previous models.

3.1.2 Language model training

 ● Pre-training

The concept of pre-training has historical roots in the principles of transfer learning, 
which draws upon the human ability to reuse knowledge. This idea is realized in prac-
tice through pre-training, which has become increasingly popular in CV with the devel-
opment of deep learning and convolutional neural networks (CNNs) (Zhao et al. 2024). 
In NLP, pre-training models have emerged to make use of the abundance of unlabeled 
text data. Pre-trained Language Models (PLMs) are typically structured around a spe-
cific architecture and training goal. Lewis et al. (2020) outlined three common con-
figurations: Autoregressive models (like GPT, GPT2/3) predict the next word based 
on context, Masked models (like BERT, RoBERTa and XLM-R) reconstruct masked 
sequences, and Encoder models (like BART) reconstruct sequences by filling in miss-
ing words. The field of language model development has witnessed a significant shift 
towards the use of extensive and diverse datasets for pre-training. Initially, models 
are trained on more limited and curated data sources, such as subsets of Wikipedia, 
as exemplified by ULMFiT (Howard and Ruder 2018). This has since evolved, with 
advanced models like XLM-R, GPT-3, and T5 drawing upon vast collections of inter-
net-scraped text, accumulating billions of words across diverse domains. This expanded 
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data horizon is intended not only to enhance the models’ capacity for language produc-
tion and comprehension in a variety of contexts, as well as the ability to deal with issues 
like data quality, computational resources, and potential biases.

 ● Fine-tuning and prompting

A pre-trained model is often fine-tuned by retraining it on a task-specific dataset in order 
to increase its performance for that task. This is achieved by employing a labeled and 
smaller dataset to refine the comprehension of the model and align its predictions with 
the task’s needs. Parameter-efficient fine-tuning (PEFT) methods have shown remark-
able success in various tasks by updating merely a portion of the model’s parameters. 
Adapters (Houlsby et al. 2019) and Compacter (Karimi Mahabadi et al. 2021) intro-
duced additional trainable components within the T5 model’s transformer layers. BitFit 
(Zaken et al. 2022) focused on bias parameter updates but may not perform as well on 
larger networks. Prefix-tuning (Li and Liang 2021) refines the model’s input through a 
soft prompt governed by a feed-forward network. Diff pruning (Guo et al. 2021) enabled 
sparse weight updates but can increase memory consumption. FishMask (Sung et al. 
2021) also used sparse updates but is computationally demanding and not optimized for 
current deep learning infrastructure. LoRA (Hu et al. 2022a; Yang et al. 2024) simpli-
fied weight updates with a low-rank matrix approach. (IA)3(Liu et al. 2022) enhanced 
few-shot learning by adjusting activations through learned vectors. LST (Sung et al. 
2022) complemented the pre-trained network with a compact transformer network to 
minimize training memory.
Over the past few years, scholars have been exploring prompt-based strategies for 
enhancing the effectiveness of fine-tuning processes. Such strategies are generally cat-
egorized into two streams: prompt-based fine-tuning (FT) and parameter-efficient fine-
tuning (PEFT). The first stream, prompt-based FT, involves comprehensive parameter 
optimization within language models (LMs) to improve performance (Schick and Schü-
tze 2021; Gao et al. 2021; Liu et al. 2023b; Zhang et al. 2022b). Adaprompt (Chen et 
al. 2022) has notably enhanced the efficacy of prompt-based FT (Schick and Schütze 
2021; Gao et al. 2021) on single-sentence tasks by employing standard ongoing pre-
training. The second stream, PEFT (Li and Liang 2021; Qin and Eisner 2021; Lester 
et al. 2021; Su et al. 2021), aims to achieve comparable results with minimal computa-
tional resources. PPT (Gu et al. 2022) has attempted to bolster PEFT (Lester et al. 2021) 
by additional pre-training of the T5 model (Raffel et al. 2020), echoing a concept akin 
to our own. But this approach depends on a sequence of manually crafted, task-specific 
modifications for additional pre-training, limiting its flexibility for new, unanticipated 
downstream tasks (Vu et al. 2022). In contrast, research (Shi and Lipani 2024) pre-
sented a consistent design applicable to all tasks, with an emphasis on prompt-based 
fine-tuning.

3.2 Vision generative models

In this chapter, we briefly introduce different architectures of modern deep generative AI 
models to help understand the differences in adapting various attack methods to models 
with different structures. We will provide more detailed information about the specific 
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victim models under each attack method. Common deep generative AI models are based 
on architectures such as Transformer, GAN, Diffusion, VAE, Flow, etc. Generally, they 
can be categorized based on the generation approach into Auto-regressive, Auto-encoding, 
Explicit Density Estimation, and Implicit Density Estimation. Among them, Transformers 
are widely used in the implementation of Auto-regressive/Auto-encoding generative lan-
guage models and multimodal image-to-text models. On the other hand, GAN/Diffusion/
VAE/Flow are extensively employed in the construction of visual generative models. We 
focus on introducing the two popular models, GAN and Diffusion, which have attracted 
more attention from researchers.

3.2.1 Variational auto-encoders, VAEs

VAE (Kingma and Welling 2013) learns to approximate the data distribution pdata(x)  
through variational inference. The approach starts with adding a latent variable z . The 
prior distribution q(z) is considered to be a standard normal, while the posterior distri-
bution q(z | x) is set to be a multivariate Gaussian. This setup leads to an optimization 
objective that aims to reduce the Kullback–Leibler (KL) divergence between the estimated 
posterior q(z | x) and the real posterior p(z | x). To achieve this, the VAE introduces an 
encoder qφ(z | x) and a decoder pθ(x | z) . The overall optimization objective can then be 
expressed as:

 Eqφ(z|x)[log pθ(x | z)] + β · KL(qφ(z | x)‖p(z)) (1)

During image generation, z  is sampled from the normal distribution and mapped to the real 
distribution pdata(x)  through pθ . Additionally, VAE employs the reparameterization trick 
during training to address the non-differentiability issue in the sampling process. While VAE 
has a simple structure, it suffers from the problem of generating blurry images. Subsequent 
models such as NVAE (Vahdat and Kautz 2020) and VQ-VAE (Van Den Oord et al. 2017) 
have improved upon the VAE architecture, significantly enhancing the generation quality.

3.2.2 Flow

Under the framework of maximum likelihood estimation, instead of optimizing the evidence 
lower bound (ELBO) like VAE, Normalizing Flow is based on the Change of Variables The-
orem. Given a distribution z ∼ p(z) and x = f (z) , px(x) = pz(f

−1(x))| det ∂f−1(x)
∂x | , a 

series of deterministic invertible mapping functions are used to gradually transform a simple 
distribution into an arbitrary complex distribution, ultimately yielding an optimizable nega-
tive log-likelihood. Normalizing Flow focuses on constructing the invertible transformation 
function f. NICE (Dinh et al. 2014) introduced additive coupling layers and enhanced the 
model’s nonlinear expressiveness through partitioning and cross-coupling. RealNVP (Dinh 
et al. 2016) further improved the expressive power of invertible transformations by using 
Affine coupling layers and introduced convolutional and multi-scale structures to reduce 
computational costs. Glow (Kingma and Dhariwal 2018) incorporated reversible 1× 1  con-
volutions for channel mixing to strengthen nonlinear expressiveness. RevNets (Gomez et 
al. 2017) introduced residual connections into flow models to alleviate gradient vanishing. 
There is also a class of autoregressive flow models, such as MADE (Khajenezhad et al. 
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2020) and PixelCNN (Van den Oord et al. 2016), which decompose the joint probability dis-
tribution into a product of conditional probabilities and model each conditional probability.

3.2.3 Generative adversarial networks

Generative Adversarial Networks(GANs) (Goodfellow et al. 2014) are a popular type of 
deep generative model. GANs introduced the ingenious generator-discriminator structure 
for adversarial training. The discriminator D attempts to distinguish between samples from 
the training set and fake samples produced by the generator G, assigning high scores to real 
samples. The generator, in turn, tries to fool the discriminator into giving high confidence 
scores to its generated samples. The optimization objective can be written as a min-max 
problem:

 

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))].
 (2)

The adversarial training method includes switching updates to the generator and discrimi-
nator networks. The process continues until a Nash equilibrium is reached. At this stage, 
the discriminator can no longer distinguish between the true data distribution and the dis-
tribution of the generated samples. This process implicitly minimizes the Jensen-Shannon 
(JS) divergence between the generated and target distributions. Compared to vanilla VAEs, 
GANs can generate clear images. However, the adversarial training process in GANs can 
lead to mode collapse and training instability issues. In the case of mode collapse, the gen-
erator may only learn to produce a limited subset of samples that can fool the discriminator, 
failing to capture the full data distribution. Training instability arises because adversarial 
training is difficult to converge, especially when the discriminator is too strong or too weak. 
Subsequent works have focused on improving GANs at different levels.

GANs focus on training stability and controllability: To address the challenges of 
mode collapse and training instability in GANs, various approaches have been developed. 
One line of work focuses on the distance metrics, like the Wasserstein distance in WGAN 
(Arjovsky et al. 2017b), which helps alleviate instability, vanishing gradients, and mode col-
lapse, though it requires abandoning the log loss and certain optimizers. WGAN-GP (Gul-
rajani et al. 2017) further builds on this by adding a gradient penalty to mitigate the issue of 
non-uniform weight distributions caused by weight clipping in WGAN. SN-GAN (Miyato 
et al. 2018) achieves a global 1-Lipschitz constraint through spectral normalization of the 
weight matrices, which enhances training stability and reduces mode collapse.

In parallel, other GAN variants aim to improve the quality and controllability of gener-
ated outputs. DCGAN (Radford et al. 2015) pioneers the use of CNNs for unsupervised 
learning. cGAN (Mirza and Osindero 2014) and ACGAN (Odena et al. 2017) extend the 
vanilla GAN by incorporating conditional information like class labels or text embeddings. 
ProGAN (Karras et al. 2018) employs a progressive growing approach to generate higher 
resolution images, while SAGAN (Zhang et al. 2019) incorporates self-attention to better 
capture global and long-range dependencies. The large-scale BigGAN (Brock et al. 2018) 
further pushes the boundaries of high-resolution (up to 512x512) and high-quality image 
generation. Finally, the StyleGAN (Karras et al. 2019) and StyleGAN-2 (Karras et al. 2020)
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frameworks introduce techniques to disentangle latent features and provide fine-grained 
style control.

3.2.4 Diffusion model

Diffusion models are currently a popular class of probabilistic generative models in the field 
of visual generation. Diffusion models view the generation process as a gradual denoising 
process from a noise distribution, sampling at each denoising step. Compared to the afore-
mentioned generative models, diffusion models have the advantages of simple structure, 
stable training, and high generation quality, which has led to their widespread application 
in Artificial Intelligence Generated Content (AIGC). Diffusion models can be studied from 
perspectives of variational inference such as Denoising Diffusion Probabilistic Models 
(DDPMs) (Ho et al. 2020). There are also approaches that interpret them from the perspec-
tives of score matching (Song and Ermon 2019) and stochastic differential equations (Song 
et al. 2020b). From the more intuitive DDPM perspective, instead of introducing a param-
eterized posterior distribution qφ(z | x), the diffusion model defines the posterior distribu-
tion as a Markov process:

 

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)

= N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I
)
,
 (3)

where {βt}Tt=1 is the variance sequence and αt =
∏t

s=1(1− βs), which can be viewed as 
gradually injecting noise into the data. Subsequently, by optimizing the ELBO:

 

Eq(x1|x0) [log pθ(x0 | x1)]−DKL(q(xT | x0)‖p(xT ))

−
T∑

t=2

Eq(xt|x0) [DKL(q(xt−1 | xt,x0)‖pθ(xt−1 | xt))] ,
 (4)

A trained model pθ(xt−1 | xt) is obtained, and a denoising process 
∏T

1 pθ(xt−1 | xt) is 
performed to remove the gradually added noise.

Conditional generation and multimodal diffusion models: The method of using a 
classifier to guide the image generation process, known as classifier guidance, was first 
proposed by Dhariwal and Nichol (2021). In this method, at each step of denoising, the 
target classification of the classifier trained on the corresponding noisy data at that moment 
is injected into the gradient of the input noisy image, avoiding the need for retraining the 
diffusion model. Similarly, some methods (Liu et al. 2023a; Avrahami et al. 2022; Kim et al. 
2022) use text prompts from Contrastive Language-Image Pre-training(CLIP)(Radford et 
al. 2021) for conditional guidance. However, these methods are prone to sampling failures, 
and the robustness of the classifier cannot be guaranteed. Additionally, training a classifier 
under a noise distribution introduces extra overhead.

Ho and Salimans (2021) proposed another guidance method called classifier-free guid-
ance. They directly modify the training process by introducing the target condition c into 
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the denoising network for joint training. Given the condition c, the optimization process 
becomes:

 
min
θ

E
t,ε
[DKL(q(xt−1 | xt,x0)‖pθ(xt−1 | xt, c))] .  (5)

During the inference stage, a linear combination of unconditional and conditional sampling 
results under specific weights is used as the sampling result at each step. This approach 
has been inherited by multimodal models such as GLIDE (Nichol et al. 2022), DALL·E 2 
(Ramesh et al. 2022), Imagen (Saharia et al. 2022), Stable Diffusion (Rombach et al. 2022), 
etc.

Some methods focus on how to add new attributes to a pre-trained conditional diffu-
sion model. For example, Textual Inversion (Gal et al. 2022) learns to describe the features 
of new training images by optimizing the method to search for the minimal training loss 
conditional text embedding and binding a low-frequency special text to that embedding. 
Methods like Dreambooth (Ruiz et al. 2023) and LoRA (Hu et al. 2021) choose to fine-tune 
pre-trained models while mitigating the catastrophic forgetting problem. In addition, Con-
trolNet (Zhang et al. 2023) introduces an auxiliary network to increase spatial control, using 
zero convolution layers to ensure that no detrimental noise might impact the fine-tuning.

4 Privacy of generative AI models

This section will review how privacy can be compromised in generative AI models and how 
to protect their privacy. For example, in Sect. 4.1, we primarily explore how to use member-
ship inference attacks on generative AI models and provide a detailed explanation of how 
to defend against such attacks. The goal of a membership inference attack is to determine 
whether a particular data is part of the training data of the target model (Shokri et al. 2017). 
In Sect. 4.2, we discuss model inversion attacks, which aim to reconstruct or infer sensitive 
attributes from the training samples using the model’s predictions (Fredrikson et al. 2014). 
Given the widespread application of model inversion attacks on classification models, this 
section will also explore how generative AI models can facilitate model inversion attacks. 
Both of these forms of privacy can be unlawfully inferred in a fully integrated centralized 
ML system. To mitigate this problem, distributed learning systems have emerged as effec-
tive solutions, enabling geographically distributed data to be processed locally by various 
participants without the need for data sharing (Hu et al. 2024). However, even in distrib-
uted learning systems, privacy issues still exist for generative AI models, which we will 
explore in Sect. 4.3. Based on the analysis in the previous subsections, differential privacy 
has emerged as a common defense for generative AI models. Therefore, in Sect. 4.4, we will 
focus on how to use differential privacy to protect generative AI models.

4.1 Membership privacy

Membership inference attack is a variety of privacy breach that targets machine learning 
models, particularly those that have been trained on sensitive data (Shokri et al. 2017). For 
instance, if a generative AI model is developed using medical data from individuals with a 
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specific illness, an attacker could potentially deduce the victim’s health condition by deter-
mining if the victim’s medical information was utilized in the model’s training process. This 
could reveal health information that the patient would prefer to keep private, as it pertains 
to their personal medical confidentiality. In a black-box scenario, an attacker can determine 
whether a particular dataset has been utilized in training the GAIM model simply by ana-
lyzing its output. See Fig. 3, which could potentially expose sensitive information about 
individuals or entities within that dataset. Officially, taking into account a trained machine 
learning model M, a data sample x, and external adversary knowledge denoted by K. The 
definition of membership inference attack A is as follows:

 A : x,M,K → {0, 1}. (6)

In this case, 0 indicates that In this case, 0 indicates that the training dataset M does not 
contain data sample x, while 1 indicates that it does. Table.3 shows previous work for mem-
bership inference attack on generative AI models.

4.1.1 Membership privacy in language models

Language models like GPT and BERT are trained on large datasets of text to predict or 
generate text sequences. These models can potentially memorize specific details from the 
training data, which could include sensitive information, such as health records, biomet-
ric data, sexual orientation, or any other information shared during the course of interac-
tions with the language models. Since text-generation models tend to memorize specific 
sequences of words from their training data, attackers can easily exploit this characteristic 
to perform membership inference attacks. In 2019, Song and Shmatikov (2019) presented 
a black-box auditing technique that leverages this phenomenon by building a binary clas-
sifier to distinguish whether the model has encountered specific user data. They used the 
same training technique as the target model to train several “shadow models", but with 
a different auxiliary dataset. As shown in Fig. 4, these shadow models imitate the target 
model’s behavior, to help the auditor understand how it responds to various inputs. With 
this, they are able to extract features from the outputs of the shadow models according to the 
model’s ranking of target words. After that, a binary membership classifier is trained using 
these features to determine if the model has seen a certain input sequence during training. 

Fig. 3 Membership inference attack 
in the black-box setting (Shokri et 
al. 2017)
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Nevertheless, it is noteworthy that there are several elements that influence the likelihood 
of a successful attack, including the model’s design and training techniques, the model’s 
complexity, and the quantity and variety of training data. One year later, Song and Rag-
hunathan (2020) extended the reach to encompass a greater variety of embedding models, 
such as word embeddings and sentence embeddings. They presuppose the opponent has 
access to vocabulary V for word embedding and a target context of words [w1, ..., wn], or 

Table 3 Previous work for membership inference attack on generative AI models
GAIM Target model References Knowl.* Dataset
LM Seq2Seq SIGKDD [2019] (Song and Shma-

tikov 2019)
� Reddit, SATED and 

Dialogs
LSTM CCS [2020] (Song and Raghunathan 

2020)
�,� Wikipedia and 

BookCorpus
Seq2Seq TACL [2020] (Hisamoto et al. 2020) � WMT18
BERT, GPT-2 ARXIV [2021] (Jagannatha et al. 

2021)
�,� MIMIC-III, UMM, and 

VHA
GPT-2 USENIX Security [2021] (Carlini 

et al. 2021)
� Public Internet

BERT EMNLP [2022] (Mireshghallah et 
al. 2022b)

� MIMIC-III and i2b2

GPT-2 ACL [2023] (Mattern et al. 2023) AG News, Sentiment140 
and Wikitext-103

GPT-2 NeurIPS [2024] (Jagielski et al. 
2024)

� CIFAR-10, WikiText103, 
Purchase100 and Texas100

VGM DCGAN, 
BEGAN, VAE

PoPETs [2017] (Hayes et al. 2019) �,� LFW, CIFAR-10, DR

WGAN, VAE ICDM [2019] (Liu et al. 2019a) � MNIST, CelebA, 
ChestX-ray8

GAN, VAE PoPETs [2019] (Hilprecht et al. 
2019)

�,� MNIST, Fashion-MNIST, 
and CIFAR-10

GANs, VAE CCS [2020] (Chen et al. 2020b) �,� CelebA, MIMIC-III, Insta-
gram New-York

GANs NDSS [2021] (Zhou et al. 2022) � CelebA, AFAD, MNIST, 
Census Income

cGAN ICCV [2021] (Shafran et al. 2021) � Facades, Maps2sat, 
Cityscapes, ADE20K, 
Covid19, Polyp

Diffusion 
Model

ICML [2023] (Duan et al. 2023) � CelebA, CIFAR-10/100, 
STL10-U, Tiny-IN

Diffusion 
Model

SPW [2023] (Matsumoto et al. 2023) �,� CelebA and CIFAR-10

Diffusion 
Model

USENIX Security [2023] (Carlini et 
al. 2023a)

�,� CIFAR-10

Diffusion 
Model

ICLR [2024] (Kong et al. 2024) CIFAR-10, CIFAR-100, 
TinyImageNet

LMM CNN+LSTM NeurIPS [2022] Hu et al. (2022c) � MSCOCO, FLICKR8k, 
and IAPR TC-12

LDM, DALL-
E mini

ARXIV [2022] Wu et al. (2022) � LAION-400 M, CC3M, 
CC12M, YFCC100M

CLIP ICCV [2023] Ko et al. (2023) � LAION-400 M, CC3M, 
CC12M

* This column is the adversarial knowledge of different attacks. �: white-box. �: black-box. : gray-box
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a context of target sentences (sa, sb) and the model M for sentence embedding. In contrast, 
Hisamoto et al. (2020) focus on sequence to sequence model, employing the construction 
of shadow models to simulate the target models’ behavior, and using these shadow models 
to train a classifier. The classifier g(x, e, ê)  is designed to distinguish (x, e) that are part 
of the training set and those that are not, where x  is input, e and ê  are denoted as the 
output of target model and shadow model, respectively. The attack accuracy is defined as 
follows: accuracy(g, P ) = 1

|P |
∑P [g(x, e, ê) = l], where P is considered as a probe set 

that includes (x, e, ê, l)and l are noted as the labels to distinguish in or out. Additionally, 
Jagannatha et al. (2021) discuss the issue of group-level privacy leaks in clinical language 
models based on BERT and GPT-2 architectures and evaluate their privacy preservation 
capabilities through membership inference attacks. These attacks treat collections of patient 
or admission records as single data samples and estimate privacy leakage by evaluating 
the mean error of all samples within those groups. In the meanwhile, Carlini et al. (2021) 
discover that large language models like GPT-2 have a tendency to remember and reveal 
specific training samples. To tackle this problem, they provide a black-box methodology-
based query strategy, which requires removing samples with low likelihood and insufficient 
accuracy because of flaws in the language models. To more properly quantify the privacy 
issues associated with memorization in the Masked Language Models(MLMs), Mireshghal-
lah et al. (2022b) suggest an enhanced membership inference attack utilizing likelihood 
ratio hypothesis testing, which incorporates an extra reference MLM. The likelihood ratio 
test is distinguished by the subsequent statistic:L(x) = log

(
p(x; θR)
p(x; θ)

)
, where θ  and θR  

are denoted as parameters of target model and shadow model, respectively. Furthermore, 
Mattern et al. (2023) propose a novel attack method known as neighborhood attacks, which 
contrast the model scores of a target sample with those of artificially generated similar n 
neighbors {x̃1, ..., x̃n} , eliminating the requirement to obtain the training data distribution. 
The decision rule can be interpreted as follows:

 
AMθ

(x) =

[(
L(Mθ,x)−

n∑

i=1

L(Mθ, x̃i)

n

)
< γ

]
,  (7)

Fig. 4 Training shadow models 
to simulate the target model’s 
behavior (Shokri et al. 2017)
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where γ  is denoted as threshold value. The only possible explanation for the target sample’s 
loss value being much lower than the neighbors’ losses is overfitting. Due to the rising popu-
larity of model distillation, Jagielski et al. (2024) target “student" models that are distilled 
from “teacher" models, through experiments, they find that even during the distillation pro-
cess, privacy information can be indirectly transmitted to the student model via the teacher 
model’s predictions.

4.1.2 Defense techniques for membership privacy in language models

It’s evident that membership inference attacks pose a significant threat to language mod-
els. To address this challenge, studies (Mireshghallah et al. 2022b; Mattern et al. 2023; 
Song and Shmatikov 2019; Song and Raghunathan 2020; Hisamoto et al. 2020; Jagannatha 
et al. 2021; Carlini et al. 2021) have widely adopted the utilization of DP, which intro-
duces carefully calibrated noise into the training process, ensuring that the existence or lack 
of any individual data point minimally impacts the model’s outputs. However, someone 
failed against the DP model. For example, the auditing algorithm suggested in Song and 
Shmatikov (2019) performs poorly, with an accuracy that is indistinguishable from random 
guessing. A similar situation occurs in the work of Song and Raghunathan (2020), due to 
the use of word embeddings with over 10 million parameters, making the training process 
with DP and the fine-tuning of hyperparameters nearly impossible to achieve. Neverthe-
less, the attack methods devised by Jagannatha et al. (2021); Mattern et al. (2023) continue 
to demonstrate significant effectiveness following the implementation of DP. Additionally, 
they discovered that while DP can serve as a regularization technique to enhance a model’s 
generalization ability, it may negatively impact the model’s accuracy in certain scenarios, 
particularly when the amount of data is limited. Except for using DP, Carlini et al. (2021) 
propose several other protection methods. The first way is curating the training data, auto-
matically identifying and filtering out data that contain personally identifiable information 
(PII) or other sensitive content. Using more sophisticated deduplication techniques to reduce 
the occurrence of sensitive information within individual documents. Selectively collect-
ing training data can avoid sources known to host private content. Employing this method 
ensures that some private data will inevitably be disclosed. Second, limiting the memory’s 
influence on downstream applications, and fine-tuning the model on specific tasks may 
overwrite or reduce the memory of the original training data, but this could also introduce 
new memorization issues. Moreover, in downstream applications, attempts can be made to 
filter out generated text that includes memorized content, provided that such content can 
be reliably detected. Third, auditing ML models for memorization. Conducting empirical 
analysis to assess the model’s privacy protection level. Using membership inference attacks 
and other existing attack methodologies to test the model and determine its privacy risks in 
practical applications. However, the auditing process can be resource-intensive and can not 
completely expose all of the model’s privacy vulnerabilities.

4.1.3 Membership privacy in vision generative models

Membership privacy is a concern not only for language models but also for vision genera-
tive models such as GANs and diffusion models. These models, while capable of generating 
realistic images, might inadvertently reveal sensitive information from the training data. In 
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the context of GANs and diffusion models, membership inference attacks might attempt to 
identify if a specific image was included in the model’s training data. If the model has over-
fitted to certain data samples, it could inadvertently reproduce or hint at the characteristics 
of these samples in the generated media, thereby exposing membership information from 
the training set. Hayes et al. (2019) first introduce a membership inference attack specifi-
cally targeted at generative models. The attacks utilize GANs to identify inputs that were 
included in the training datasets and to detect overfitting via making use of the discrimina-
tor’s capacity to discover statistical variations in distributions. Liu et al. (2019a) propose 
co-membership attacks which is a novel approach that considers not only whether a single 
sample is in the training set but also whether a group of n instances collectively belongs to 
the training set. The reconstruction loss for each of the n instances is averaged to determine 
the new attack loss:

 
min
θ

1

n

n∑

i

∆(xi, G(Aθ(xi))). (8)

L2 distance is taken as distance function ∆(., .). The attacker is a neural network A, param-
eterized by θ , against the generator G. Hilprecht et al. (2019) present two membership 
inference attacks-the Monte Carlo Attack and the Reconstruction Attack. The Monte Carlo 
Attack is applicable to any generative model that allows sampling, while the Reconstruction 
Attack is specifically designed for VAEs. Chen et al. (2020b) introduce a new attack calibra-
tion technique that improves the performance of attacks in all considered attack scenarios, 
which is performed by comparing the reconstruction errors of samples on both the victim 
model and the reference model. Formally,

 
A(x,M(θ)) =

[
log

P (x ∈ Dtrain|x, θ)
P (x /∈ Dtrain|x, θ)

≥ 0

]
,  (9)

where P is the probability of predicting whether x  is included in the training dataset. Zhou 
et al. (2022) propose a novel attack aims at inferring macro-level properties of the training 
datasets used by GANs, which also shows how property inference attacks (Ganju et al. 
2018) can be utilized to enhance membership inference attacks. Mathematically, this prop-
erty inference attack can be denoted as follows: φ

(
{fp(Gtarget(zi))}|x|i=1

)
. These obtained 

samples x  are consumed by fp  and subsequently, prediction of property classifier function 
φ  to obtain the attack result p. These samples were created from a random latent coding set 
z . Based on previous work, Shafran et al. (2021) propose a hybrid approach to member-
ship inference attack by combining reconstruction errors with image predictability errors: 
Lmem(x, y) = Lrec(x, y)− α · Lpred(x, y), where x  presents image in input domain, y 
presents ground truth in output domain. The computation of Lmem  involves deducting the 
reconstruction error Lrec , weighted by α , from the predictability error Lpred . This dual 
measure provides a more accurate assessment of whether the model has memorized the 
training data.

Unlike GANs, most existing membership inference attack methods are not applicable to 
diffusion models due to their distinct generative processes and characteristics. Duan et al. 
(2023) present a method called Step-wise Error Comparing Membership Inference (SecMI), 
which is tailored to the characteristics of diffusion models. It infers the membership of sam-
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ples via evaluating the posterior estimate of the forward process matching at each timestep. 
Instead of focusing on proposing a new attack method, Matsumoto et al. (2023) evaluate if 
diffusion models are susceptible to membership inference attack by comparing them with 
other types of generative models, specifically GANs. This comparative approach offers a 
broader understanding of how various model architectures, including the unique aspects 
of diffusion models, affect privacy protection. Moreover, Carlini et al. (2023a) propose a 
hybrid approach that combines image generation with a filtering process to conduct the 
attack. This not only generates a large number of image samples but also identifies and 
extracts samples that closely resemble images in the training set. Nevertheless, the method 
proposed by Carlini et al. (2023a) needs more queries to the model, resulting in longer 
attack times and higher computational consumption. Conversely, the Proximal Initialization 
Attack (PIA) proposed by Kong et al. (2024) requires only two queries. This method uses 
the model’s intermediate outputs during the diffusion process to ascertain if a given sample 
is included in the training set. The attack starts with the model’s output at time t = 0, which 
is treated as the noise ε , and then compares the ground truth trajectory with the predicted 
points. PIA measures the discrepancy between these points to assess the likelihood that the 
sample originated from the training data.

4.1.4 Defense techniques for membership privacy in vision generative models

Similar to language models, vision generative models also exhibit vulnerability to member-
ship inference attacks. To protect vision generative models against membership inference 
attacks, DP is also widely applied (Hayes et al. 2019; Chen et al. 2020b; Shafran et al. 2021; 
Wu et al. 2022; Duan et al. 2023). Adding noise throughout the training phase, DP prevents 
attackers from inferring whether a given image is part of the training dataset according 
to the vision generative model’s output. The addition of noise ensures that small changes 
in the vision generative model’s output do not accurately reflect the presence or absence 
of individual samples, thereby enhancing the vision generative model’s privacy protection 
capability. However, Shafran et al. (2021), Duan et al. (2023) found that applying DP during 
the training process of a diffusion model can make it difficult for the DDPM to converge, 
such as causing the model to output meaningless information. On the contrary, applying DP 
during the training of a GAN has been found to perform well. For instance, when using the 
methods of Hayes et al. (2019); Chen et al. (2020b) to attack a GAN that has been trained 
with DP (with ε  >10), the success rate is quite high. While it continues to diminish the 
impact of membership inference attacks. In addition to applying DP, in the work of Hayes et 
al. (2019), they propose two different defense methods, the former is Weight Normalization, 
which reparameterizes weight vectors that decouple the weights’ length from their direc-
tion, incorporated into each layer in the target GAN model’s generator and discriminator. 
The latter is Dropout, which is a technique to eliminate overfitting by arbitrarily removing 
connections between neurons during training. In this study (Hayes et al. 2019), Dropout 
with a probability of 0.5 was utilized on each discriminator layer. However, using Dropout 
can significantly prolong the training process, necessitating additional epochs to produce 
qualitatively satisfactory samples. Moreover, Weight Normalization can often result in fluc-
tuations during training.
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4.1.5 Membership privacy in multi-modal models

Multi-modal models, which process images, speech, and text, are similarly vulnerable to 
membership inference attacks. Attackers can use correlations between modalities to infer 
if a data sample is included in the training set. For instance, in image captioning, analyzing 
the relationship between descriptions and images can reveal training membership. In image-
to-text translation, observing model outputs can similarly expose the presence of specific 
images in the training data.

Hu et al. (2022c) first introduce two membership inference attack methods tailored for 
multimodal models: Metric-based Membership Inference (MBM4I ) and Feature-based 
Membership Inference (FBM4I ). The MBM4I  method relies on comparing the model’s 
output to the training dataset to infer membership. For image captioning tasks, this involves 
evaluating the similarity between the model-generated captions and known reference cap-
tions using text similarity metrics like ROUGE or BLEU. By training a shadow model 
and using its outputs as a benchmark, attackers can establish a threshold to differentiate 
between member and non-member data. FBM4I , on the other hand, focuses on analyzing 
the feature representations learned by the multimodal model. This method involves training 
a feature extractor that processes paired image and text data to learn the intrinsic connec-
tions between them. Attackers use this extractor to obtain the feature representations of both 
the input image and the model’s output text, and the differences in these features are used 
to infer membership status. This method does not rely on the availability of reference texts, 
making it effective even when reference texts are unavailable or the model’s architecture is 
unknown. Experimental results suggest that FBM4I  generally outperforms MBM4I  in 
attacking multimodal models. To address the risk of membership leakage, Hu et al. (2022c) 
apply data augmentation and L2 regularization. However, the effectiveness of data aug-
mentation as a defense is reduced in specific scenarios, for instance, when the target model 
is trained on the IAPR dataset (Makadia et al. 2008). Additionally, Hu et al. (2022c) have 
attempted to incorporate DP during the model training process. While this approach does 
weaken membership inference attacks, it unfortunately leads to poor model performance in 
terms of output quality.

Wu et al. (2022) propose four membership inference attack methodologies targeting text-
to-image generation models. These attacks are based on three insights: (i) training set pairs 
should have higher image-generation quality than test set pairs; (ii) the reconstruction error 
between the generated image and the original image from the training set should be lower 
than from the test set; (iii) the generated image should more accurately reflect the semantics 
of the training set textual caption than that of the test set. The methodologies include Attack 
I-P and Attack I-S, which are based on the first insight, focusing on the quality of gener-
ated images. Attack I-P uses pixel-level differences, while Attack I-S leverages semantic-
level embeddings from a pre-trained vision-language model. Attack II-P and Attack II-S, 
grounded in the second insight, measure reconstruction errors. Attack II-P examines pixel-
level discrepancies, and Attack II-S uses semantic embeddings to determine errors. Attack 
III, focusing on the third insight, assesses the faithfulness of the generated image to the 
semantic content of the text caption using semantic embeddings. Finally, Attack IV inte-
grates all three insights, utilizing semantic-level discrepancies to create a comprehensive 
attack feature set that feeds into the attack model to predict membership status. Empirical 
results show that all proposed attacks are significantly effective, underscoring the severe 

1 3

Page 19 of 47    33 



Y. Liu et al.

privacy risks membership inference poses to text-to-image generation models. In an effort 
to mitigate the impact of membership inference attacks on the model, Wu et al. (2022) have 
restricted the number of data samples available from the target training dataset. However, 
they have observed that by diminishing the dataset to just 5% of its original volume, the pro-
posed attacks experience only a marginal decline in effectiveness and remain significantly 
potent. Therefore, it is concluded that curtailing the adversary’s access to member samples 
does not substantially hinder the attack performance.

Ko et al. (2023) present three practical membership inference attack strategies against 
large-scale multi-modal models, such as CLIP (Radford et al. 2021), which are trained on 
extensive datasets. The first strategy, Cosine Similarity Attack (CSA), utilizes the model’s 
tendency to maximize cosine similarity on training data, predicting membership based on 
the thresholded cosine similarity between text and image features. The second approach, 
Augmentation-Enhanced Attack (AEA), enhances the baseline by applying various trans-
formations to target samples and aggregating the resulting cosine similarity changes, lever-
aging the observation that member samples exhibit a more significant drop in similarity 
post-transformation than non-members. Lastly, the Weakly Supervised Attack (WSA) uti-
lizes one-sided non-member information, such as data published after the model’s release, 
to create a pseudo-member set. Using this set, WSA trains an attack model that predicts 
membership, achieving improved accuracy and demonstrating particular effectiveness at 
low false-positive rates. These attacks draw attention to multi-modal models’ privacy flaws 
without requiring access to the model’s training process or architecture, presenting a sig-
nificant step toward understanding and mitigating privacy risks in large-scale AI systems. 
Ko et al. (2023) have also attempted to use established defensive techniques to counter 
membership inference attacks. Experiments revealed that neither L2 regularization nor data 
augmentation were able to reduce the accuracy of membership inference attack CLIP (Rad-
ford et al. 2021). Additionally, they have considered a straightforward defense strategy of 
injecting noise into the output features of a pre-trained CLIP (Radford et al. 2021). They 
found that noise with a standard deviation of at least σ = 0.5 is required to weaken the 
attacks, but this simultaneously leads to a significant degradation in the performance of the 
CLIP (Radford et al. 2021).

4.1.6 Jailbreaking privacy attacks on large language models

While membership inference attacks typically focus on evaluating a model’s predictions 
to ascertain if a certain data item is included in the training dataset (Shokri et al. 2017), 
jailbreaking privacy attacks are uniquely directed at generating privacy content through the 
strategic construction of inputs. Researchers have developed several techniques to leverage 
these vulnerabilities. For example, Huang et al. (2022) investigate whether pre-trained lan-
guage models (PLMs) disclose email addresses when the owner’s name appears in prompts 
or circumstances pertaining to the email address. The study reveals that PLMs do indeed 
disclose private data, which is attributed to their ability to memorize data. Moreover, Li et 
al. (2023) propose a novel method that involves a multi-step jailbreaking prompt to bypass 
the ethical and safety mechanisms of LLMs. This technique involves integrating jailbreak-
ing prompts into a three-part dialogue between the user and ChatGPT: inputting jailbreak 
prompts, confirming the activation of jailbreak mode, and then submitting queries on the 
user’s behalf. This tricks the model into a ‘Developer Mode’, where it is more likely to gen-
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erate personal information. In addition, Deng et al. (2024) present an automated jailbreaking 
privacy attack method, which leverages carefully crafted prompts to bypass or “jailbreak” 
the chatbots’ security safeguards. This approach begins by identifying potential vulnerabili-
ties in LLMs through empirical research, then uses timing analysis techniques to reverse 
engineer and understand the internal defense mechanisms of chatbots. Subsequently, Deng 
et al. (2024) develop automated tools to generate prompts that can trick LLMs into pro-
ducing privacy content that violates policies. A three-step workflow-dataset construction 
and enhancement, continuous pre-training and task adaptation, and reward ranking fine-
tuning is employed to further enhance the ability to generate effective jailbreak prompts. 
Ultimately, this method not only reveals the vulnerabilities of LLMs in terms of privacy 
protection but also promotes the development of more robust defenses for these intelli-
gent systems through responsible disclosure. Even more astonishingly, Nasr et al. (2023) 
discover that by prompting the model with certain phrases, such as asking it to repeat a 
word many times, the model would eventually diverge from its normal behavior and start to 
emit verbatim examples from its pre-training data. Once the model diverges, it can start to 
generate outputs that are copied directly from the training data. They can then collect these 
outputs to extract the training data.

4.2 Model inversion attack

Data-driven machine learning has been widely adopted due to its exceptional predictive 
capabilities. Today, cloud-based Machine Learning as a Service (MLaaS) platforms are 
extensively deployed, allowing users to upload their private data for model training and 
granting them query privileges. Through public HTTP(S) interfaces and ML APIs, users 
can obtain model predictions. These services are often applied in privacy-sensitive domains 
such as lifestyle choices, identity recognition, medical diagnosis, and pharmacogenetics. 
However, malicious attackers can potentially infer users’ private information, such as facial 
features, sexual habits, or genetic markers, by merely accessing these interfaces (Fredrikson 
et al. 2014, 2015). This scenario is typically a black-box setting, where attackers have lim-
ited access to model outputs.

In another context, with the rise of artificial intelligence, open-source online model pub-
lishing platforms like Hugging Face, TensorFlow Hub, and ModelDepot have emerged. On 
these platforms, models potentially containing private or confidential information can be 
freely published and downloaded (Chen et al. 2021). Victims’ private data, such as personal 
images, might be used without consent to train these models, which are then disseminated 
through model releases. In this white-box setting, malicious attackers who obtain the model 
have full access to its parameters, enabling them to infer private and confidential informa-
tion that others may not wish to disclose.

Model Inversion Attack (MIA) is a method of revealing training data. In the white-box 
scenario, an attacker can recover partial attributes or directly reconstruct training samples 
from model parameters and the target loss function. In the more difficult black-box scenario, 
an attacker can also abuse access to a model’s API on the internet by collecting a large 
number of soft/hard labels to steal user privacy from the private dataset, where soft labels 
expose the confidence score of a class, an attack by querying hard labels only yields labels 
in the form of one-hot coding that discards more information, testing the construction of the 
attack methodology.
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Unlike membership inference attacks, which determine whether a sample belongs to 
a dataset and can be viewed as a binary classification problem, model inversion attacks 
focus on recovering partial or complete sensitive attributes of the training samples. For 
instance, attackers can reconstruct facial features of a specific ID in the training set by 
rebuilding images with the aid of auxiliary information (Fredrikson et al. 2015; Zhang et 
al. 2020; Aïvodji et al. 2019) (e.g., blurred or partially occluded facial images), or optimize 
a randomly selected initial generated sample via generative AI model from a public data-
set to approximate training samples. Compared to membership inference attacks, model 
inversion attacks reveal sensitive information in a more comprehensive manner. Fredrikson 
et al. (2014) first propose model inversion attacks and a model-agnostic model inversion 
attacks method that recovers sensitive attributes on linear models by maximizing the pos-
terior probability.

Subsequently, Fredrikson et al. (2015) extend the victim models, attacking decision trees, 
shallow neural networks, and other models. Based on the correlation between sensitive fea-
tures and model outputs, they optimize the input under a given model to maximize the likeli-
hood of the corresponding classification. Specifically, they provide two attack methods. The 
first starts from an initial vector and gradually optimizes the input vector through gradient 
descent to maximize the confidence of the target label, with denoising post-processing after 
each optimization step, known as the reconstruction attack. Given the classification model 
f̃  and target label, the cost function c(·) and image iteration process are defined as follows:

 c(x)
def
=1− f̃label(x) + AUXTERM(x) (10)

 xi ← PROCESS(xi−1 − λ · ∇c(xi−1)) (11)

where the AUXTERM uses any available auxiliary side information of target label to inform 
the cost function. Following each gradient descent step, the feature vector that results is sent 
to a post-processing function PROCESS. This function can carry out different image altera-
tions such as sharpening and denoising.

The second attack method uses a blurred, unrecognizable face image as the initial 
input and prior knowledge to facilitate the optimization process. After the attack, human 
judgment is introduced to quantify whether the reconstructed specific identity face image 
approximates the training sample. Under the Softmax regression model, their MIA yielded 
an identification rate as high as 87% and an overall accuracy of 75%. However, for the 
three models, they attacked (Softmax Regression, Multilayer Perceptron, Stacked Denois-
ing Autoencoder), despite applying denoising post-processing functions, the reconstructions 
often only produced blurred and low-quality face images that failed to be consistent with the 
training distribution. Similar to gradient-based adversarial examples (Szegedy et al. 2013), 
gradient descent optimization of high-dimensional input vectors can obtain some target fea-
tures but often optimizes to adversarial examples or noise images. Therefore, a natural idea 
is to start the optimization from a low-dimensional manifold (Nguyen et al. 2017; Zhao et 
al. 2018; Song et al. 2018; Lang et al. 2021; Jacob et al. 2022) that encodes features and 
map this latent code back to the data sample space through a generator after executing MIA 
(Zhang et al. 2020; Chen et al. 2021; Wang et al. 2021; Struppek et al. 2022). This becomes 
the benchmark scheme for a series of subsequent generative model-based MIAs. Next, we 
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will introduce several different approaches that incorporate generative models into MIA. 
Table.4 shows previous work for vision model inversion attack.

4.2.1 Applying generative models to MIA based on latent space search optimization

Optimizing in the latent code of generative models can alleviate the issue of optimization 
results lacking semantics. Models like VAEs, GANs, Flows, and Diffusions can all serve as 
accomplices for adversaries to steal private data. Among them, GANs are the most widely 
applied generative models in model inversion attacks. Figure 5 presents the general method 
of white-box attack based on GAN.

4.2.2 Generative models for MIA in the white-box scenario

Zhang et al. (2020) point out the issues with the aforementioned optimization process. Due 
to the non-convexity of neural networks, optimization can easily get stuck in local optima, 
and optimizing high-dimensional data tends to generate unrealistic features lacking seman-
tic information. Their proposed GMI has two stages: the public knowledge distillation stage 
introduces a public dataset with broad knowledge, and trains a generative model whose 
distribution is close to that of the private dataset. The loss term is defined as the joint loss of 
the canonical Wasserstein GAN training loss:

 
min
G

max
D

Lwgan(G,D) = Ex[D(x)]− Ez[D(G(z))] (12)

and a diversity loss:

 
max
G

Ldiv(G) = Ez1,z2

[
‖F (G(z1))− F (G(z2))‖

‖z1 − z2‖

]
 (13)

then the optimization objective is minGmaxD Lwgan(G,D)− λdLdiv(G) .
During the secret revelation stage, the latent variable z  is optimized via the joint loss of 

Lprior  and Lid :

 
ẑ = argmin

z
Lprior(z) + λLid(z) (14)

where Lprior  is the discriminator’s adversarial loss −D(G), and Lid  is the negative log-
likelihood of the corresponding identity id. Finally, the generator G projects z  to the 
high-dimensional space to obtain the revealed face image. Additionally, they incorporate 
auxiliary information such as blurred or missing facial regions as conditional inputs to the 
generator to assist optimization.

This method does not fully leverage the public data to distill knowledge from the target 
model during training. Furthermore, the inversion process can only obtain a simple mapping 
from the latent space to the pixel space, leading to the attack only retrieving one sample for 
each target label, while in reality a target classification may have multiple training samples, 
and the mapping from samples to target labels should be many-to-one.

To address the first issue, Chen et al. (2021) propose KEDMI, which annotates the public 
dataset Ppub  with the target model during the training stage and uses the soft labels to super-
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Table 4 Previous work for vision model inversion attacks
References Approach Generator Knowl.* Public and private 

datasets
CVPR 
[2020] (Zhang et al. 
2020)

GMI WGAN � MNIST, Chest 
X-ray, CelebA

ICCV [2021] (Chen 
et al. 2021)

KEDMI Inversion-Specific GAN � CIFAR-10, MNIST, 
Chest X-ray, 
CelebA, FFHQ, 
FaceScrub

NeurIPS 
[2021] (Wang et al. 
2021)

VMI DCGAN, StyleGAN, Flow � MNIST, EMNIST, 
Chest X-ray, CelebA

ICML 
[2022] (Struppek et 
al. 2022)

PPA StyleGAN2, BigGAN � CelebA, FaceScrub, 
FFHQ, Stanford 
Dogs

AAAI [2023] (Yuan 
et al. 2023)

PLGMI cGAN/SN-GAN � CelebA, FFHQ, 
FaceScrub

CVPR 
[2023] (Nguyen et 
al. 2023)

LOMMA GAN � MNIST, CelebA, 
FFHQ, CIFAR-10

MM [2023] (Qi et 
al. 2023)

DMMIA StyleGAN2 � MNIST, CelebA, 
FaceScrub, Stanford 
Dogs, FFHQ, AFHQ

ARXIV 
[2019] (Yang et al. 
2019)

AMI Auto-Encoder(Decoder-Only) �� MNIST, CelebA, 
FaceScrub, 
CIFAR-10

ECCV [2022] (Yuan 
et al. 2022)

SecretGen WGAN �� CelebA, FaceScrub

NDSS [2022] (An et 
al. 2022)

MIRROR StyleGAN �� VGGFace, 
VGGFace2, 
CASIA-WebFace

TDSC [2023] (Ye et 
al. 2023)

C2FMI StyleGAN2 � CelebA, CA-
SIA-WebFace, 
FaceScrub

TDSC [2023] (Tian 
et al. 2023)

SMI cGAN � MNIST, Fashion-
MNIST, CIFAR-10, 
CelebA

CVPR [2023] (Han 
et al. 2023)

RLBMI WGAN � CelebA, FFHQ, 
FaceScrub, 
PubFig83

CVPR 
[2022] (Kahla et al. 
2022)

BREPMI GAN �� CelebA, FFHQ, 
Facescrub, Pubfig83

NeurIPS 
[2024] (Nguyen et 
al. 2024)

LOKT ACGAN �� CelebA, FFHQ, 
Facescrub, Pubfig83

TIFS [2024] (Liu et 
al. 2024b)

DMI Diffusion with Classifier-Free 
Guidance

�� MNIST, CelebA, 
FaceScrub

* This column is the adversarial knowledge of different attacks. �: white-box. �: black-box. � : 
label-only
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vise the discriminator to output a distribution consistent with the target model. They also 
introduce Lentropy  to reduce the uncertainty of the generator’s output. During the revelation 
stage, instead of optimizing a Dirac distribution that can only produce a one-to-one map-
ping like GMI, KEDMI directly optimizes the learnable parameters µ  and σ  of a Gaussian 
distribution N (µ, σ) in the latent space, and samples multiple images belonging to a certain 
class from this distribution, ensuring diversity in the attack results.

From a variational inference perspective, Wang et al. (2021) provide the optimiza-
tion objective for the latent variable by replacing the prior term with the KL divergence 
between pAux(z)  and the variational distribution q(z), and searching for a joint distribution 
q(z1, z2, ..., zl)  in the extended z  space of StyleGAN2. They also validate the method on 
a flow model. This method discards the discriminator, effectively avoiding mode collapse 
to point estimates.

The above methods require introducing a prior loss term to constrain the model to gener-
ate natural samples close to the public dataset. Struppek et al. (2022) argue that due to the 
distribution shift between public and private data, forcibly aligning the private data distribu-
tion with the public data distribution would introduce irrelevant features and degrade gen-
eration quality. Therefore, they remove the prior loss term. Without changing the generator 
parameters, the optimized latent code can be decoded into natural images when searched in 
the proper direction. They verify the generality of this idea on BigGAN and StyleGAN2. 
Furthermore, they address the neural network robustness issue by introducing a Poincaré 
loss and data augmentation to avoid optimization falling into local optima and generating 
adversarial examples.

Some other methods have also been proposed to tackle issues in model inversion attacks. 
Yuan et al. (2023) introduce high-confidence pseudo-labels as conditional embeddings into 
cGANs during training, arguing that high-confidence images from the public dataset inter-
sect with the private dataset and can thus leak its information, using pseudo-labels can 
better incorporate information from the target model, and they also use a max-margin loss 
to mitigate vanishing gradients. Nguyen et al. (2023) focus on the identity overfitting issue 
during inversion.

While Qi et al. (2023) focus on the issues of catastrophic forgetting and decreased gen-
eration diversity brought by optimizing generators, they introduce two additional constraint 
terms, Limr  and Lidr , defined by the Intra-class Multicentric Representation (IMR) and 
Inter-class Discriminative Representation (IDR) modules, in addition to the cross-entropy 
loss Lce . The IMR consists of a learnable parameter matrix that represents multiple con-
cepts for the target classification, and the IDR utilizes a memory bank to store features of 

Fig. 5 Typical white-box MI attack pipeline
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historical training samples. These two modules aim to enhance sample diversity and gener-
ate discriminative features.

4.2.3 Generative models for MIA in the black-box scenario

Researchers’ attention has recently turned to more practical model inversion attacks in the 
black-box setting. Yang et al. (2019) propose an autoencoder-like structure, cleverly treat-
ing the target model Fw  as the encoder and the m-truncated prediction vector trunc (Fw(a))  
which m-largest truncated vector is preserved. They train a decoder Gθ  which minimizes 
the objective:

 C(Gθ) = Ea∼pa[R(Gθ(truncm(Fw(a))), a)]  (15)

where R  is reconstruction loss as the inversion model on the public dataset pa  to output 
the reconstructed data â . However, due to the nature of autoencoders, this can only produce 
blurred generation results. Ye et al. (2023) propose a similar method in the first stage of their 
approach. They first train a feature extractor E  and an inverse network M  using public 
data to map the image x  and label yc  to the coordinates ξ ∈ F  in the same low-dimen-
sional manifold space. Subsequently, they compute the gradient ∇wL (ξ, E(G(w))) , where 
ξ = M(yc) , to optimize the variable w of StyleGAN, so that the features of the generated 
images were aligned with the low-dimensional vectors obtained by the feature extractor.

For GANs, similar to GMI, Yuan et al. (2022) also train a generator G on the public 
dataset. In the black-box setting where the target model is inaccessible, they use a feature 
extractor trained on the public dataset to provide the diversity loss. With corrupted images 
as prior knowledge, they sample a large number of latent variables from the latent space to 
generate a batch of recovered images. These images are then transformed and used to gener-
ate pseudo-labels, from which the most robust samples matching the corresponding labels 
are selected after transformation. Finally, the corresponding latent variables are optimized 
by discrimination loss Ldist  and Lid (only for white-box setting with backward propaga-
tion). In the black-box setting, they utilize a memory bank denoted as zbank_y  to store each 
sampled latent code z. From this bank, they select the latent code z with the highest confi-
dence for label y as a candidate sample to optimize Ldist , this approach aims to improve the 
identification performance by selecting the most representative latent codes for each label.

There are also some methods that do not require optimization-based search. A genetic 
algorithm is suggested by An et al. (2022) to explore the latent space using scores derived 
from a black-box target model. In the second stage of the method proposed by Ye et al. 
(2023), they use Differential Evolution combined with the confidence of the target classifi-
cation to continuously optimize the intermediate latent variable w of StyleGAN.

Recently, there have been methods combining reinforcement learning with generative 
models. Han et al. (2023) introduced Soft Actor-Critic and confident soft labels for latent 
space search, where an agent generates a guidance vector as input to a GAN trained on pub-
lic data to generate recovered samples.

Some methods focus on the more challenging label-only attack scenario. Similar to 
zeroth-order gradient optimization, Kahla et al. (2022) start from an initial sample point and 
estimate a gradient M̂c∗(z, R) by:
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M̂c∗(z, R) =

1

N

N∑

n=1

Φc∗(z +Run)un,  (16)

where un  represents a uniformly randomly sampled point over a sphere with a radius of R, 
and N denotes the total number of points sampled on that sphere. Φc∗(·) assigns a value of 0 
to inputs that hit the target label and -1 otherwise. The latent variable z  is updated along the 
estimated gradient direction, and as R increases, the generated samples move further away 
from the classifier’s decision boundary and closer to the centroid of the target label.

In LOKT (Nguyen et al. 2024), a label-only attack method based on knowledge transfer 
was proposed. Similar to SMI, which uses the class labels predicted from public data to 
supervise the training of cGAN for inverting target privacy attributes, they employ ACGAN 
as the training framework, where the combination of the discriminator and the classifier 
serves as a surrogate model. The generator generates fake samples under conditional guid-
ance, and the target model is used as an oracle to obtain pseudo-labels. In addition, they only 
used oracle to annotate fake images, while public data was only used to reduce the iden-
tification loss, which effectively alleviated the problem of class imbalance on public data.

Different from the above approaches, recently, there have been some diffusion model-
based MI methods. Kansy et al. (2023) propose using the outputs of a face recognition 
model as conditions to train a conditional diffusion model for model inversion, though they 
do not focus on attacks. Similarly, Liu et al. (2024b) use the hard labels of public data 
as conditions to train a conditional DDPM. Since conditional generation does not involve 
gradient estimation, they need to sample a large number of samples, apply transformations, 
query the target model, and select robust samples as the attack results.

4.2.4 The necessity of GAIM in model inversion attack

In the field of AI security, gradient optimization is a method used in white-box settings to 
obtain natural unrestricted adversarial examples (Zhao et al. 2018; Song et al. 2018) and 
perform counterfactual explanations (CE) (Wachter et al. 2017). The former seeks a natural 
sample on the image manifold that causes the classifier to produce an erroneous output. 
While the latter attempts to minimize a semantic or feature-based δ  for a given sample 
point x  and a class c not belonging to x , such that x + δ  is classified as c without being 
deemed an adversarial sample (Wachter et al. 2017; Dhurandhar et al. 2018). In both CE 
and model inversion attack, the optimized sample’s class changes. However, CE requires 
minimal semantic alterations, while MIA does not have this constraint and aims to obtain 
a sample with high confidence score for the target classifier. This is reflected in MIA-gen-
erated samples being further from the target model’s decision boundary compared to CE-
generated samples (Kuppa and Le-Khac 2021; Kahla et al. 2022). Despite these methods 
having different optimization objectives and initial conditions, they all require that the gen-
erated images do not deviate from the image manifold. A common approach is to conduct 
the optimization process in the latent space of vision generative models (Song et al. 2018; 
Lang et al. 2021; Zhang et al. 2020). However, improper optimization may still cause the 
optimized latent variables to deviate from their assumed distribution, leading to optimiza-
tion in an adversarial direction.

Moreover, the variables being optimized are widely sampled from the latent space of 
public data. Therefore, when the distribution discrepancy between public and private data 
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is significant or non-overlapping, the attack becomes challenging. This issue is particularly 
prevalent in GANs, despite their ability to generate high-fidelity samples. Due to mode col-
lapse in GANs (Goodfellow et al. 2014; Arora et al. 2017), the generator’s output diversity 
is limited and may not cover the entire distribution of public data. Compared to GANs 
with adversarial training, diffusion models offer better training while ensuring generation 
diversity and quality (Dhariwal and Nichol 2021). In the field of white-box visual counter-
factual explanations, some papers have applied diffusion models to generate high-fidelity 
counterfactual explanations (Jeanneret et al. 2022; Augustin et al. 2022; Jeanneret et al. 
2023, 2024). However, the potential of diffusion models in MIA has not been fully explored.

4.3 Privacy in distributed learning systems

4.3.1 Privacy concerns in language models for distributed learning

Distributed learning systems, particularly those used for language models, strive to safe-
guard user data and privacy while maintaining high performance. These systems are engi-
neered to train models using data from multiple clients, such as devices or servers, without 
centralizing the data, thereby mitigating privacy risks (Hu et al. 2024; Saha et al. 2024). 
The model in federated learning is trained on several decentralized devices with local data 
samples. Model updates, such as gradients or parameters, are exchanged among the devices 
rather than the data itself, minimizing the requirement for data to leave the device and 
thus enhancing privacy. For instance, multiple hospitals can collaboratively train a model 
without sharing their patients’ medical data (Jochems et al. 2017). However, in a federated 
learning scenario, language models can still be subjected to various threats. According to 
Zhu et al. (2019), participant-shared gradients during training might allow for the leakage 
of private training data (As shown in Fig. 6). This is contrary to the common belief that 
sharing gradients doesn’t compromise user privacy. They introduce an attack called Deep 
Leakage from Gradients (DLG), which is capable of extracting training inputs x and labels y 
from the gradients ∇W . This is achieved by optimizing dummy inputs x′  and labels y′  to 

Fig. 6 Gradient attack in federated learning setting. (Zhu et al. 2019)
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minimize the distance ||∇W ′ − ∇W ||2  between the dummy gradients ∇W ′  and the real 
gradients ∇W  shared during federated learning. They achieved the training data by aiming 
to minimize the subsequent goal:

 

x′∗, y′
∗
= argminx′,y′||∇W ′ − ∇W ||2

= argminx′,y′||
∂�(M(x′,W ), y′)

∂W
−∇W ||2.

 (17)

Although the DLG method is effective, it struggles with convergence and consistently dis-
covering true labels. Zhao et al. (2020) introduce an improved method (iDLG) that can 
extract true labels from shared gradients. Unlike DLG, iDLG ensures the extraction of true 
labels, thereby enabling more effective data extraction. Moreover, the use of the Euclid-
ean distance in DLG may lead to suboptimal recovery of the ground truth data, especially 
during the initial stages of the attack, because it tends to focus on large gradients while 
ignoring the majority of gradients that are near zero. This can be problematic in scenar-
ios where the model weights are initialized normally, as a significant portion of the gra-
dients will be clustered around zero, potentially leading to important information being 
overlooked. To deal with this matter, Deng et al. (2021) present a novel distance function: 
D(∇W′,∇W) = ||∇W′ − ∇W||2 + α(∇W)||∇W′ − ∇W||  that combines the L2 
norm (Euclidean distance) and L1 norm (Manhattan distance) which helps to ensure that 
even smaller gradients contribute to the recovery process. Shortly after, Balunovic et al. 
(2022) present a method named LAMP, which employs an auxiliary language model to guide 
the reconstruction process toward more natural and linguistically plausible text, which helps 
generate text that is more coherent and readable. In addition, LAMP alternates between con-
tinuous optimization (using methods like gradient descent to optimize embedding vectors) 
and discrete optimization (applying text transformation operations to adjust word order) 
to enhance the accuracy of reconstructed text. This alternating optimization strategy helps 
avoid local minima and improves the sequence and structure of the reconstructed text. Fur-
thermore, Gupta et al. (2022) first demonstrate the feasibility of text recovery from massive 
batches up to 128 phrases in length with their approach FILM. Unlike DLG and TAG, 
which have been optimized to align gradients directly, FILM takes a different strategy by 
first determining a group of words from gradients and then reconstructing sentences using a 
prior-based reordering technique and beam search. This method is more suited for discrete 
text inputs and is less sensitive to initialization. Additionally, most of these works assume 
that the server implements the federated learning protocol With faithfulness. In 2023, Fowl 
et al. (2022) provided a brand-new attack that uses malicious parameter vectors to expose 
private user content. This attack is successful even with mini-batches, several users, and 
lengthy sequences. In contrast to other attacks, it takes advantage of features of the token 
embedding and the Transformer architecture, extracting the tokens and positional embed-
dings independently in order to recover high-fidelity text. Table.5 shows previous work for 
privacy issues arising from AI generative models in distributed learning systems.
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4.3.2 Defense techniques for language models in distributed learning setting

To defend language models in distributed learning settings from privacy threats, the most 
common protection measure is adding noise to gradients prior to sharing and applying dif-
ferential privacy (Zhu et al. 2019; Balunovic et al. 2022; Gupta et al. 2022; Fowl et al. 
2022). For instance, when the variance of noise exceeds 0.01, noise begins to impact the 
accuracy of DLG (Zhu et al. 2019), TAG (Deng et al. 2021), and LAMP (Balunovic et 
al. 2022), LAMP (Balunovic et al. 2022) demonstrates the best performance among them. 
However, even with the addition of noise, attackers can still potentially recover information 
from the gradients. Therefore, Zhu et al. (2019) have proposed gradient clipping as a more 
effective defense strategy. It involves setting small gradients to zero to reduce information 
leakage. By truncating or capping the gradients at a certain threshold, the model’s sensitivity 
to individual training samples is reduced, thereby enhancing privacy protection. However, 
the maximum tolerable level of sparsity is approximately 20%. Beyond this threshold, the 
pruned images become visually unrecognizable. Moreover, Gupta et al. (2022) introduce 
another method called Freezing Word Embeddings to prevent attackers from extracting 
word information from the gradients of word embeddings. Before training on private data, 
the word embedding matrix’s parameters are set as non-trainable, ensuring that during the 
training process, the weights within the matrix will not be updated through backpropaga-
tion. While the word embedding matrix remains frozen, the hidden layers of a Transformer 

GAIM Target Model References Knowl.* Dataset
LM BERT NeurIPS 

[2019] Zhu 
et al. (2019)

� MNIST, CIFAR-
100, SVHN, LFW

BERTs EMNLP 
[2021] Deng 
et al. (2021)

� CoLA, SST-2, 
RTE

BERTs NeurIPS 
[2022] 
Balunovic et 
al. (2022)

� CoLA, SST-2, 
RottenTomatoes

GPT-2 NeurIPS 
[2022] Gupta 
et al. (2022)

� WikiText-103, 
Enron Email

BERT-base, 
GPT-2

ICLR 
[2022] Fowl 
et al. (2022)

� wikitext, 
Shakespeare and 
stackoverflow

VGM GAN CCS [2017] 
Hitaj et al. 
(2017)

� MNIST, AT&T

GAN JSAC 
[2020] Song 
et al. (2020a)

� MNIST, AT&T

GAN TIST [2022] 
Ren et al. 
(2022)

� MNIST, CIFAR-
100, LFW, 
VGG-Face

Vision 
Transformers

CVPR 
[2022] Lu et 
al. (2022)

� MNIST, CIFAR-
10, ImageNet

Table 5 Previous work for 
privacy issues arising from AI 
generative models in distributed 
learning systems

* This column is the adversarial 
knowledge of different attacks. 
�: white-box. �: black-box. 
: gray-box

 

1 3

   33  Page 30 of 47



Generative AI model privacy: a survey

model will continue to be trained and updated based on the private data. Consequently, 
the gradients associated with these embeddings will not be computed or transmitted to the 
server, thwarting any attempt by an attacker to recover useful word information from the 
gradient information. Nevertheless, it’s crucial to acknowledge that freezing word embed-
dings may restrict the model’s capacity to learn vocabulary patterns specific to private data.

4.3.3 Privacy concerns in vision generative models for distributed learning systems

Moreover, GANs have been explored to target deep learning models in distributed learning 
systems. GANs have the ability to produce harmful data samples and tamper with model 
updates, resulting in the model’s performance declining or compromising the privacy of 
the model. In 2017, Hitaj et al. (2017) proposed a novel method by using GANs to produce 
prototype samples specific to the target training set during the real-time learning process 
and these samples ought to come from the training data’s similar distribution. Song et al. 
(2020a) combine GANs and multi-task discriminators to simultaneously classify the cat-
egory, authenticity, and client identity. This novel client identity discrimination task permits 
the generator to retrieve the private information of users. Moreover, Ren et al. (2022) build 
a generative model that is optimized by minimizing the distance between the gradients pro-
duced by the two branches and the real gradients. This optimization process involves train-
ing the model using metrics such as Mean Squared Error MSE(g, ĝ), Wasserstein Distance 
WD(g, ĝ) , and Total Variation Loss TV Loss(x̂) , to evaluate the difference between the 
generated gradients and the real gradients. The loss function for this attack can be described 
as follows: L̂(g, ĝ, x̂) = MSE(g, ĝ) +WD(g, ĝ) + α · TV Loss(x̂) , where x  is the fake 
image generated by GAN, g and ĝ  are true gradient and fake gradient, respectively. Addi-
tionally, the smoothness regularization weighting parameter is denoted by α . More impor-
tantly, Lu et al. (2022) reveal that learnable positional embeddings could be a potential 
vulnerability for privacy leakage in visual transformers (Khan et al. 2023) such as the Vision 
Transformer by using the APRIL attack. This aspect has not received sufficient attention in 
previous research, but the APRIL attack demonstrates that positional embeddings can effec-
tively recover input data, posing a risk of privacy leakage.

4.3.4 Defense techniques for vision generative models in distributed learning setting

Hitaj et al. (2017); Ren et al. (2022) are still attempting to apply DP and noise addition to 
safeguard privacy. In the work of Hitaj et al. (2017), the effectiveness of DP is demonstrated 
in its ability to provide a certain level of privacy protection for data labels that are actu-
ally used during the training phase, preventing the recovery of specific elements associated 
with these labels. However, its limitation lies in its inability to effectively defend against 
active attacks using GANs, which can bypass the privacy protection offered by record-level 
DP and leak sensitive information from the training data. Moreover, Ren et al. (2022) use 
noise addition in their method GRNN, which is capable of successfully recovering image 
data and achieving satisfactory results when the noise level is reduced to 0.01. However, as 
the noise level increases, it fails to recover the image. In addition to these two widely used 
privacy protection techniques, Song et al. (2020a) discuss the use of encryption techniques 
and isolated environments to protect models from privacy attacks in the context of distrib-
uted learning scenarios, specifically in federated learning. First, Secure Aggregation (SA): 
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clients encrypt their model updates prior to submitting them to the server. The server can 
compute this encrypted data without having to decrypt the data, thus safeguarding privacy. 
Second, Homomorphic Encryption (HE): this encryption method enables the server to pro-
cess encrypted data and output specific calculations. Upon decryption, they correspond with 
the identical procedures carried out on the original data. This indicates that even while the 
training procedure keeps the data encrypted, the server can still perform useful computa-
tions. Third, Trusted Execution Environment (TEE): a TEE provides an isolated execu-
tion environment that ensures the confidentiality and integrity of the code and data loaded 
into it. Within the framework of federated learning, training may take place within a TEE, 
preventing even a compromised server from accessing intermediate values such as model 
parameter updates. These methods can effectively prevent a malicious server from inferring 
private data information from the model updates. However, Song et al. (2020a) also present 
challenges, such as increased computational costs and difficulties in detecting malicious 
updates.

Besides, in Vision Transformer models, position embeddings are used to provide posi-
tional information to the image patches since the Transformer architecture does not inher-
ently capture spatial relationships. These embeddings are typically learned during the model 
training process. Consequently, learnable position embeddings can be a vulnerability to 
privacy breaches. To enhance the privacy protection of visual Transformer models in dis-
tributed learning environments, Lu et al. (2022) propose a defense strategy named learnable 
position embedding which can make position embedding fixed. This strategy initializes the 
position embeddings before training and then does not optimize them, for example, not 
calculating their gradients during the training process. As a defense measure, fixed position 
embeddings are practical because they do not add extra computational burden and do not 
significantly alter the model’s architecture. Moreover, this method can be easily integrated 
into existing federated learning frameworks. However, applying this may impact the mod-
el’s performance since these embeddings cannot be adapted to the specific data distribution 
of the task at hand.

4.4 Differential privacy

Differential Privacy (Dwork 2006) is a framework for measuring and managing the privacy 
risks associated with disclosing personal data about specific persons within a dataset. It 
makes sure that a person’s data is either included in or excluded from a dataset and doesn’t 
materially alter the probability of any outcome when that dataset is used to compute statistics 
or machine learning models. It does this by incorporating a predetermined level of noise into 
the data or the data analysis’s output. The noise is calibrated to preserve the overall value 
of the data while maintaining individual privacy. It is extremely useful when handling big 
datasets, such as those used to train large language models, which can inadvertently expose 
sensitive information about the individuals who contributed to the data. For example, by 
using DP, Apple collects anonymized user data to enhance features such as emoji sugges-
tions, QuickType, and other services while ensuring that individual privacy is maintained.

When discussing differential privacy, a mechanism M is a function that takes as input a 
dataset d  and outputs some information or a summary of that dataset. If the technique satis-
fies the following requirements for every nearby dataset d  and d′  and for every potential 
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set of outputs Y, it is said to fulfill differential privacy (Dwork 2006). Formally described 
as follows:

 

Pr(M(d) ∈ Y )

Pr(M(d′) ∈ Y )
≤ eε.  (18)

The ε  parameter in differential privacy is often referred to as the privacy budget or privacy 
parameter. It acts as a tuning knob for a differentially private mechanism’s degree of privacy 
protection.

The Laplace mechanism is one of the fundamental mechanisms in DP. It is used to priva-
tize real-valued queries, such as sums, averages, or counts, over a dataset. The Laplace 
mechanism is particularly useful because it provides a straightforward way to add noise that 
fulfills differential privacy. The Laplace mechanism is a method for adding noise to a real-
valued function m(d) in a way that ensures ε -differential privacy. Here’s how the Laplace 
mechanism defines a differentially private mechanism M(d) for a function m(d) that returns 
a number:

 
M(d) = m(d) + Lap

(s
ε

)
.  (19)

The sensitivity s of m, which is the maximum absolute difference in m(d) over any two adja-
cent datasets d  and d′ . Lap(sε)  represents the output of an arbitrary variable drawn from the 
Laplace distribution with location parameter (center) 0 and scale parameter sε .

Approximate differential privacy is a variant of differential privacy that introduces an 
additional parameter δ , allowing for slightly less stringent privacy protection with a certain 
probability δ . Specifically, a randomized algorithm F fulfills (ε, δ)-differential privacy if 
for any two nearby databases d  and d′ , and any possible subset of outputs Y, the following 
holds:

 Pr(M(d) ∈ Y ) ≤ eεPr(M(d′) ∈ Y ) + δ.  (20)

Here, ε  represents the strength of privacy protection, and δ  represents the probability with 
which the algorithm can violate differential privacy protection. When δ  = 0, we say that the 
algorithm satisfies ε -differential privacy, which is a stricter standard of privacy protection. 
Table.6 shows previous work for differential privacy protects generative AI models.

4.4.1 Differential privacy for language models

As mentioned in Carlini et al. (2019), during the training process, neural networks may 
encounter the issue of unintended memorization, where the model unintentionally memo-
rizes occasional or unique sequences that appear in the training data. This can become a 
privacy concern when the model is trained on sensitive data such as private message texts. 
They implement the Differentially-Private Stochastic Gradient Descent (DP-SGD) (Abadi 
et al. 2016) algorithm by scaling down individual training example gradients to a predefined 
maximum norm and adding Gaussian noise to test its efficacy in preventing unintentional 
memorization by neural networks. Based on the framework of DP-SGD (Abadi et al. 2016), 
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Hoory et al. (2021) successfully train the first differentially private BERT model, which 
provides a robust privacy guarantee while preserving a high standard of performance in 
downstream tasks. Additionally, Yu et al. (2021) introduce a novel approach called Repa-
rametrized Gradient Perturbation (RGP) to train BERT on many downstream tasks. After 
the completion of the backward propagation phase, RGP first clips the gradients associated 
with the matrices L and R. This clipping action limits the gradient’s magnitude. Subse-
quently, RGP introduces noise into these already-clipped gradients and constructs an update 
for the original weight matrix. To focus on the high accuracy baseline for DP BERT pertain-
ing, Anil et al. (2022); Li et al. (2022); Rust and Søgaard (2023) used DP-SGD (Abadi et al. 
2016) with Adam optimizer (Kingma and Ba 2015), which performs hyper-parameter tun-

Table 6 Previous work for differential privacy protects generative AI models
GAIM Target Model Reference Optimization Dataset
LM Smart 

Compose
USENIX Security 
[2019] (Carlini et al. 2019)

DP-SGD+RMSProp PTB, WikiText-103

BERT EMNLP [2021] (Hoory et al. 
2021)

DP-SGD+RMSProp MIMIC-III, Wikipe-
dia, BookCorpus

BERT-Base ICML [2021] (Yu et al. 2021) RGP MNLI, SST-2, QQP, 
QNLI

BERT-Large EMNLP [2021] (Anil et al. 
2022)

DP-SGD+Adam Wikipedia, 
BookCorpus

BERT, Ro-
BERTa, GPT-2

ICLR [2021] (Li et al. 2022) DP-SGD+Adam MNLI, SST-2, 
QQP, E2E, DART, 
Persona-Chat

RoBERTa-
Base/Large, 
GPT-2

ICLR [2021] (Yu et al. 2022) DP-SGD+AdamW MNLI, SST-2, QQP, 
QNLI

BERT, 
1/2BERT, 
DistilBERT

NeurIPS [2022] (Mireshghal-
lah et al. 2022a)

DP-SGD MNLI, SST-2, QQP, 
QNLI

XLM-R ICML [2023] (Rust and 
Søgaard 2023)

DP-SGD+AdamW XNLI

VGM RBM, VAE TKDE [2018] (Acs et al. 
2018)

DP-SGD+Adam MNIST, CDR, 
TRANSIT

GAN ARXIV [2018] (Zhang et al. 
2018)

DP-SGD+Adam MNIST, LSUN-U, 
LSUN-L, and CelebA

WGAN ARXIV [2018] (Xie et al. 
2018)

DP-SGD+RMSProp MNIST and 
MIMIC-III

GAN ICLR [2018] (Jordon et al. 
2018)

DP-SGD+Adam Credit card fraud 
detection dataset

CGAN CVPRW [2019] (Torkzadehm-
ahani et al. 2019)

DP-SGD+Adam MNIST

WGAN ICPADS [2019] (Liu et al. 
2019c)

DP-SGD MNIST and 
MIMIC-III

GAN ICLR [2019] (Augenstein et 
al. 2020)

FedAvg EMNIST

GAN TIFS [2019] (Xu et al. 2019) DP-SGD MNIST, LSUN, 
CelebA

GAN IJCAIW [2019] (Triastcyn 
and Faltings 2019)

FedAvg MNIST, CelebA

WGAN NeurIPS [2020] (Chen et al. 
2020a)

DP-SGD MNIST, 
Fashion-MNIST
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ing for Adam, specifically at one batch size and subsequently applies the optimized hyper-
parameters to all other batch sizes. Also, highlighting the baseline of fine-tuning, Yu et al. 
(2022) use the additive fine-tuning scheme LoRA (Hu et al. 2022a), which can be seen as 
a condensed form of RGP (Yu et al. 2021). In LoRA (Hu et al. 2022a), the weight matrix 
WFT  is reparametrized as the sum of the pre-trained weight matrix WPT  and a learnable 
reparametrization LR. Notably, during the training process, the pre-trained weight matrix 
WPT  remains frozen.

4.4.2 Differential privacy for vision generative models

Differential privacy is a versatile framework that extends beyond the protection of language 
models to various domains where privacy is a concern, including vision generative models. 
For example, GANs are used for creating images and are typically trained on large datasets 
of images. DP can be applied during the training process to make sure the model doesn’t 
retain or divulge details about specific training samples. More importantly, DP techniques 
can be employed to add noise to the gradients or outputs. In scenarios where vision genera-
tive models are trained across multiple decentralized devices, DP can be crucial in safe-
guarding user data throughout the model update process.

To deal with this matter, Acs et al. (2018) first propose a new method for privately pub-
lishing high-dimensional datasets and generative models. The differentially private k-means 
algorithm is used to divide the whole training dataset into k-disjoint sub-datasets in the sug-
gested strategy. Next, every sub-dataset is utilized to train a different set of generative mod-
els independently. In the work of Zhang et al. (2018), they present a dp-GAN framework. 
Rather than simply cleaning up and distributing data, the data curator unveils a profound 
generative model, meticulously trained in a differentially private way using the initial data. 
With the help of this intricate generative model, the analyst gains the ability to generate an 
infinite array of fake data, tailored for diverse analysis tasks. Different from Zhang et al. 
(2018), and Xie et al. (2018), Liu et al. (2019c) propose another dp-GAN framework based 
on WGAN (Arjovsky et al. 2017a), the key idea of their work is incorporating noise into 
gradients throughout the process of learning. WGAN (Arjovsky et al. 2017a) offers clear 
advantages over traditional GAN in terms of convergence, sample quality, and gradient sta-
bility by introducing the Wasserstein distance as the training objective. In the stage of train-
ing, they add designed noise to the gradient of the Wasserstein distance, and when updating 
the parameters of models, gradient clipping is a method in these works to prevent gradients 
from becoming too large and ensure that the weight updates are within the preset range. In 
order to maintain the discriminator with stronger differential privacy, Jordon et al. (2018) 
substitute the discriminator in the GAN framework with a Private Aggregation of Teacher 
Ensembles (PATE) mechanism. This entails the incorporation of k teacher-discriminators 
alongside a student discriminator, through its ability to tightly limit the influence of indi-
vidual samples on the model’s output. This implies that less noise can be added per sample 
while still meeting differential privacy constraints, thus improving the quality of synthetic 
data. Similarly, Xu et al. (2019) also focus on adding noise into the gradient of the dis-
criminator. When training the discriminator, gradients are first computed, which indicates 
how the model parameters should be updated to minimize the loss function. The computed 
gradients are then subjected to a pruning operation that caps the gradient magnitude within 
a preset range. This range is defined by a hyperparameter to ensure that the sensitivity of the 
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gradients is bounded. With the combination of Gradient Pruning and Noise Injection, this 
framework is capable of providing privacy protection when generating synthetic data, while 
the generated data still maintains sufficient quality and utility for various analytical tasks.

The conventional approach employed by these recent investigations to ensure DP 
involves initially constraining the L2 norm of the gradients of the combined loss of the 
discriminator on synthetic and real data, followed by the introduction of Gaussian noise 
to the clipped gradients. One of the constraints of these recent endeavors is their exclusive 
emphasis on producing fake data, such as images without corresponding labels. However, 
Torkzadehmahani et al. (2019) proposed a DP-CGAN framework. For each set of actual 
data and fake data, DP-CGAN clips the discriminator’s loss gradients independently. This 
makes it possible to precisely adjust how sensitive the model is to private and genuine data. 
More importantly, it is capable of producing both the relevant labels and synthetic data. As 
mentioned in Sect. 4.3, in the realm of distributed GANs, it is imperative to protect the pri-
vacy of generators in a federated setting, as the mere segregation of data at a physical level 
falls short of guaranteeing adequate protection. Augenstein et al. (2020) and Triastcyn and 
Faltings (2019) primarily focus on federated generative privacy. They employ DP-FedAvg, 
an algorithm that combines DP with federated learning. This algorithm uses clipping and 
adds Gaussian noise to achieve user-level privacy protection. Furthermore, in the work of 
Chen et al. (2020a), they introduce the GS-WGAN model, which focuses on publicly releas-
ing only the generator’s parameters, discarding the discriminator’s parameters post-training, 
to minimize privacy risks. GS-WGAN achieves differential privacy by precisely distorting 
gradient information in the training process, enabling more significant gradient updates and 
ensuring the training of deeper models to generate richer samples.

5 Challenges and open problems

5.1 Memorization of generative AI models

Model memorization, where machine learning models retain specific details from their 
training data, poses a significant threat to data privacy. This retention can lead to the unin-
tended disclosure of sensitive information, undermining trust and security, particularly in 
environments handling private or proprietary data. Carlini et al. (2019) have shown that 
neural networks may inadvertently memorize specific sequences from the training data, 
which can include sensitive information such as personal identifiers or private messages. 
This memorization can lead to the model generating or revealing sensitive information 
when prompted with certain inputs. Additionally, as the model encounters a growing num-
ber of classification categories, it would extract increasingly more features from the data to 
ensure high classification accuracy. Consequently, models with a larger number of output 
classes are required to retain more detailed information from their training datasets, which 
in turn can result in greater information leakage. In this way, attackers are more likely to 
perform membership inference attacks (Shokri et al. 2017).
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5.1.1 Memorization of language models

Moreover, models may also memorize patterns associated with user attributes, leading to 
attribute inference attacks, as mentioned by Thomas et al. (2020). They have compared 
memorization issues in GloVe (Pennington et al. 2014), ELMo (Peters et al. 2018), and 
BERT (Devlin et al. 2019). It was found that GloVe (Pennington et al. 2014) is more prone 
to memorizing sensitive information and reaching maximum exposure levels earlier in 
training compared to other models. ELMo (Peters et al. 2018) and BERT (Devlin et al. 
2019) embeddings also exhibit memorization, with higher-dimensional embeddings being 
more susceptible to retaining sensitive data. Furthermore, the presence of multiple instances 
of sensitive information in the training data seems to reduce memorization, potentially con-
fusing the model. To delve deeper into the issue of memorization of LLM, Carlini et al. 
(2023b) conduct experiments from three perspectives: model scale, data duplication, and 
context. First, within the same model family, larger models tend to memorize 2-5 times 
more information than their smaller counterparts. Second, data examples that are repeated 
more frequently have a higher likelihood of being extractable. Third, it is significantly easier 
to extract sequences when a longer context is provided.

To mitigate these risks, several methods are employed. For example, DP, which we men-
tioned several times before. As noted by Carlini et al. (2023b), reducing the duplication in 
the dataset can lower the extent to which a model memorizes the training data.

5.1.2 Memorization of vision generative models

To clarify the impact of model memorization in generative models, van den Burg and 
Williams (2021) propose a method for quantifying memorization, which is used to assess 
whether the VGM has remembered specific samples from the training dataset. The mecha-
nism behind memorization primarily arises from the VGM’s overfitting to certain training 
samples during the training process, especially in sparse data regions or when the VGM 
assigns excessively high weights to certain samples. Additionally, memorization may also 
be related to the size of the VGM, the repetition of training data, and the VGM’s ability to fit 
specific regions of the input space. Moreover, memorization can occur at an early stage of 
the training process and is associated with the VGM’s local probability density estimation.

To mitigate the impact of model memorization, van den Burg and Williams (2021) 
explore various strategies, First, implement DP to introduce randomness and reduce over-
memorization of individual training samples. Second, adjust model architectures to handle 
outliers. Third, preprocess data to increase diversity and reduce redundancy. Addition-
ally, modify training strategies such as learning rates, early stopping, and regularization to 
decrease reliance on specific samples.

5.2 Generative AI model architectures impact its privacy

Zhang et al. (2024) conduct a comprehensive study on the impact of deep learning model 
architectures, specifically comparing CNNs and Transformers, on their vulnerability to pri-
vacy attacks. CNNs rely on local convolution operations, using a sliding window to extract 
features from input data. While this localized receptive field effectively captures patterns, 
it also makes CNNs susceptible to privacy leakage. Certain micro-design elements, such as 
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activation layers and batch normalization, can enable attackers to recover sensitive informa-
tion. When CNNs overfit, attackers can exploit membership or attribute inference attacks to 
extract private data from the training set.

Transformers, on the other hand, use multi-head self-attention mechanisms, which 
provide a much broader receptive field than CNNs. Instead of focusing on local features, 
Transformers process the entire input sequence, allowing them to capture more detailed 
and sensitive information. The attention modules enable the model to learn global patterns, 
increasing the risk of exposing private data. Additionally, design elements like layer normal-
ization and stem layers further heighten privacy risks. Research (Zhang et al. 2024) shows 
that, even with similar levels of overfitting, Transformer-based models are more vulnerable 
to privacy attacks than CNN-based models.

5.3 Possible attack generative AI models

Research into privacy attacks on language models like BERT and GPT-2 (Jagannatha et al. 
2021; Carlini et al. 2021; Mireshghallah et al. 2022b; Mattern et al. 2023; Jagielski et al. 
2024) is well-documented, as is the study of privacy attacks on visual models such as GANs 
and Diffusion models (Hayes et al. 2019; Liu et al. 2019a; Hilprecht et al. 2019; Chen et al. 
2020b; Zhou et al. 2022; Shafran et al. 2021; Duan et al. 2023; Matsumoto et al. 2023; Car-
lini et al. 2023a; Kong et al. 2024). However, there is a relative lack of research specifically 
focused on multi-modal models that process both textual and visual data (Hu et al. 2022c; 
Wu et al. 2022; Ko et al. 2023). This field is gradually attracting attention as researchers 
recognize the significance of understanding privacy vulnerabilities and potential attack vec-
tors in these complex systems.

Multi-modal models, which integrate NLP and CV, are being widely deployed across 
various domains (Hu et al. 2022c; Wu et al. 2022; Ko et al. 2023). The unique challenge 
with privacy attacks on multi-modal models is the intricate interplay between different 
modalities, which adversaries can exploit to infer sensitive information or launch sophisti-
cated attacks. For example, an attacker might use the relationship between text captions and 
images to deduce private details or infer sensitive attributes not explicitly disclosed.

5.4 Jailbreaking privacy attacks on language models

Currently, there is a growing body of research that targets jailbreaking attacks on models 
transitioning from large language models to multi-modal models (Huang et al. 2022; Li et 
al. 2023; Deng et al. 2024; Nasr et al. 2023). However, the majority of these studies con-
centrate on security issues such as adversarial examples (Liu et al. 2024a), and backdoor 
attacks (Li et al. 2021), which aim to compromise the model’s decision-making process or 
extract sensitive information from the model itself. In comparison, privacy-focused attacks 
that specifically address the protection of user data and the prevention of unauthorized use 
of personal information are less common in the literature. This discrepancy suggests a need 
for more research that emphasizes privacy protection in the context of generative AI models, 
where the risks of data misuse and privacy intrusions can be particularly high due to the 
models’ ability to process and generate diverse types of sensitive content.
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5.5 Enhanced membership privacy

To enhance membership privacy, Wen et al. (2024) introduce a backdoor into a pre-trained 
model to augment membership inference attacks. In this approach, an adversary poisons the 
model by altering its weights to create a backdoor. When a victim fine-tunes this compro-
mised model using their private dataset, it leaks the fine-tuning data at a much higher rate 
than a regular model. This poisoning generates a differential loss pattern, making member-
ship inference attacks more effective and enabling the adversary to identify specific data 
points used in the fine-tuning process. Additionally, Bertran et al. (2023) improve mem-
bership inference attacks by using quantile regression, which has a computational advan-
tage over traditional shadow model-based methods. It requires training only one model and 
operates without knowledge of the target model’s architecture, enabling a true "black-box" 
attack.

5.6 Enhanced model inversion attack

In Sect. 4.2.4, we delved into the necessity of the generator in model inversion attack. How-
ever, MIA still confronts challenges that are GAIM-agnostic. Currently, the focus in this 
domain has shifted towards Label-only MIA (Kahla et al. 2022; Nguyen et al. 2024; Liu et 
al. 2024b). A promising attack paradigm involves training a joint distribution pθ(xpub, c) 
on public data through knowledge transfer and vision generative models, utilizing pseudo-
labels obtained from extensive interactions with the model. Sampling is then conducted 
through pθ(x |c)p(c)  (Nguyen et al. 2024; Tian et al. 2023; Liu et al. 2024b). This approach 
circumvents the iterative optimization of samples, thereby mitigating the risk of generat-
ing adversarial examples. Nevertheless, these methods typically require a large number of 
queries to characterize the decision boundary of the target model. The query process can be 
optimized by incorporating techniques such as active learning, reinforcement learning, and 
evolutionary algorithms (Oliynyk et al. 2023).

More pragmatic approaches, such as BREPMI (Kahla et al. 2022), leverage the geomet-
ric properties of decision boundaries. These methodologies progressively shift the initial 
sample towards the centroid of the target classification distribution through zeroth-order 
gradient like optimization within the latent space, which requires fewer queries for specific 
classifications. To the best of our knowledge, there is currently a scarcity of attack methods 
that incorporate the geometric boundary properties of neural networks or substitute gradi-
ent optimization in this context. Conversely, numerous attack methods that combine above 
properties have been devised for the generation of adversarial examples in the label-only 
black-box scenario (Brendel et al. 2018; Chen et al. 2020c; Maho et al. 2021; Fu et al. 2024; 
Cheng et al. 2018).

5.7 Advanced differential privacy mechanisms

To enhance DP, it is crucial for existing algorithms to consider scalability and computation 
(Jia et al. 2023; Wang et al. 2022, 2019). This requires developing new mathematical meth-
ods for noise injection that protect privacy while maintaining accuracy. Cummings et al. 
(2024) have reviewed and proposed improvements to privacy infrastructure, trade-offs, and 
practical auditing. They emphasize the need for clear communication of DP guarantees and 
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integration with broader privacy practices. Future DP research should focus on eliminat-
ing hyperparameters, setting benchmarks, incorporating user feedback, improving usability, 
and advancing theory for DP’s practical use in various contexts.

6 Conclusion

This work presents an in-depth systematic review of the privacy concerns surrounding 
generative AI models, addressing a wide range of privacy vulnerabilities, including mem-
bership privacy, model inversion attacks, privacy in distributed learning systems, and differ-
ential privacy. For the different purposes of attack and defense, these approaches formulate 
problems based on various generative AI models, language models, vision generative mod-
els, and multi-modal models. Subsequent to an extensive analysis, the remaining challenges 
and open problems are presented for further discussion, focusing on GAIM’s memorization 
issues, architecture, possible attack GAIM, as well as other advanced attacks and defense 
techniques. Our goal is to create a targeted resource that encourages further research in this 
critical area.
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