

Transferable 3D Adversarial Shape Completion using Diffusion Models

DAI Xuelong, XIAO Bin

Presenter: DAI Xuelong

August 21, 2024

- ▶ Motivation
- ▶ Contribution
- \blacktriangleright Method
- ▶ Evaluation
- \blacktriangleright Conclusion

- We generate adversarial examples through shape completion using diffusion models against black-box point cloud models.
- We propose a variety of strategies to enhance the transferability of the proposed attacks without compromising the quality of generation.
- We conduct a comprehensive evaluation against existing state-of-the-art black-box 3D deep-learning models and achieve state-of-the-art performance against both black-box models and defenses.

\blacktriangleright Motivation

▶ Contribution

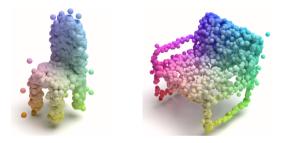
\blacktriangleright Method

▶ Evaluation

\blacktriangleright Conclusion

Motivation

- 3D deep-learning models exhibit vulnerability to adversarial attacks, even when using 2D adversarial approaches.
- However, the perturbations applied to 3D point clouds that shift coordinates lead to noticeable changes in the original shape of 3D objects.



- Recent advancements in diffusion models applied to 3D point clouds have showcased remarkable performance in terms of both generation quality and diversity.
- These generative models can be utilized to generate high-quality unrestricted 3D adversarial examples.

• Moreover, existing 3D adversarial attacks face challenges in being effective against recently proposed state-of-the-art 3D deep-learning models, resulting in a huge gap in the development between adversarial attacks and benign models.

▶ Motivation

\blacktriangleright Contribution

- \blacktriangleright Method
- ▶ Evaluation

\blacktriangleright Conclusion

Contribution

- We offer a novel perspective on the creation of imperceptible adversarial examples by using shape completion with diffusion models. The proposed attack introduces diffusion models to the topic of 3D adversarial robustness.
- We propose three effective techniques to improve the attack performance:
 - Employing model uncertainty for improved inference of predictions,
 - Ensemble adversarial guidance to boost attack performance against unseen models
 - Generation quality augmentation to identify critical points and maintain the quality of generation.
- We achieve effective attacks against recently proposed state-of-the-art 3D point cloud classifiers.

- ▶ Motivation
- ▶ Contribution
- \blacktriangleright Method
- ▶ Evaluation
- \blacktriangleright Conclusion

Method: Adversarial Shape Completion

• We utilize any pre-trained 3D shape completion diffusion model ϵ_{θ} to gradually generate the completed adversarial point cloud $x_0 = (z_0, \tilde{x}_0)$ through the reverse generative process $p_{\theta}(\tilde{x}_{t-1}|\tilde{x}_t, z_0), t = T, \dots, 1$.

 $p_{\theta}(\tilde{x}_{t-1}|\tilde{x}_t, z_0) := \mathcal{N}(\tilde{x}_{t-1}: \mu_{\theta}(x_t, z_0, t), \beta_t \mathbf{I}) - a\beta_t \nabla_{x_t} \mathcal{L}(f(x_t), y)$ (1)

Method: Adversarial Shape Completion

• In order to improve the effectiveness of the proposed attack on a black-box target model, we have outlined several effective strategies to enhance the transferability of the generated 3D point clouds.

Method: Employing Model Uncertainty

- The removal of some points does not alter the classification outcome of the original point cloud.
- We are able to straightforwardly adopt model uncertainty to 3D deep-learning models with the MC dropout-like approach over the input.

$$\nabla_{x_t} \mathcal{L}_{\mathrm{MU}}(f(x_t), y)) = \frac{1}{M} \sum_{s=1}^M \nabla_{x_s} \mathcal{L}(f(x_s), y)$$
(2)

768 points

1024 points

Method: Ensemble Adversarial Guidance

- The ensemble attack is an effective way to enhance the attack transferability.
- We ensemble the logits of selected substitute models according to the generative process.

$$\mathcal{L}(f_{ens}(x_t), y) = -\log(\operatorname{softmax} \sum_{n=1}^{n_{ens}} w_n p_{f_n}(y|x_t))$$
(3)

Method: Generation Quality Augmentation

- Identifying critical points within the point cloud could achieve strong adversarial attacks.
- It is advisable to control perturbations by constraining the ℓ_0 distance between the adversarial and benign point clouds.

$$\operatorname{score}_{x} = \sum_{3} \frac{\partial \mathcal{L}(f(x_{t}), y)}{\partial x}$$

(4)

- ▶ Motivation
- ▶ Contribution
- \blacktriangleright Method

\blacktriangleright Evaluation

\blacktriangleright Conclusion

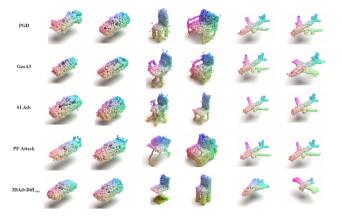
- Dataset: ShapeNetCore with 55 categories and 42003 data. •
- Benign Diffusion Model: PVD. •
- Comparisons:
 - White-box attacks: PGD, KNN, GeoA3, and SI-Adv
 - Black-box attacks: AdvPC, and PF-Attack
- Implementation: 3DAdvDiff to denote the white-box version and 3DAdvDiff_{ens} for boosting transferability version.

Method	PointNet	PointNet++	DGCNN	PointConv	CurveNet	PCT	PRC	GDANet	Average
PGD	99.9	2.1	0.7	0.8	0.5	0.4	0.7	1.6	0.9
KNN	99.9	2.2	0.7	0.7	0.5	0.6	1.1	1.6	1.1
GeoA3	99.8	2.0	1.5	1.4	0.9	0.6	0.9	1.1	1.2
SI-Adv	92.5	2.0	1.7	1.5	1.2	1.0	1.3	1.0	1.4
AdvPC	89.6	0.4	0.2	0.5	0.4	0.6	0.7	0.5	0.5
PF-Attack	99.6	24.2	6.7	5.1	3.8	1.2	2.4	1.9	6.2
3DAdvDiff	99.9	73.2	12.6	55.3	40.5	32.6	25.9	16.0	36.6
$3 \mathrm{DAdvDiff}_{\mathrm{ens}}$	99.9	97.0	99.9	94.5	93.5	80.5	99.9	85.2	90.1

- The adversarial examples from state-of-the-art attacks merely transfer to different models, particularly those recently developed 3D models.
- Our proposed attack significantly outperforms exisiting attack methods.

Method	ASR	SRS	SOR	DUP-Net	IF-Defense	HybridTraining
PGD	99.9	5.9	1.0	0.7	13.8	1.9
KNN	99.9	4.0	0.9	0.4	13.0	1.3
GeoA3	99.8	4.9	1.6	0.8	13.6	2.2
SI-Adv	92.5	10.8	0.9	0.9	14.9	2.0
AdvPC	89.6	4.1	1.5	0.7	13.2	1.9
PF-Attack	99.6	8.5	3.6	2.8	13.9	2.0
3DAdvDiff	99.9	82.2	9.9	9.6	30.0	9.4
$3 \mathrm{DAdvDiff}_{\mathrm{ens}}$	99.9	85.9	49.1	36.9	22.5	96.1

- Existing defenses fail to defend against our attacks.
- Due to its utilization of model uncertainty, 3DAdvDiff is particularly effective against random sampling.
- The proposed critical point selection is effective against outlier removal defenses.



• The visual quality of proposed attacks is comparable to existing attacks.

- ▶ Motivation
- ▶ Contribution
- \blacktriangleright Method
- ▶ Evaluation

- We introduce the first-ever method designed to execute a black-box adversarial attack on recently developed 3D point cloud classification models.
- We propose several strategies to effectively enhance the transferability of the proposed attack,
- Comprehensive experiments on the robust dataset validate the effectiveness of our proposed attacks.

Thank you for listening! Your feedback will be highly appreciated!