
ZKDET: A Traceable and Privacy-Preserving Data
Exchange Scheme based on Non-Fungible Token

and Zero-Knowledge
Rui Song∗, Shang Gao∗, Yubo Song† and Bin Xiao∗

∗Department of Computing, The Hong Kong Polytechnic University, Hong Kong
†School of Cyber Science and Engineering, Southeast University, China

{csrsong, shanggao}@comp.polyu.edu.hk, songyubo@seu.edu.cn, csbxiao@comp.polyu.edu.hk

Abstract—With the advent of the Big Data era, industry, busi-
ness and academia have developed various data exchange schemes
to make data more economically beneficial. Unfortunately, most
of the existing systems provide only one-time data exchanges
without the ability to track the provenance and transformations
of datasets. In addition, existing systems encrypt the data to
protect data privacy, which hinders demanders from verifying
the correctness of the data and evaluating its value.

To provide data traceability and privacy while ensuring fair-
ness during data exchanges, we design and implement ZKDET,
a traceable data exchange scheme based on non-fungible token
and zero-knowledge, which is able to (i) track all transformations
of data during their lifecycle and record them on the blockchain;
(ii) provide zero-knowledge proofs to securely guarantee that all
complex transformations and data contents are correct and meet
specific requirements; and (iii) warrant exchange fairness and
data privacy in public storage platforms. Security analysis and
evaluations on ZKDET show that it can support traceable data
exchange while preserving data privacy and maintaining high
throughput despite large data volumes.

Index Terms—Privacy-preserving, data exchange, blockchain,
non-fungible token (NFT), zero-knowledge

I. INTRODUCTION

Big Data leads a major era of change, transforming how
people live and work. Governments, academic institutions and
companies rely on Big Data to build more refined models
for decision making and revenue creation. However, no entity
can meet these needs by relying only on its own data. As a
result, the data exchange industry has proliferated in recent
years, providing marketplaces and coordination platforms for
the supply and demand of data assets [1]. Nevertheless, the
powerful authority to control data and transactions that such
centralized marketplaces have can lead to many problems. For
example, malicious behaviors of platforms or attacks against
them may both lead to data leakage, which damages the
interests of counterparties [2].

Studies have proposed replacing such centralized platforms
with blockchain, whose advantages are apparent for data
exchanges. First, as a decentralized system, blockchain can
guarantee data correctness and validity through consensus
mechanisms. Second, attacks against blockchain require colos-
sal computing power, making the cost much higher than the
potential benefit. Finally, some scaling efforts such as payment
channels and other Layer 2 solutions can be utilized to increase

throughput and reduce transaction fees, thereby shrinking the
expense for data exchanges [3], [4].

Despite the introduction of blockchain, implementing a
blockchain-based data exchange scheme remains a challenging
endeavor, with several difficulties to be addressed:

• Data traceability is critical to data exchanges, since the
value of a data asset is not only derived from the message
it provides, but also endorsed by its provider [5]. Buyers
may assess the authenticity and value of data assets by
data provenance. However, unlike physical assets, data
can be freely duplicated or redistributed, making data
traceability particularly difficult.

• Datasets are subject to numerous transformations
throughout their life cycles, such as aggregation, par-
tition, duplication and processing, which are not ade-
quately modeled and analyzed. In most existing schemes,
data are packaged and sold as static datasets in their
entirety. This deficiency not only hinders data traceability
in the exchange process, but also restricts the exchange
to static data while neglecting the scenarios of computa-
tional delegation and model trading.

• Existing privacy-preserving data exchange schemes can-
not be adapted to public data exchange platforms, and
only support one-time private data exchanges. They
typically encrypt datasets and ensure exchange fairness
through zero-knowledge-based protocols to prevent pri-
vacy breaches. However, they need to disclose the en-
cryption key to finish the exchange, and thus cannot be
used in the public platform.

To provide dynamic data traceability, privacy, and fair data
exchanges, we propose ZKDET, a data exchange scheme
based on non-fungible tokens (NFT) and zero-knowledge. This
scheme enables free on-chain exchanges and traceability of
universal datasets by providing proofs of transformations and
exchanges in a zero-knowledge manner.

ZKDET uses NFTs as on-chain credentials for all exchanged
data, which are stored in the distributed storage network.
Taking advantage of NFT, ZKDET can uniquely identify data
owners and track every change in their ownership. Benefiting
from the thriving ecosystem of smart contracts and DeFi, data
providers and demanders can exchange data tokens in ZKDET,

thereby monetizing and circulating the data flows.
ZKDET makes several significant modifications to the tradi-

tional data exchange paradigm to track all data transformations
during their life cycle. Specifically, ZKDET supports aggrega-
tion, partition, duplication and processing of datasets. Given
the dynamic nature of data susceptibility to mutations, it is
essential to incorporate all the transformations to which they
are subjected to provide data traceability. More importantly,
supporting transformations enables data owners to perform
data mining and model training based on existing datasets,
and sell the computational results as new data assets. In this
way, users can not just exchange data contents using ZKDET,
but also delegate complicated computational tasks and pay for
the efforts embedded.

To protect data privacy, ZKDET stores all datasets encrypted
and keeps only their metadata in NFTs. However, data encryp-
tion hinders the verification of data correctness and validity,
making it difficult for demanders to evaluate the value of
targeted datasets. To address this issue, ZKDET introduces a
commit-and-prove non-interactive zero-knowledge (CP-NIZK)
scheme based on Plonk construct, which can perform data
verification without revealing any message about data assets
[6]. We further incorporate a circuit-friendly block cipher and
a commitment primitive to reduce the proving and verification
overhead [7], [8].

To summarize, the main contributions of this paper are as
follows:

• We design and implement ZKDET, a blockchain-based
data exchange scheme which provides data traceability
and privacy while ensuring exchange fairness. ZKDET
uses NFT as on-chain credentials for all data assets and
provides full lifecycle traceability for data transforma-
tions and exchanges.

• We propose a generic data transformation protocol that
provides proofs of transformations. These proofs ensure
that all transformations satisfy specific predicates in a
zero-knowledge manner, and provide traceability for all
dynamic data assets.

• We propose a key-secure exchange protocol that enables
exchange fairness for data assets in public storage. Given
that all existing zk-based exchange protocols require key
disclosure during interactions, this protocol fills the gap
of exchange fairness under public data storage.

• We evaluate ZKDET in terms of both security and perfor-
mance. The security properties of the above two protocols
are rigorously demonstrated. ZKDET’s performance is
evaluated in terms of NIZK computational overhead and
smart contract deployment cost.

The rest of the paper is organized as follows. Section II
provides the necessary background and preliminaries. Section
III delivers an overview of the general structure and workflow
of ZKDET. Section IV details the two pivotal protocols in
ZKDET, and section V analyzes their security properties. Sec-
tion VI proposes the implementation of ZKDET and evaluates
its performance. Section VII reviews some of the existing
research in this area. The final section concludes the paper.

II. PRELIMINARIES

A. Notation

We denote by λ ∈ N the security parameter and by 1λ

its unary representation. In this paper, we assume that all
cryptographic algorithms take 1λ as input, which is thus
omitted from the input lists. If S is a finite set, we denote
by x← S the process of sampling x according to S, and by
x

R← S a random and uniform one. For an integer or string s,
we denote by |s| its binary bit length. We denote by [n] the
set of integers {1, 2, . . . , n} and by [0, n] the set {0, 1, . . . , n}.
We denote by (di)i∈[ℓ] the tuple of elements (d1, d2, . . . , dℓ).

We use letters in calligraphic font to denote parties in
protocols, e.g., S for the seller and B for the buyer. We use
letters in bold font to denote sets, and use letters in lowercase
to denote elements in them, e.g., D = (di)i∈[n].

B. Commitment scheme

Definition 2.1 (Commitment scheme): A commitment
scheme for message m ∈ M is a tuple of 2 polynomial-time
algorithms Γ = (Commit,Open) which work as follows:

• (c, o)
R← Commit(m): a probabilistic algorithm which

takes a message m ∈M as inputs, outputs a commitment
c ∈ C and an opening randomness (blinder) o ∈ O;

• v ← Open(m, c, o): a deterministic algorithm which
takes the commitment c, the randomness o and the
original message m as inputs, outputs v = 1 when
accepting the commitment or v = 0 when rejecting it.

A cryptographic secure commitment scheme is supposed to
satisfy the properties of hiding and binding defined below.

Definition 2.2 (Binding): A scheme Γ satisfies the property
of binding if

Pr

[
m1 ̸= m2

Open(m1, c, o1) = Open(m2, c, o2) = 1

]
≤ negl(λ)

holds for every efficient adversary A that output a tuple of 5
elements (c;m1, o1;m2, o2).

Definition 2.3 (Hiding): A scheme Γ satisfies the property
of hiding if

Pr

[
(c1, o1)

R← Commit(m1)

r1 ← A(c1)
: r1 = 1

]
≈

Pr

[
(c2, o2)

R← Commit(m2)

r2 ← A(c2)
: r2 = 1

]
holds for any two different messages m1,m2 ∈M.

C. Non-interactive zero knowledge (NIZK)

A Non-interactive zero-knowledge proof system is a zero-
knowledge system in which the prover sends only one message
to the verifier.

Definition 2.4 (NIZK): A NIZK for {Rλ}λ∈N is a tuple of
3 polynomial-time algorighms Π = (KeyGen,Prove,Verify)
which work as follows:

• (ek, vk)
R← KeyGen(1λ, R): a probabilistic algorithm

which takes a security parameter λ and a relation R ∈ Rλ

as inputs, outputs a common reference string (crs) con-
sisting of an evaluation key ek and a verification key vk;

• π
R← Prove(ek, x, w): a probabilistic algorithm which

takes the evaluation key ek, a statement x and a witness
w such that R(x,w) = 1, outputs a zero knowledge proof
π;

• b ← Verify(vk, x, π): a deterministic algorithm which
takes the verification key vk, the statement x and the
proof π as inputs, outputs b = 1 when accepting or b = 0
when rejecting.

A NIZK is supposed to satisfy the properties of complete-
ness, knowledge soundness and zero-knowledge defined below.

Definition 2.5 (Completeness): A scheme Π is complete if

Pr

[
(ek, vk)← KeyGen(1λ, R)

π ← Prove(ek, x, w)
: Verify(vk, x, π) = 1

]
= 1

holds for any λ ∈ N, R ∈ R and (x,w) s.t. R(x,w) = 1.
Definition 2.6 (Knowledge soundness): A scheme Π is

knowledge sound if there exists an efficient extractor Ext s.t.

Pr

crs← KeyGen(1λ, R)

(x, π)← A(crs)
w ← Ext(crs, x, π)

:
Verify(vk, x, π) = 1

R(x,w) = 0

 ≤ negl(λ)

holds for every efficient adversary A.
Definition 2.7 (Zero-knowledge): A scheme Π is zero-

knowledge for relation generatorRG if there exists a simulator
Sim = (Simkg,Simprv) s.t.

Pr

[
(R, auxR)← RG(1λ)
crs← KeyGen(1λ, R)

: A(crs, auxR) = 1

]
≈

Pr

[
(R, auxR)← RG(1λ)
(crs, tdk)← Simkg(R)

: A(crs, auxR) = 1

]

holds for all efficient adversary A, and:

Pr

(R, auxR)← RG(1λ)
(crs, tdk)← Simkg(R)

(x,w, st)← A1(crs, auxR)

π ← Prove(ek, x, w)

:
A2(st, π) = 1

R(x,w) = 1

 ≈

Pr

(R, auxR)← RG(1λ)
(crs, tdk)← Simkg(R)

(x,w, st)← A1(crs, auxR)

π ← Simprv(crs, tdk, x)

:
A2(st, π) = 1

R(x,w) = 1

holds for any efficient adversary A = (A1,A2).

Definition 2.8 (zkSNARK): A NIZK scheme Π is called
zero-knowledge succinct non-interactive argument of knowl-
edge (zkSNARK) if it satisfies Definition 2.4 and the property
of succinctness, i.e., the running time of Verify(vk, x, π) is
O(λ, |x|, log |w|) and the proof size is O(λ, log |w|).

D. Non-fungible tokens

Non-fungible token (NFT) is a type of token derived from
smart contracts. In contrast to fungible tokens standardized
by ERC-20, NFTs are unique, indivisible and not directly
interchangeable on-chain credentials. NFTs cannot be divided
into smaller units while only existing as a whole.

The Ethereum ERC-721 specification standardizes the trans-
fer, recording and tracking operations of NFTs, providing a
uniform interface and data structure [9]. Each NFT based on
the ERC-721 standard is identified by a unique tokenId
which cannot be changed within the underlying smart contract.

As digital credentials stored on distributed ledgers, NFTs
can theoretically be associated with any easily reproducible
objects such as videos, images, digital art, and other digital
assets with originality, and serve as proof of ownership and
certificates of authenticity. By using NFTs on smart contracts,
anyone can easily prove the existence and attribution of digital
assets. In addition, any successful transaction on the NFT
marketplace gives the creator a financial reward. Full historical
tradability, high liquidity and convenient interoperability make
NFT a promising intellectual property solution for digital
assets.

III. ZKDET OVERVIEW

In this section, we will first outline the basic architecture of
ZKDET by delivering a strawman design, as shown in Figure
1. After that, we will discuss several technical challenges along
with potential solutions to address them.

A. Binding data to non-fungible tokens

As mentioned earlier, NFTs are ideally suited as on-chain
credentials for digital assets and proofs of their ownership.
Any data owner can package their data holdings and mint
them into NFTs. Using the infrastructure provided by the ERC-
721 specification, data owners can freely trade tokens in the
on-chain marketplace, thereby enabling data circulation and
monetization.

To achieve this, a data owner first needs to publish its
data asset D to a decentralized storage network like IPFS,
obtaining the URI to access the data. To ensure data privacy,
the owner needs to encrypt D by D̂ ← Enc(k,D) before
uploading it. Note that content addressing in IPFS is based on
the hash digest of datasets, we can thus treat the data’s URI
as its hash commitment, i.e., URI := c ← H(D̂). Anyone
in the network can request an encrypted copy of D via the
Distributed Hash Table (DHT) using the URI.

The data owner then records the URI into the smart contract
and mints an NFT, which is the unique credential of D on
the blockchain. ERC-721 specifies that each NFT has a field
named tokenId as its unique identifier in the very contract.
Thus given a tokenId in a smart contract, anyone can index
the corresponding NFT and address D̂ in the storage network.

B. Data transformation and traceability

Regardless of the type or content of tokens, on-chain
operations can be broadly summarized as follows:

NFT Contract

Distributed Storage Network (IPFS)

Data Seller S

Data Buyer B

S S S B0 1 2 2
prevIds prevIds

mint mint mint

k1 k2 k3

k3

transformation

exchange

D0 D1 D2 D2

D̂0 D̂1 D̂2

Fig. 1. The basic workflow and structure of ZKDET.

1) Minting: publishing a new token to the blockchain via
smart contract, which puts the data asset into circulation;

2) Transferring: shifting the ownership of a token from one
address to another, indicating the exchange of ownership
of a data asset;

3) Burning: destroying an existing token in the contract,
taking the corresponding data asset out of circulation.

Nevertheless, unlike other physical or virtual assets, datasets
can be transformed or processed, as we have analyzed. Most
existing data exchange schemes fail to consider this and focus
only on one-time transactions where the ownership of data
assets is simply transferred from one entity to another. In
ZKDET, however, the recording of transformations provides
traceability to data assets, which helps buyers track data
provenance and mutations, and thus assess the value of the
data. In a nutshell, all data transformations are abstracted into
the following formulae:

4) Aggregation: merging multiple data assets into a new
one and minting a token corresponding to it;

5) Partition: splitting a data asset into several ones and
minting tokens corresponding to them;

6) Duplication: replicating the contents of a data asset and
minting a new token corresponding to the replica;

7) Processing: Mutating a data asset by computing or
calculating, and minting a new token corresponding to
the derived one.

It is apparent that any transformation in the form or content
of datasets can be achieved by combining the above operations.
To demonstrate the relationship between data assets before
and after transformations, each NFT incorporates a field called
prevIds[] which records the tokenId of all its parent
tokens. Figure 2 illustrates an example where some data assets
undergo multiple transformations, which can be traced through
prevIds[] up to their sources.

Although the inheritance relations of tokens are recorded
on the chain, the corresponding datasets are not guaranteed
to conform to the claim. A malicious P∗ can upload a false
dataset D̃ and claim that it is derived from an existing dataset
Ŝ under transformation f . Data encryption makes this attack
even easier. Since a third party does not hold the decryption
keys k1 and k2, there is no way for it to obtain the plaintexts

partition

processing

aggregation

duplication

Fig. 2. Fundamental formulae of data transformation in ZKDET.

S and D and check whether D = f(S) holds. To solve this
problem, the data owner P needs to prove in zero-knowledge
that:

1) She knows 2 datasets S = (si)i∈[n] and D = (dj)j∈[m]

which are the plaintexts corresponding to the ciphertexts
Ŝ = (ŝi)i∈[n] and D̂ = (d̂j)j∈[m], respectively, i.e.,∧

i∈[n]

ŝi = Enc(k1, si) ∧
∧

j∈[m]

d̂j = Enc(k2, dj) (1)

2) She knows the keys k1 and k2 used for encryption,
which are committed to c1 and c2 with randomness o1
and o2, respectively, i.e.,

Open(k1, c1, o1) = 1 ∧ Open(k2, c2, o2) = 1 (2)

3) D is obtained from S via f , i.e.,

D = f(S) (3)

Given that both Ŝ and D̂ can be publicly accessed, P
publishes the commitments c1 and c2 to the token along with
a proof πf by:

πf
R← Prove(ek, (Ŝ, D̂, c1, c2), (S,D, k1, k2, o1, o2, aux))

where aux is an auxiliary witness. She also needs to prove that
D is well-formed in a proof πℓ as its format matches the data
structure declared in the NFT metadata. In this way, anyone
can verify this transformation using (πf , πℓ) without knowing
any other message about S and D.

C. Data exchange with fairness and privacy

As a data exchange scheme, exchange fairness and data
privacy are primary objectives. There have been many dis-
cussions on fair data exchange, where the current de facto
standard is the Zero-Knowledge Contingent Payment (ZKCP)
protocol [10]. The ZKCP protocol is able to conduct fair data
exchanges while relying on no trusted third parties. Instead,
it uses Bitcoin scripts or smart contracts as arbiters, allowing
sellers to prove to buyers that the exchanged data D satisfies
a public predicate ϕ s.t. ϕ(D) = 1 using NIZK.

Consider an interaction of data exchange using ZKCP with
three counterparties, i.e., a seller S, a buyer B and an arbiter
J implemented by a smart contract. Before the interaction,
S launches a clock auction which locks its token for sale,

corresponding to an encrypted dataset D̂. S also attaches a
predicate ϕ of the plaintext D to the auction contract for all
potential buyers. The interaction is as follows:

1) Deliver: S is initialized by (D, k, D̂, ϕ), where k is
the encryption key. She computes the hash of k by
h ← H(k) and generates a proof of knowledge πp ←
Prove(ek, (D̂, h), (D, k)), which indicates the relation:

ϕ(D) = 1 ∧ D̂ = Enc(k,D) ∧ h = H(k)

holds. She sends the tuple (h, πp) to B.
2) Verify: B is initialized by (D̂, ϕ). Upon receiving

(D̂, h, πp), B verifies the proof πp by:

b← Verify(vk, (D̂, h), πp)

If b = 1, B submits a payment to J along with the h she
received. By doing this, she claims that anyone who can
provide a valid pre-image of h can redeem the payment
locked in the contract.

3) Open: S checks that h in J is correct and the payment
locked is as previously agreed. She discloses k to J .

4) Finalize: J verifies whether h = H(k) holds and
forwards the payment to S if it is the case. Meanwhile,
B gets k from J and decrypts D̂ by D ← Dec(k, D̂).

It has been proved that any malicious buyer B∗ cannot
obtain any information about D other than what is provided by
ϕ without completing the payment. Also, no malicious seller
S∗ can obtain payment by providing D̃ which contradicts ϕ.
This ensures fairness and data privacy in data exchanges [10].

D. Issues and challenges

So far, we have introduced the main components of ZKDET
through a strawman design. However, this design has many
problems and thus cannot be applied in the real world. To solve
these problems, the following challenges should be addressed.

1) Challenge 1: How to design proof predicates and arith-
metic circuits for complicated transformations?

To prove the correlations of datasets during transformations,
predicates should be designed for NIZK proofs. However, it is
impossible to enumerate all potential operations for practical
scenarios. Nevertheless, we implement a library of funda-
mental cryptographic and mathematical gadgets to construct
predicates for complicated relations, see IV-D. In addition, we
illustrate how to combine these gadgets to provide proofs for
data processing applications with several examples in IV-E.

2) Challenge 2: How to improve the efficiency of zero-
knowledge proofs in large-scale data scenarios?

Two factors significantly restrict the efficiency and through-
put of ZKDET. One is that the proofs of encryption in πt are
redundant for continuous data transformations; the other is
that existing NIZK schemes are not suitable for large data
volumes, especially when encryption is needed. To reduce
proving time, we introduce MiMC cipher and Poseidon hash,
which can effectively reduce the number of constraints in
arithmetic circuits while obtaining security equivalent to that
of traditional cryptographic primitives, see IV-B and IV-C.

3) Challenge 3: How to preserve encryption key while
ensuring exchange fairness?

A critical flaw of the ZKCP-based exchange protocol in-
troduced in III-C is that the plaintext D can be accessed by
anyone once the exchange is finished, since S is obliged to
disclose k to J in the Open phase. Given that D̂ is publicly
stored, anyone can get k and decrypt it. A key insight of
ZKDET is to conceal k from J and only provide a proof
πk which justifies k and provides exchange fairness. We will
detail a two-phase protocol in IV-F to catch the above idea.

IV. PROTOCOLS DETAIL

In this section, we will first present the threat model of
ZKDET. Subsequently, we will elaborate on a generic data
exchange protocol which provides predicates for data trans-
formations. Finally, we will introduce a key-secure exchange
protocol which conceals encryption keys while guaranteeing
exchange fairness and data privacy.

A. Threat model and security properties

We assume that participants in ZKDET are all semi-honest,
i.e., they will follow the execution of the protocol as they
interact, but keep all intermediate computational states of the
protocol. We consider a static, malicious adversary A. Any
compromised entity can deviate from the protocol at will and
reveal its state to the adversary A.
Blockchain. ZKDET’s assumptions about blockchain systems
are no different from standard assumptions, i.e., the blockchain
is tamper-resistant and consistent. Tamper-resistance means
that once a transaction has been credited to the blockchain
and confirmed by a certain number of subsequent blocks, it
cannot be rolled back. Consistency means that after a certain
period of time, the blockchain system presents a consistent
state to the outside world, and all users have the same view of
its state. Apart from that, we assume that all users have access
to all transactions in the blockchain.
Network and Storage. We assume that the network commu-
nication between entities does not leak the content to third
parties. In addition, given corresponding URIs, all datasets in
the distributed storage are publicly available. Any persisted
dataset will not be removed unless explicitly requested by its
owner. Any tampering with dataset will result in change in its
digest and URI, and thus cannot be concealed.

B. Generic data transformation protocol

We introduced in III-B a naive protocol that implements on-
chain recording and tracking of data transformations. However,
it suffers from a significant problem. For each transformation,
πt contains two proofs of encryption for datasets before and
after mutation, as shown in Equation 1. While in continu-
ous transformations, these proofs are repeatedly included in
different πt, resulting in redundancy. To better illustrate this
issue, suppose a dataset D2 is obtained from D1 by f1, and
subsequently transformed into D3 under f2. The owner P
needs to compute πt1 and πt2 for f1 and f2 respectively, both
of which contain the proof of D̂2 = Enc(k2,D2).

πe1

πe2 πe3

πe4

πt12
πt23

πt34

Fig. 3. Chaining up proofs of transformation πt.

A critical insight is that the proofs of encryption can be
decoupled from those of transformation, which can be reused
in subsequent transformations. Suppose a data owner P owns
a dataset S and wants to transform it into a new D. To this
end, P needs to perform the following operations:

1) She commits to S by (cs, os)
R← Commit(S) and proves

that she knows a key ks that encrypts S to Ŝ, i.e.,∧
i∈[n] ŝi = Enc(ks, si) by:

πes
R← Prove(ek, (Ŝ, cs), (S, ks, os, aux))

2) She transforms S into D using f and commits to D by
(cd, od)

R← Commit(D). She then proves the relation
D = f(S) by:

πt
R← Prove(ek, (cs, cd), (S,D, os, od, aux))

3) She randomly chooses a key kd
R← K and encrypts D

by d̂j ← Enc(kd, dj) for j ∈ [m]. Similar to 1), she
generates a proof of encryption for D̂ by:

πed
R← Prove(ek, (D̂, cd), (D, kd, od, aux))

In this way, we split πf in III-B into a proof of transfor-
mation πt and two proofs of encryption πes , πed , which can
be reused later. Imagine that P continues to transform D to a
new dataset M afterward, she does not need to compute πed

once again, which halves the cost of proof generation. Another
benefit of proof decoupling is that proofs of transformation πt

can form a proof chain that provides continuous validation
from data sources, as shown in Figure 3. All statements
required for proof validation are publicly available, which
empowers participants to evaluate datasets throughout their
lifecycle.

Note that the above proofs are all based on the commitment
of datasets, where the commit-and-prove NIZK (CP-NIZK)
scheme can be utilized to enable the conjunction of relations
with shared inputs [11]. According to the composition property
of CP-NIZK, the combination of the above three separate
proofs are equivalent to πt.

C. Optimization for encryption and commitment
A critical problem of the above protocol is that provid-

ing NIZK proofs for encryption and commitment is time-
consuming and arithmetic-intensive. The circuits constructed

for AES and SHA-256 contain a tremendous number of non-
linear operations, making the number of constraints unaccept-
able. Even if the circuits are optimized, an implementation of
AES for about 1000 blocks still contain millions of constraints,
which is completely impractical [12].

1) MiMC cipher: To reduce the circuit complexity, MiMC
cipher is used as the encryption primitive, which is circuit-
friendly in NIZK [7]. It requires only 82 multiplications in Fp

to guarantee 129 bits security. In ZKDET, we use MiMC-p/p
in counter (CTR) mode for data encryption. Entry di in dataset
D is firstly encoded to d̄i ∈ Fp and encrypted by:

d̂i ← d̄i +MiMC(k, nonce+ i)

where k is the encryption key and nonce ∈ Fp is a randomly
chosen field element. Taking advantage of multi-core architec-
ture and pipeline construct, MiMC-CTR can be optimized for
parallel computing and significantly improve proof efficiency.

2) Poseidon hash: Similar to MiMC, Poseidon is a cryp-
tographic hash scheme optimized for arithmetic circuits. It is
based on a strategy called substitution-permutation networks
and partial rounds structure. For messages with the same bit
length, the number of constraints by Poseidon is only about
one-eighth that of Pedersen commitment [8]. For a permutation
with width w and R rounds, optimized Plonk initializes only
(w + 11)R point productions with proof containing w + 3
elements in G and 2w elements in GF(p). This optimization
further brings about a 25-40 times performance improvement.

D. Predicates for transformations

A generic data transformation protocol is introduced in IV-B
without clarifying the generation of πt for a specific formula f .
Predicates are developed for fundamental formulae classified
in III-B, along with corresponding arithmetic circuits.

1) Duplication: the data owner P replicates an existing
dataset S = (si)i∈[n] to get D = (dj)j∈[m], and proves
that the content of both is identical, i.e.,

n = m ∧
∧
i∈[n]

di = si

The number of constraints is of O(n) level and contains
no additive or multiplicative calculations on Fp.

2) Aggregation: P combines x existing datasets (Sk)k∈[x]

into a derived D ∈ Fm
p . Suppose that Sk is converged

into D in order of k. Let Sk = (skj)j∈[nk] ∈ Fnk
p , P

needs to prove that D contains all elements in (Sk)k∈[x],
i.e.,

m =

x∑
k=1

nk ∧
∧
i∈[x]

 ∧
j∈[ni]

sij = d∑i−1
k=1 nk+j

3) Partition: P splits S into y derived (Dk)k∈[y]. She

needs to prove that the split is exhaustive and mutually
exclusive with respect to S, i.e.,∧

k∈[y]

nk ̸= 0 ∧ S =
⋃

k∈[y]

Dk ∧
∧

i,j∈[y]
i̸=j

Di ∩Dj = ∅

4) Processing: Different from transformations above, there
is neither a fixed paradigm nor an exhaustive list for data
processing. Nevertheless, a gadget library is designed for
common calculations such as:

• Mathematical primitives: algebraic and matrix op-
eration, logarithmic computation, linearization, etc.;

• Cryptographic primitives: encryption, hashing, el-
liptic curves and pairing, Merkle proof, etc.

Also, we will present below several examples on how
to utilize these gadgets to provide predicates for com-
plicated data processing operations.

E. Applications in data processing

ZKDET allows data owners to train models based on
datasets and sell them as data assets. This allows participants
to not only exchange data contents but also to delegate
computational tasks in the marketplace. To present a proof of
concept, we use two examples below to show how to combine
gadgets and design predicates for model training scenarios.

1) Proof for logistic regression: We begin with logistic re-
gression analysis, which is a commonly used statistical model.
Suppose that the entries in the source S are a series of points
[(xij)j∈[k], yi] and the derived D ∈ Fk

p is the parameters
(β̂j)j∈[0,k] of predictor function ŷ = β̂0 +

∑
j∈[k] β̂j x̂j . Then

the loss function is:

J(β) = − 1

n

n∑
i=1

[yi log hβ(xi) + (1− yi) log(1− hβ(xi))]

where hβ(x) = [1 + exp(−βTx)]−1 and β = (βj)j∈[0,k]. To
verify D, P needs to prove that the difference of J between
the last two iterations is less than a certain threshold ϵ, i.e.,

||J(β(k+1))− J(β(k))|| ≤ ϵ

Since D contains only β(k) for the k-th iteration, β(k+1) can
be derived from β(k) in the proof by:

β
(k+1)
i = β

(k)
i − αxi [hβ(xi)− yi]

where α is the step size. Although multiple iterations are
required to compute β using gradient descent, proving the
correctness of D requires only the last two iterations and is
thus computationally acceptable. Note that when constructing
circuits, nonlinear operations like exponential and logarithmic
need to be evaluated, where our gadget library can be of help.

2) Proof for transformers: ZKDET is also promising in the
field of deep learning. Take the recently popular transformer
as an example. The transformer model consists of encoder and
decoder structures, which are composed of attention construct
and feed-forward neural network, respectively.

Multi-Head Attention consists of multiple scaled dot-
product attention constructs, where the input S = (si)i∈[n]

is transformed into queries qi, keys ki and values vi by inner
product, such as qi = si ·WQ. The output is:

zi = softmax(
qi · kTi√

dk
) · vi

Feed-Forward Neural Network consists of two fully con-
nected layers where the activation function of the first layer
is ReLU and the second layer has no activation function. For
the output zi of attention, the corresponding output is:

di = max(0, zi ·W1 + b1) ·W2 + b2

Then the derived dataset is D = (di)i∈[m]. Although model
training may involve multiple rounds of iterations, proving the
correctness of the model is a one-time task that can be done in
O(n) time. Moreover, the proof of decoders can be parallelized
using Teaching Forcing to further optimize the performance.

F. Key-secure data exchange protocol

ZKCP protocol is introduced for data exchange in III-C with
a significant vulnerability. It discloses the key k in the Open
phase, which can be acquired by any third party thereafter
to decrypt the publicly stored D̂. To address this issue, we
develop a key-secure two-phase data exchange protocol, where
key-secure indicates that k will never be disclosed but only
passed between S and B. It is called a two-phase protocol
because there are two phases in the interaction where D and
k are delivered and verified, respectively.

As in III-C, the seller S is initialized by (D, k, D̂, ϕ) s.t.
ϕ(D) = 1 and D̂ = Enc(k,D), the buyer B is initialized by
(D̂, ϕ), and the arbiter J is initialized with the commitment
c of k. The interaction between S and B is as follows:
1) Data validation phase

• S commits to D by (cd, od)
R← Commit(D) and gener-

ates a proof πp
R← Prove(ek, (D̂, cd, ϕ), (D, k, od, aux))

which indicates:

ϕ(D) = 1 ∧ D̂ = Enc(k,D) ∧ Open(D, cd, od) = 1

holds. She sends the tuple (cd, πp) to B.
• B verifies πp by b← Verify(vk, (D̂, cd, ϕ), πp). If b = 1,

she randomly chooses a key kv
R← K and sends it back to

S. Meanwhile, she submits a payment to J along with
a hash hv by hv ← H(kv).

2) Key negotiation phase
• S derives a key kc by kc ← k+kv and generates a proof

πk
R← Prove(ek, (kc, c, hv), (kv, k, o, aux)) indicating:

Open(k, c, o) = 1 ∧ hv = H(kv) ∧ kc = k + kv

holds. She sends (kc, πk) to J .
• J verifies πk by b ← Verify(vk, (kc, c, hv), πk). It

forwards the payment to S if b = 1, otherwise returns
it to B.

• B derives k by k ← kc − kv and decrypts D̂ by D ←
Dec(k, D̂).

The interaction is shown in Figure 4. Based on this protocol,
buyers and sellers only need to pass the key outside the
blockchain and verify it via J . Note that in data verification
phase, we do not commit to k as in ZKCP but the plaintext D
to i) introduce arguments modularity and relation composition
using the CP-NIZK scheme; and ii) reuse the proofs πe and
πf generated in the data transformation protocol.

S(D, k, D̂, ϕ) J (c) B(D̂, ϕ)

(cd, od)
R← Commit(D)

πp
R← Prove(ek, (D̂, cd, ϕ), (D, k, od, aux))

(cd, πp)

Verify(vk, (D̂, cd, ϕ), πp)
?
= 1

kv
R← K, hv ← H(kv)

hv

payment lockedhv

kv

hv
?
= H(kv)

kc ← k + kv

πk
R← Prove(ek, (kc, c, hv), (kv, k, o, aux))

(kc, πk)

Verify(vk, (kc, c, hv), πk)
?
= 1

kc
k ← kc − kv

D ← Dec(k, D̂)get paid

Fig. 4. Key-secure data exchange protocol.

Notice that the relation proved by πp has two parts, i.e., i)
D̂ comes from the encryption of D; and ii) D satisfies the
predicate ϕ. A key insight is that the argument for i) can be
provided by exactly πe and thus does not need to be computed
again during the interaction, while the argument for ii) can be
provided by proofs of f in the vast majority of cases. This is
because, for any D, complete knowledge can be learnt through
its data sources and undergoing transformations. While the
latter can be provided by chains of πf in IV-B, and the former
can be produced by decentralized oracles like DECO [13].

V. SECURITY ANALYSIS

In this section, we prove that the generic transformation
protocol and the two-phase data exchange protocol introduced
in Section IV are secure.

A. Security of transformation protocol

Regarding the generic data transformation protocol, we have
the following theorem.

Theorem 5.1: Given that the commitment scheme Γ satisfies
definition 2.2 and 2.3, and the NIZK scheme Π satisfies
definition 2.5, 2.6 and 2.7, the generic data transformation
protocol in IV-B has the following security properties:

• Integrity: no potential malicious prover P∗ can falsify a
source dataset Ŝ or make the verifier V accept invalid
statements about f . That is, except for a negligible
probability, P∗ cannot convince V to accept any of the
false πes , πed or πt.

• Privacy: no potential malicious verifier V∗ who knows
only public statements can learn any knowledge about
datasets before and after transformation f (S and D)
other than what can be directly inferred from f .

1) Proof of integrity: Given the computational knowledge
soundness of Π, except for a negligible probability negl(λ),
no potential malicious prover P∗ can generate a false πt to
convince the verifier V to accept D = f(S).

On the other hand, if V accepts πes at the end of the
interaction, there must exist an extractor Ext which, except
for a negligible probability negl(λ), is able to output a tuple
(S′, k′s, o

′
s) s.t.∧

i∈[n]

ŝi = Enc(k′s, s
′
i) ∧ Open(k′s, cs, o

′
s) = 1

where (s′i)i∈[n] = S′. Suppose V accepts πes but Ŝ does
not come from the encryption of S. The case must be that
P∗ constructs (ŝ′i)i∈[n] ̸= (ŝi)i∈[n] s.t. ŝ′i = Enc(k′s, s

′
i)

holds for i ∈ [n]. However, this breaks the semantic security
of the MiMC cipher. From another perspective, suppose V
accepts πes but the key used to encrypt S is not k′s. Then
the case must be that P∗ constructs a ks ̸= k′s such that
Open(ks, cs, o

′
s) = 1. This evidently contradicts the binding

property of the commitment scheme Γ. The case of πes is thus
proved, which of πed is identical without further ado.
2) Proof of privacy: We still consider the case of πt first. Due
to the zero-knowledge property of Π, any potential malicious
verifier V∗ cannot learn anything about S and D other than
f and what can be directly inferred from it.

For the case of πes , if prover P interacts with a malicious
prover V∗, a simulator SimV∗ can be constructed which is
indistinguishable from the honest P from the perspective of
V∗ on input (Ŝ, cs). The flow of SimV∗ is as follows:

1) SimV∗ runs the simulator Sim of Π and gets π′
es ←

Sim(ek, (Ŝ, cs)). It sends the tuple (Ŝ, cs, π
′
es) to V∗.

2) SimV∗ aborts.
Given the zero-knowledge property of Π, π′

es sent by SimV∗

is indistinguishable from πes sent by an honest P . Also, given
MiMC’s security against ciphertext-only attack (COA), it is
computationally infeasible for V∗ to infer ks or S from Ŝ.
From another perspective, given the hidden property of Γ, it
is infeasible for V∗ to derive ks from cs and decrypt Ŝ. The
case of πes is thus proved, which of πed is identical without
further ado. □

B. Security of exchange protocol

Regarding the key-secure two-phase data exchange protocol,
we have the following theorem.

Theorem 5.2: Given that the commitment scheme Γ satisfies
definition 2.2 and 2.3, and the NIZK scheme Π satisfies
definition 2.5, 2.6 and 2.7, the key-secure data exchange
protocol in IV-F has the following security properties:

• Buyer fairness: for any potential malicious seller S∗, the
buyer B must be able to learn some D such that ϕ(D) =
1 if its balance increases with non-negligible probability.

• Seller fairness: for any potential malicious buyer B∗, if
the balance of the seller S with whom she interacts does
not increase, B∗ must not be able to learn anything about
D other than what can be directly inferred from the
predicate ϕ, except with negligible probability.

1) Proof of buyer fairness: If the buyer B interacts with a
malicious seller S∗ and the balance of S∗ increases, both of
the conditions below must be satisfied:

1) πp received by B in the data validation phase satisfies:

Verify(vk, (D̂, cd, ϕ), πp) = 1

2) πk received by J in the key negotiation phase satisfies:

Verify(vk, (kc, c, hv), πk) = 1

Given the knowledge soundness of Π, if condition 1) is
satisfied, except for negligible probability negl(λ), there must
exist an extractor Ext1 outputing (D′, k′, o′d) s.t.

ϕ(D′) = 1 ∧ D̂ = Enc(k′,D′) ∧ Open(D′, cd, o
′
d) = 1 (4)

Similarly, if condition 2) is satisfied, there must exist an
extractor Ext2 outputing (k′v, k

′′, o′) s.t.

Open(k′′, c, o′) = 1 ∧ hv = H(k′v) ∧ kc = k′′ + k′v (5)

except for negligible probability negl(λ). Given the binding
property of Γ, it must be the case that k′′ = k′ by Equation 4
and 5 except for negligible probability, and hence kc = k′+k′v .

Suppose that at the end of the interaction, the balance of
S∗ does increase yet B does not learn D′, then the case must
be that during the key negotiation phase, B computes some
k ̸= k′. To this end, S∗ needs to construct a πk to convince
J that its overt kc satisfies kc = k + k′v , which evidently
contradicts the computational knowledge soundness of Π.
2) Proof of seller fairness: If the seller S interacts with a
malicious buyer B∗ and the balance of S does not increase,
we can construct a simulator SimB∗ which is indistinguishable
from the honest S from the perspective of B∗ on input (D̂, cd).
The flow of SimB∗ is as follows:

1) In the data validation phase, SimB∗ runs the simulator
Sim of Π and gets π′

p ← Sim(ek, (D̂, cd, ϕ)). It sends
the tuple (cd, π

′
p) to B∗.

2) In the key negotiation phase, SimB∗ runs the simulator
Sim of Π and gets π′

k ← Sim(ek, (kc, cd, hv)). It sends
the tuple (kc, π

′
k) to B∗.

3) SimB∗ aborts.
Due to the zero-knowledge property of Π, π′

p and π′
k sent by

SimB∗ are indistinguishable from πp and πk sent by the honest
S. In the case that the balance of S does not increase, either
B∗ aborts at the end of step 1), or S sees that the transaction
proposed by B∗ contains some hv and receives kv from B∗
s.t. hv ̸= H(kv), in which case S aborts at the beginning of
the key negotiation phase.

On the other hand, given the hiding property of Γ, it is
infeasible for B∗ to derive k from c or decrypt D̂. Moreover,
given the collision resistance property of cryptographic hash
function H(·), it is also infeasible for B∗ to generate another
k′v ̸= kv which satisfies hv = H(k′v). Therefore, she cannot
spoof S to obtain kc in the key negotiation phase. □

VI. IMPLEMENTATION AND EVALUATION

In this section, we present the implementation of ZKDET
and evaluate its performance in detail.

A. Implementation

We have designed and implemented a prototype of ZKDET,
which contains the following components:

• ZKDET-snark: arithmetic circuits for all NIZK proofs
in zkDET, along with the core logic of circuit compila-
tion, universal setup, proof generation and verification.
All arithmetic circuits are written in Circom, and the
proof process is implemented using Snarkjs in JavaScript,
totaling about 17k lines of code.

• ZKDET-contract: a series of smart contracts instantiating
the ERC-721 specification for token management, data
binding, token transferring and clock auctions. All con-
tracts are written in Solidity, totaling about 1.2k lines of
code after flattening.

The Circom library is used to prepare and compile the
arithmetic circuits for NIZK in ZKDET. It uses BN-128 as
the underlying elliptic curve for pairing and group operations.
Snarkjs is used for setup and proof process, which supports
universal setup in Plonk construct. As introduced in IV-C,
MiMC-CTR and Poseidon are used as encryption and commit-
ment primitives. Specifically, we use MiMC-p/p with round
r = 91 and non-linear permutation of degree d = 7 [7]; we
use x5-Poseidon-128 with RF = 8 and RP = 60, referring to
the recommended settings [8]. The two applications presented
in IV-E are also implemented to examine the availability and
performance of ZKDET in practical scenarios.

B. Evaluation on NIZK proofs

We first evaluate the performance of NIZK proofs in
ZKDET. Specifically, we examine the performance of generic
transformation protocol and key-secure exchange protocol in
terms of universal setup, proof generation and verification. All
experiments in this phase are performed under Ubuntu 20.04
on a 3.50 GHz Intel i9-11900k CPU with 64 GB of RAM.

1) Circuit pre-processing and universal setup: ZKDET
provides NIZK using the Plonk construction, which utilizes
an updatable universal structured reference string (SRS) to
eliminate dependence on trusted setups. All arithmetic circuits
are initialized using a universal ceremony and do not need to
be reset even if circuits changed. We use the Perpetual Power
of Tau ceremony conducted by Zcash and Semaphore, which
is a multi-party participatory to generate verifiable universal
parameters for circuits with up to 260 million (228) constraints.

Figure 5 illustrates the setup time under different number
of constraints. Notice that the setup time is positively related
to the number of constraints, which depends only on the input
size. For reference, one of the datasets used in our experiments
contains about 20,000 entries with a total size of about 1 MB,
which derives a circuit with about 220 constraints. The result
shows that ZKDET can be set up in less than 2 minutes for
regular-sized datasets using consumer-grade hardware, and the
resulting circuit can be reused later.

2) Proof generation: Both πe in the transformation pro-
tocol and πp in the exchange protocol contain proofs of
encryption and can therefore be evaluated together. Figure 6

104 105 106

100

101

102

103

number of constraints

tim
e

co
ns

um
ed

/s

Fig. 5. Time consumed for circuit setup.

101 102 103 104

10−1

100

101

102

data size/KB

tim
e

co
ns

um
ed

/s

πp
πe
πk

πf (duplication)
πf (aggregation)
πf (partition)

Fig. 6. Time consumed for proof generation.

100 101 102 103 104
10−2

10−1

100

101

102

103

data size/KB

tim
e

co
ns

um
ed

/s

zkDET-prove
zkDET-verify
ZKCP-prove
ZKCP-verify

Fig. 7. Running Time of ZKDET and ZKCP.

TABLE I
PROOF OF TRANSACTION FOR DATA PROCESSING APPLICATIONS.

Task Entries /
Parameters

Proof
Generation Time Proof Size

Logistic
Regression

495 3.11s 2.42 KB
1,963 21.73s 2.41 KB

10,210 131.44s 2.45 KB

Transformer 201,163 1min29s 2.43 KB
1,016,783 8min12s 2.41 KB

TABLE II
GAS CONSUMPTION OF SMART CONTRACTS IN ZKDET.

Operation Gas Consumed
ZKDET Contract Deployment 1,020,954
Verifier Contract Deployment 1,644,969

Token Minting 106,048
Token Transferring 36,574

Token Burning 50,084

Data
Transformation

Aggregation 96,780
Partition 83,124

Duplication 94,012

shows the time consumed to generate these proofs, showing
that for a dataset of about 5MB, it takes about 3 minutes for
proof generation. Meanwhile, the πk in the exchange protocol
is entirely independent of the data size. As shown in Figure 6,
it takes only about 120ms to generate πk. The time consumed
for proof of transformation πt depends on the complexity of
transformation f , while proofs for aggregation, partition and
duplication are essentially data comparisons. Results show that
proofs for these operations take only about 10s for a 5MB
dataset.

We also evaluate the proof of transformation for data
processing applications. Table I shows that it takes about 20s to
generate a proof for logistic regression with a dataset of about
2,000 entries, and about 2 minutes when the number grows to
10,000. For proof of transformer on NLP datasets, the results
show that for a model with about 1 million parameters, the
time consumed is about 8 minutes.

3) Proof length and verification workload: All proofs con-
structed by Plonk contain only 9 elements in G1 and 6 in
Fp, independent of the complexity of relations to be proved
[6]. Verification in ZKDET is also succinct compared with

that in ZKCP. It requires only 2 pairings and 18 exponential
calculations on G1, while the latter contains 3 pairings and
ℓ exponential operations in G1, where ℓ is the number of
public inputs [6]. As shown in Figure 7, time consumed for
verification remains succinct as the input size varies, remaining
less than 0.1s even with large inputs.

C. Evaluation on Smart Contracts

1) Contract deployment and invocation: All smart contracts
in ZKDET are deployed on the Rinkeby testnet of Ethereum,
including the backbone NFT contract and auction contracts.
The deployment is a one-time effort, costing approximately
1,020,000 gases. Gas spent for method invocation is also
evaluated, including those for token minting and transforming,
as shown in Table II. Since NFTs only record and manage
metadata of datasets, gas spent for invocation is quite eco-
nomical.

2) On-chain proof verification: Due to their succinctness,
all proof verification can be delegated to smart contracts,
which reduces the workload to O(1) level by hardcoding
group and field elements in them. Experiments show that
deploying such a verifier contract costs about 1,640,000 gases
and supports unlimited free verifications thereafter.

VII. RELATED WORK

A. Blockchain-based data exchange and sharing

While traditional data exchange and sharing schemes can
lead to data leakage or performance bottlenecks due to cen-
tralized structures, the introduction of blockchain has been
proven to solve these problems. Many studies use blockchain
for data exchange in healthcare, smart vehicles, IoT and e-
finance, using transactions as on-chain credentials for data
assets [14], [15].

In addition to recording exchanges and committing datasets,
blockchain can also provide functionalities such as transaction
auditing, access control and identification for marketplaces,
while providing services like dispute arbitration and data
warranties for upper-layer applications [16]. Many systems
have been proposed in recent years to use blockchain or
smart contracts to enhance data interoperability and unlock
the economic benefits of data assets [17].

Nevertheless, given the unique properties that data can be
replicated and redistributed, these studies fail to address data
privacy and copyright issues. While many of them propose en-
cryption of managed datasets, the need for data authentication
necessitates the existence of some super-privileged individuals
[15]. Apart from that, blockchains can only provide one-way
bindings of data to credentials without the ability to track
data using transactions, which leads to the inability to address
copyright infringement.

B. Fair data exchange
It has been well discussed that fair data exchange cannot

be achieved solely by buyer and seller without the help of a
trusted third party. But this limitation can be bypassed using
blockchain, whose consensus mechanism can act as an arbiter.

The Zero-Knowledge Contingent Payment (ZKCP) protocol
pioneered this field, introducing NIZK to prove that a certain
predicate is satisfied without disclosing the exchanged dataset
[18]. However, the initial version of ZKCP could only support
a small number of simple predicates with time-consuming
interactions. Several subsequent improvements significantly
enhance its scalability and performance, introducing Groth16
construction for more generic predicates [10]. Nevertheless,
the trusted setup of Groth16 limits its application in trustless
scenarios. The recently proposed ZKCPlus scheme further
improves the throughput and rate of exchanges, making it
practical on consumer-grade hardware [19].

Another research direction is to circumvent expensive zero-
knowledge by lightweight authenticated data structures (ADS)
to provide proofs for predicates. The most representative
scheme is FairSwap which constructs proofs of misbehavior
based on Merkle proofs [20]. This construction allows a
spoofed buyer to initiate a complaint to the arbiter contract.
FairSwap performs well in optimistic scenarios where both
buyer and seller remain honest. However, in the event of a
dispute, the transaction cost for proof verification increases
with data size, which severely limits its usefulness.

VIII. CONCLUSION

In this paper, we solve the problem of privacy-preserving
data exchange in a public blockchain platform. To provide
dynamic data traceability, privacy and exchange fairness, we
propose a traceable data exchange scheme called ZKDET.
Given that existing schemes cannot provide data traceability
with encrypted and transformed datasets, we introduce NFT
as on-chain credentials to trace all data transformations, and
design an efficient generic transformation protocol to verify all
transformations with zero knowledge. In addition, we propose
a key-secure exchange protocol that can guarantee exchange
fairness and data privacy in the scenario of public data storage.
Evaluations show that ZKDET can be applied to data exchange
scenarios under variant data transformations and maintain a
relatively high throughput under high data volumes.

ACKNOWLEDGEMENT

This work was partially supported by the HK RGC GRF
PolyU No. 15216220 and 15217321.

REFERENCES

[1] F. Stahl, F. Schomm, and G. Vossen, “The data marketplace survey
revisited,” ERCIS Working Paper, Tech. Rep., 2014.

[2] N. Hynes, D. Dao, D. Yan, R. Cheng, and D. Song, “A demonstration
of sterling: a privacy-preserving data marketplace,” Proceedings of the
VLDB Endowment, vol. 11, no. 12, pp. 2086–2089, 2018.

[3] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi,
“Concurrency and privacy with payment-channel networks,” in Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, 2017, pp. 455–471.

[4] M. Jourenko, K. Kurazumi, M. Larangeira, and K. Tanaka, “Sok: A
taxonomy for layer-2 scalability related protocols for cryptocurrencies.”
IACR Cryptol. ePrint Arch., vol. 2019, p. 352, 2019.

[5] R. Xu, G. S. Ramachandran, Y. Chen, and B. Krishnamachari,
“Blendsm-ddm: Blockchain-enabled secure microservices for decen-
tralized data marketplaces,” in 2019 IEEE International Smart Cities
Conference (ISC2). IEEE, 2019, pp. 14–17.

[6] A. Gabizon, Z. J. Williamson, and O. Ciobotaru, “Plonk: Permutations
over lagrange-bases for oecumenical noninteractive arguments of knowl-
edge.” IACR Cryptol. ePrint Arch., vol. 2019, p. 953, 2019.

[7] M. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen, “Mimc:
Efficient encryption and cryptographic hashing with minimal multi-
plicative complexity,” in International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 2016,
pp. 191–219.

[8] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger,
“Poseidon: A new hash function for zero-knowledge proof systems,” in
30th {USENIX} Security Symposium ({USENIX} Security 21), 2021.

[9] Q. Wang, R. Li, Q. Wang, and S. Chen, “Non-fungible token (nft):
Overview, evaluation, opportunities and challenges,” arXiv preprint
arXiv:2105.07447, 2021.

[10] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo, “Zero-
knowledge contingent payments revisited: Attacks and payments for
services,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017, pp. 229–243.

[11] M. Campanelli, D. Fiore, and A. Querol, “Legosnark: Modular design
and composition of succinct zero-knowledge proofs,” in Proceedings of
the 2019 ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 2075–2092.

[12] D. Demmler, G. Dessouky, F. Koushanfar, A.-R. Sadeghi, T. Schneider,
and S. Zeitouni, “Automated synthesis of optimized circuits for secure
computation,” in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, 2015, pp. 1504–1517.

[13] F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “Deco: Lib-
erating web data using decentralized oracles for tls,” in Proceedings of
the 2020 ACM SIGSAC Conference on Computer and Communications
Security, 2020, pp. 1919–1938.

[14] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in 2016 IEEE 18th international conference on e-health network-
ing, applications and services (Healthcom). IEEE, 2016, pp. 1–3.

[15] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang,
“Blockchain for secure and efficient data sharing in vehicular edge
computing and networks,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4660–4670, 2018.

[16] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using blockchain
to protect personal data,” in 2015 IEEE Security and Privacy Workshops.
IEEE, 2015, pp. 180–184.

[17] W. J. Gordon and C. Catalini, “Blockchain technology for healthcare: fa-
cilitating the transition to patient-driven interoperability,” Computational
and structural biotechnology journal, vol. 16, pp. 224–230, 2018.

[18] W. Banasik, S. Dziembowski, and D. Malinowski, “Efficient zero-
knowledge contingent payments in cryptocurrencies without scripts,” in
European symposium on research in computer security. Springer, 2016,
pp. 261–280.

[19] Y. Li, C. Ye, Y. Hu, I. Morpheus, Y. Guo, C. Zhang, Y. Zhang,
Z. Sun, Y. Lu, and H. Wang, “Zkcplus: Optimized fair-exchange protocol
supporting practical and flexible data exchange,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 3002–3021.

[20] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly
exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 967–
984.

	Introduction
	Preliminaries
	Notation
	Commitment scheme
	Non-interactive zero knowledge (NIZK)
	Non-fungible tokens

	zkDET overview
	Binding data to non-fungible tokens
	Data transformation and traceability
	Data exchange with fairness and privacy
	Issues and challenges
	Challenge 1
	Challenge 2
	Challenge 3

	Protocols detail
	Threat model and security properties
	Generic data transformation protocol
	Optimization for encryption and commitment
	MiMC cipher
	Poseidon hash

	Predicates for transformations
	Applications in data processing
	Proof for logistic regression
	Proof for transformers

	Key-secure data exchange protocol

	Security Analysis
	Security of transformation protocol
	Security of exchange protocol

	Implementation and Evaluation
	Implementation
	Evaluation on NIZK proofs
	Circuit pre-processing and universal setup
	Proof generation
	Proof length and verification workload

	Evaluation on Smart Contracts
	Contract deployment and invocation
	On-chain proof verification

	Related Work
	Blockchain-based data exchange and sharing
	Fair data exchange

	Conclusion
	References

