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ABSTRACT
The current research on adversarial attacks aims at a single model
while the research on attacking multiple models simultaneously
is still challenging. In this paper, we propose a novel black-box
attack method, referred to as MBbA, which can attack multiple
black-boxes at the same time. By encoding input image and its
target category into an associated space, each decoder seeks the
appropriate attack areas from the image through the designed loss
functions, and then generates effective adversarial examples. This
process realizes end-to-end adversarial example generation without
involving substitute models for the black-box scenario. On the other
hand, adopting the adversarial examples generated by MBbA for
adversarial training, the robustness of the attacked models are
greatly improved. More importantly, those adversarial examples
can achieve satisfactory attack performance, even if these black-
box models are trained with the adversarial examples generated by
other black-box attack methods, which show good transferability.
Finally, extensive experiments show that compared with other state-
of-the-art methods: (1) MBbA takes the least time to obtain the
most effective attack effects in multi-black-box attack scenario.
Furthermore, MBbA achieves the highest attack success rates in
a single black-box attack scenario; (2) the adversarial examples
generated by MBbA can effectively improve the robustness of the
attacked models and exhibit good transferability.

CCS CONCEPTS
• Security and privacy → Systems security; Security of deep
learning models.
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1 INTRODUCTION
Deep neural networks (DNNs) are widely used in face recognition
[33], target tracking [8], natural language processing [18] and other
applications [21], [23]. However, many recent studies have shown
that DNNs are vulnerable to adversarial examples. The so-called
adversarial examples add imperceptible perturbations to benign
examples to generate new samples, which in turn make DNNs de-
viate from the correct prediction results. Szegedy et al. [35] first
proposed L-BFGS to generate adversarial examples, and then a
growing number of scholars have conducted lots of in-depth re-
search on adversarial attacks. After that, a series of adversarial
attack methods are proposed, such as JSMA [28], Deepfool [26], etc.
At present, adversarial attacks are mainly divided into two cate-
gories: one is white-box attack and the other is black-box attack.
The research on white-box attack is relatively mature due to that
everything about the model is knownwhile for the black-boxmodel,
the attacker has no idea about its structures, training parameters,
defense methods, etc. More importantly, real-world applications
involve more black-box models, which makes this research still
challenging and attractive.

In recent years, common black-box attacks are mainly divided
into three main categories: transfer-based attack, scored-based at-
tack, and decision-based attack. The transfer-based attack method
does not attack the black-box model directly, but constructs a sub-
stitute model with a distribution close to the black-box model. Af-
ter that, the white-box attack algorithms are used to attack the
substitute model, such as AdvGAN [38] and DaST [39]. However,
transfer-based method cannot ensure that the substitute model can
learn the generalization and robust performance of the black-box
model completely, resulting in a lower attack success rate [6]. The
scored-based attack method calculates the prediction score and
directly generates adversarial examples by estimating the gradient
of the attacked model [6], [19]. The decision-based attack method
adopts the idea of optimization with a predicted gradient to carry
out attacks [3]. However, these methods all aim at attacking a single
black-box system. The research on attacking multiple black-boxes
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Figure 1: The difference between our MBbA and previous
methods. Our uniquemodel can attackmultiple black-boxes
simultaneously while previous methods need to train a dis-
tinct attack system to attack each black-box model.

is still full of challenges. For example, some bank access control
systems require multiple identifications to pass before allowing
the door to be opened, such as fingerprint, face, voice, and other
biological characteristics of the same person [29]. In this case, the
multi-model attack needs to be completed at one time to open the
door.

A close problem to our multi-black-box attack is the multi-target
attack in [15] which is the first to propose a multi-target attack
algorithm MAN. MAN can generate adversarial examples to attack
multiple categories directly and exhibits satisfactory performance,
but this method cannot attack multiple systems at the same time.
For multiple black-boxes, the network parameters of each model
are unknown. Furthermore, input and output tasks of each model
are different, so it is difficult to effectively design a system to attack
multiple totally different models once. Therefore, our proposed
method mainly attacks two types of multiple black-boxes. The first
type has the same training dataset input, referred to as SI and the
second type has the same output distribution, referred to as SO.

In this paper, we propose a novel black-box attack method called
MBbA, which can generate multiple adversarial examples at one
time. As shown in Fig. 1, MBbA can attack multi-black-box model
simultaneously without training multiple models, which greatly
reduces training costs. Compared with existing black-box attack
algorithms, our proposed MBbA is practical. As illustrated in Fig. 2,
MBbA first adopts multiple encoders to encode the input samples
and target categories into associated spaces. Then these intermedi-
ate features are decoded into corresponding adversarial examples
with the designed loss functions. This process is end-to-end gener-
ation for multi-black-box model instead of generating by substitute
models. Extensive experiments show that according to input tar-
get categories, MBbA can efficiently seek the appropriate attack
areas from the input image, and then perform an effective attack.
This is also one of the main reasons that most of its attacks in each
model are more effective than those in single-model attack methods.
In addition, in terms of improving the robustness of the attacked
models, the adversarial examples generated by MBbA are more
effective than those generated by other state-of-the-art algorithms.
MBbA shows good transferability. Our contributions are mainly as
follows:

• To our best knowledge, this is the first work to study attacks
on multi-black-box system and our MBbA adopts an end-to-
end model to attack multiple systems once which takes less
time to achieve the most effective attack model.

• Compared to state-of-the-art methods: 1) in single black-box
attack scenario, MBbA obtains the highest attack success
rates; 2) in multi-black-box attack scenario, our method takes

the least time to achieve competitive and effective attack per-
formance; 3) its success rates on attacking multiple models
simultaneously are the best.

• The adversarial examples generated byMBbAnot only demon-
strate good transferability, but also effectively improve the
robustness of multi-black-box model.

2 RELATEDWORK
Because the attacker knows all the parameters of the white-box
models, the researches on the white-box attacks are relatively ma-
ture, such as L-BFGS [35], FGSM [13], JSMA [28], DeepFool [26],
C&W [4], etc. However, most of the realistic application systems
are black-box models, and the white-box attack methods cannot
be directly applied to these systems, so the black-box attack re-
searches have attracted the interest of many scholars. At present,
the black-box attack methods are mainly divided into three cate-
gories: transfer-based black-box attacks, decision-based black-box
attacks, and score-based black-box attacks.

Transfer-based black-box attacks: The transfer-based attack
algorithms make full use of the good transferability of adversarial
examples. Papernot et al. [28], [13] constructed a model to replace
the attacked model, and used the substituted model to generate
adversarial examples to attack the black-box (attacked) model. Liu
et al. [24] proved that the adversarial examples generated by the en-
semble method have good transferability. Dong et al. [11] designed
a momentum-based iterative algorithm to increase the success rate
of the black-box attacks. Wang et al. [37] proposed a multi-stage
network system for black-box attack by exploiting the features of
different levels, which fully demonstrates that transferability plays
an important role in the black-box attacks. However, the transfer-
based attack methods have poor performance in target attacks [39],
and in the real world, it is difficult to find a suitable substitute model
to replace the black-box model.

Decision-based black-box attacks: Decision-based attack
method was first proposed by Brendel et al. [3], which first con-
structs a large perturbation, and then slowly reduce the perturbation
while maintaining the adversarial properties. Cheng et al. [19] re-
garded the black-box attack problem as a real-valued optimization
problem and achieved good performance. Based on the outputs of
the attacked model, Chen et al. [5] updated the direction of the
gradient on the gradient boundary to generate the corresponding
adversarial sample. Dong et al. [12] evaluated the robustness of
face recognition systems adopting decision-based black-box attack
method. The algorithms mentioned above have poor performance
on ℓ∞. To solve this problem, Chen et al. [7] proposed an efficient
decision-based ℓ∞ attack algorithm to improve the attack success
rate via flipping the signs of a few entries in perturbations. At
present, all works on decision-based attack algorithm are still lim-
ited to a single model, but it has not been applied to multi-model
attack. The main reason is that in a multi-model system, each sub-
model requires different gradient learning, which results in great
computational overhead, and it is difficult to ensure that every
model converges.

Score-based black-box attacks:The score-basedmethodsmainly
continuously optimize the perturbed samples through the corre-
sponding outputs or losses from querying the black-box models,
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so as to obtain suitable adversarial examples to achieve successful
black-box attacks. Chen et al. [6] put forward a zeroth order opti-
mization approach to generate adversarial examples. By querying
the attacked models, Bhagoji et al. [2] proposed a novel Gradient Es-
timation black-box attack method to generate adversarial examples.
An adaptive random gradient estimation method was proposed
by Tu et al. [36] to balance query counts and distortion. Recently,
many studies [14], [22], [34] have begun to speed up the black-box
query process and achieved good results. Although these meth-
ods mentioned above show good performance in single black-box
attack scenarios, there are still no studies on multi-black-box at-
tack. Our MBbA is the first to propose the research on attacking
multi-black-box model simultaneously.

3 METHODOLOGY
In this section, we first introduce the attack scenarios involved in
this paper, then describe our MBbA model in detail, and finally
present the optimization process of the entire system.

3.1 Attack Scenario
3.1.1 Non-target Attack vs. Target Attack . A non-target attack is
to make the target model misclassify the perturbed sample while it
does not specify which category it is classified into. However, in
the target attack scenario, the generated sample is misjudged as a
specified label by the attacked model. Due to that the non-target
attack scenarios are relatively simple, our MBbA carries out the
following study based on the target attacks.

3.1.2 Multi-black-box Attack Scenario. Most practical applications
are basically black-box models, many of which seem to be unre-
lated. In fact, some black-box models are related to each other. For
example, in the defense process of the COVID-19 [10] epidemic,
the video surveillance system and the face swiping access control
system can be applied to the same patient. Different systems of
this type can be regarded as having the same input dataset, and
the outputs may be same, partly same or completely different. The
other type is that the inputs are not required to be same, but the
outputs are same. For example, the face temperature recognition
instrument repeatedly detects that the temperature of a person is so
high to predict the person infected with COVID-19 while the intel-
ligent medical system detects that the same person is infected with
COVID-19 with nucleic acid analysis. These two types are mainly
focuses of this paper. To facilitate identification, the scenario with
the same input is referred to as the SI scenario and the scenario
with the same output is referred to as the SO scenario.

3.2 Code for Target Label
To generate target adversarial examples faster and more effectively,
we use the target label as an input to make the entire adversarial
learning move in the direction of the target. Assuming that the real
labels of the datasets in this paper are all represented as one-hot
vectors, and given an image, its target label is also an one-hot vector.
To facilitate training, we code the target label from a one-hot vector
z to a three-dimensional tensor Z ∈ R𝐾×𝐻×𝑊 , where 𝐻 and𝑊
represent the height and width of a benign image, and 𝐾 denotes
the total label categories. In the same way as the one-hot vector,

only one feature map is filled with ones, and the other feature maps
are filled with zeros. Fig. 2 shows an example for that process.

3.3 Multi-black-box Attack
MBbAmainly attacks two types of multiple black-boxes which have
the same input (SI) and the same output (SO). As indicated in Fig.
2, MBbA first transforms benign samples into adversarial exam-
ples through encoding and decoding processes based on the target
categories. Then by querying the black-box models, they estimate
whether the adversarial examples are misjudged as the specified
targets. In addition, different loss functions are used to ensure that
realistic and effective adversarial examples are generated, thereby
increasing the attack success rates.

3.3.1 Adversarial Example Generation. As shown in Fig. 2, MBbA
has two different function encoders, one is used to extract the fea-
tures of the input images, and the other is to encode the target
categories into the space associated with the input samples. After
that, the encoded features are decoded to generate the correspond-
ing adversarial examples through the optimization process.

SI Scenario: Given an input sample (x𝑆𝐼 (𝑖), y𝑆𝐼 (𝑖)), 𝑖= {1, ...,𝑀},
𝑀 represents the total number of samples, and the input category
is a misjudgment label which is same or completely different. Of
course, these are only two cases considered in this paper. When the
adversarial sample is misjudged as the same target by all black-box
models, the target label at this time is y′

𝑆𝐼
(𝑖) and the system is

denoted as MBbA𝑆SI. If the generated sample is misjudged as the
different ones, the target labels at this time are {y′1

𝑆𝐼
(𝑖), ..., y′𝑁

𝑆𝐼
(𝑖)},

where 𝑁 represents the number of all categories, and this scenario
is referred to as MBbA𝐷SI. Therefore, the input samples and target
labels are first transformed into



{𝐸 (x𝑆𝐼 (𝑖)), {𝐸1 (y′𝑆𝐼 (𝑖)), ..., 𝐸𝑁 (y′𝑆𝐼 (𝑖))}︸                                  ︷︷                                  ︸
Same Target

}

{𝐸 (x𝑆𝐼 (𝑖)), {𝐸1 (y′1𝑆𝐼 (𝑖)), ..., 𝐸𝑁 (y′𝑁𝑆𝐼 (𝑖))}︸                                  ︷︷                                  ︸
Different Targets

} , (1)

where 𝐸 (·) and {𝐸1 (·), ..., 𝐸𝑁 (·)} denote the corresponding en-
coders.

Then, we connect the encoded features according to the chan-
nel direction. For example, the intermediate features of a sample
𝐸 (x𝑆𝐼 (𝑖)) ∈ 𝑅𝐶×𝐻×𝑊 and those of a target label 𝐸1 (y′𝑗𝑆𝐼 (𝑖)) ∈
R𝐾×𝐻×𝑊 are merged to become {𝐸 (x𝑆𝐼 (𝑖)) + 𝐸1 (y′𝑗𝑆𝐼 (𝑖))}
∈ R (𝐾+𝐶)×𝐻×𝑊 . After that, an additional convolutional layer is
used to adjust these fused features to obtain the final intermedi-
ate features with the size of 𝐶 × 𝐻 ×𝑊 . Finally, these features are
decoded into the corresponding adversarial examples.

SO Scenario: At this time, all black-box models have the same
output distribution, and each misclassification target is same. Be-
sides, only one encoder is used to encode the target label y′

𝑆𝑂
(𝑖), 𝑖

= {1, ...., 𝑁 }, where 𝑁 represents the number of all categories. In this
case, the input datasets can be divided into two categories in this
paper: exactly same and completely different, so the intermediate
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Figure 2: Full schematic diagram ofMBbA. ’SI scenario’ denotes thatmultiple black-boxes have the same training dataset input
while ’SO scenario’ means that multiple black-boxes have the same output distribution.

features are



{𝐸 (y′
𝑆𝑂

(𝑖)), {𝐸1 (x′𝑆𝑂 (𝑖)), ..., 𝐸𝑄 (x′𝑆𝑂 (𝑖))}︸                                    ︷︷                                    ︸
Same Dataset

}

{𝐸 (y′
𝑆𝑂

(𝑖)), {𝐸1 (x′1𝑆𝑂 (𝑖)), ..., 𝐸𝑄 (x′𝑄
𝑆𝑂

(𝑖))}︸                                   ︷︷                                   ︸
Different Datasets

} , (2)

where 𝑄 indicates the total number of different datasets, x′j
𝑆𝑂

(𝑖)
represents the 𝑖th sample in the 𝑗th dataset, and x′

𝑆𝑂
(𝑖) signifies

the 𝑖th sample in the dataset. We need to emphasize that: 1) in
the case of the same input dataset, all input images are the same
each time and this scenario is denoted as MBbA𝑆SO; 2) in the case of
different datasets, to ensure a balanced learning process, we process
the size of each dataset to ensure all datasets with the same size
and this scenario is referred to as MBbA𝐷SO. The decoding process
is the same as those mentioned in SI scenario. It should be noted
here that the two scenarios MBbA𝑆SI and MBbA𝑆SO have the same
function, so we use MBbA(S) to express these two scenarios.

Smooth Loss: To reduce the influence of perturbations and
make the generated adversarial examples look smoother [27], we
use 𝑙2 loss to alleviate the adversarial effect:

ℓ
𝑗

𝑠𝑚𝑜𝑜𝑡ℎ
= | |𝐷 𝑗 (𝐸 (x𝑚 (𝑖)), 𝐸 (y′𝑚 (𝑖))) − x𝑚 (𝑖) | |2, (3)

where ℓ 𝑗
𝑠𝑚𝑜𝑜𝑡ℎ

expresses the smooth loss of the 𝑗th decoder, 𝐷 𝑗
denotes the 𝑗th decoder, 𝑚 indicates a certain scenario of SI or
SO, and x𝑚 (𝑖) and y′𝑚 respectively represent the 𝑖th sample in
the𝑚th scenario and its corresponding misclassified label. ℓ𝑠𝑚𝑜𝑜𝑡ℎ
can also be used to ensure that the generated images keep the key
information of benign images.

Perturbation Loss: To get good results with less perturbation,
we adopt the method successfully applied in [24] [4], [38] to bound

the magnitude of the perturbation, which is


ℓ
𝑗

𝑝𝑒𝑟𝑡𝑢𝑟𝑏
= E[max(0, Θ − 𝑐)]

Θ = | |𝐷 𝑗 (𝐸 (x𝑚 (𝑖)), 𝐸 (y′𝑚 (𝑖))) − x𝑚 (𝑖) | |2
, (4)

where ℓ 𝑗
𝑝𝑒𝑟𝑡𝑢𝑟𝑏

signifies the perturbation loss of the 𝑗th decoder
and 𝑐 is a user-specified bound.

3.3.2 Black-box Models as Discriminators and Classifiers . The
black-box model has two main functions in this paper: the first
one is as a discriminator, and the other is as a classifier.

Discriminator: When the black-box model is used as the dis-
criminator (𝐷), its main purpose is to judge the true and false of
the generated images. Each generated adversarial sample must be
queried through the corresponding black-box model to determine
whether it meet the set requirements. Since 𝐷 does not need to
be trained and updated, the two-player game process of the tradi-
tional GAN only needs to consider the generator (𝐺) learning (we
need to emphasize that each generator consists of a decoder and
corresponding two encoders), so the loss is

ℓ
𝑗

𝐺𝐴𝑁−𝐺 = E[log(1 − 𝐷𝑖𝑠 𝑗 (𝐷 𝑗 (𝐸 (x𝑚 (𝑖), 𝐸 (y′𝑚 (𝑖))))))], (5)

where ℓ 𝑗
𝐺𝐴𝑁−𝐺 and 𝐷𝑖𝑠 𝑗 represent the losses of the 𝑗th generator

and discriminator, respectively.
Classifier: The black-box models also serve as classifiers (𝐶),

which predict the classes of the generated samples. In this paper,
we mainly focus on the problem of target attacks, so the black-
box model has to determine whether the generated adversarial
examples are misjudged into the specified categories. At this point,
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the classification loss can be expressed as
ℓ
𝑗

𝑐𝑙𝑠
= − 1

𝐼

𝐼∑
𝑖=1

©­«
y′𝑚 (𝑖)𝐼𝑛 𝐶 𝑗 (𝜑)+

(1 − y′𝑚 (𝑖))𝐼𝑛 (1 −𝐶 𝑗 (𝜑))

ª®¬
𝜑 = 𝐷 𝑗 (𝐸 (x𝑚 (𝑖), 𝐸 (y′𝑚 (𝑖))))

, (6)

where ℓ 𝑗
𝑐𝑙𝑠

represents the classification loss of the 𝑗th black-box
model, 𝐶 𝑗 denotes the 𝑗th black-box model, and 𝐼 is the batch size.

3.4 Optimization
The parameter update process of the entire system is mainly divided
into two parts, the first part is the parameter learning of the sub-
encoder-decoder, such as (𝐸1, 𝐷1), ..., (𝐸𝑁 , 𝐷𝑁 ), the other part is to
update the parameters of a separate encoder 𝐸. The optimization
goal of the first part is

ℓ𝑗 = ℓ
𝑗

𝑐𝑙𝑠
+ 𝛼ℓ 𝑗

𝐺𝐴𝑁−𝐺 + 𝛽ℓ 𝑗
𝑝𝑒𝑟𝑡𝑢𝑟𝑏

+ 𝛾ℓ 𝑗
𝑠𝑚𝑜𝑜𝑡ℎ

, (7)

where ℓ𝑗 denotes the optimization function of the 𝑗th sub-coder-
decoder, 𝛼 , 𝛽 , and 𝛾 are used to control the importance of each
loss function, ℓ 𝑗

𝑐𝑙𝑠
is used to generate the target sample, ℓ 𝑗

𝐺𝐴𝑁−𝐺
makes the generated sample conform to the distribution of the
input dataset, ℓ 𝑗

𝑝𝑒𝑟𝑡𝑢𝑟𝑏
limits the magnitude of the perturbation, and

ℓ
𝑗

𝑠𝑚𝑜𝑜𝑡ℎ
weakens the impact of adversarial perturbation. Following

the common practice in adversarial example generation [38], [15],
[1], [39], 𝛼 , 𝛽 , and 𝛾 are set to 0.5, 0.88, and 0.6, respectively.

The parameter optimization function of the independent encoder
𝐸 is

∇𝐸 =
1
𝑁
(∇𝜃1 ℓ1 (𝜃1, 𝐷1)+, ..., +∇𝜃𝑁 ℓ𝑁 (𝜃𝑁 , 𝐷𝑁 )), (8)

where ∇𝐸 represents the afferent gradient of 𝐸, which is used to
update all the parameters of 𝐸, 𝑁 denotes the total number of the
black-box models, and ∇𝜃j ℓj (𝜃 𝑗 , 𝐷 𝑗 ) expresses the gradient passed
to the input of the 𝑗th decoder.

4 EXPERIMENTS
4.1 Experimental Settings
In this part, we introduce in detail the experimental settings, such
as datasets, implementation details, and target models.

Datasets: IMDB-WIKI [31] (523,051 images, label: age and gen-
der), CelebA [25] (202,599 images, label: 40 binary attributes an-
notations), and Morph-II [30] (55,000 images, label: age, gender,
and race) are used to verify the performance of our MBbA. In the
single-target attack and SI scenarios, since the input datasets are
same, all images in each dataset are used. In the SO scenario, to
ensure that the entire training is balanced, we need to ensure that
the sizes of different input datasets are nearly same. We first utilize
the data augmentation approach proposed in Ref. [16] to augment
the number of Morph-II, and then, more than 200,000 images are
achieved. Finally, we randomly select 200,000 images from each
dataset as the new input datasets.

Implementation Details: We utilize the similar structure of
CycleGAN [40] as the encoder and decoder, and the size of the
convolution kernel of the additional convolutional layer is 1 × 1,
and its output is 256. 𝑐 is calculated as the method proposed in MAN

[15], that is 𝑐 = 𝛿
√
𝜅 , where 𝜅= 𝐶×𝐻 ×𝑊 represents the dimension

of the input image. We set 𝛿 = 12 in the section of adversarial attack
and will analyze it in detail in the section of ablation studies. Adam
optimizer with 𝛽1 = 0.5 and 𝛽2 = 0.999 is applied to train MBbA
and the batch size is 64. All experiments are performed on NVIDIA
Tesla P100.

Target Models: VGG16 [32], VGG19 [32], and ResNet34 [17]
are used as the attacked models in this paper and their training
processes in different scenarios will be explained in the following
corresponding sections.

4.2 Adversarial Attack
4.2.1 Single Black-box Attack. In this section, we verify the attack
effect of our MBbA on a single black-box model and compare it
with state-of-the-art methods AdvGAN [38], MAN [15], and AI-
GAN [1]. In the two variants of MAN, we choose the MANc model
because it performs the best attack performance on ImageNet [9].
The predicted label at this time is gender, and the input target
category is opposite to the real label of the input image. Morph-II,
CelebA, and IMDB-WIKI are divided randomly according to the
ratio of 3 (training):1 (verification):1 (test). At this time, the attacked
models are VGG16 and VGG19, both of which are pre-trained on the
corresponding datasets, the test accuracies of VGG16 on Morph-II,
CelebA, and IMDB-WIKI are 98.6%, 99.2%, and 97.9%, respectively,
while those of VGG19 are 99.1%, 99.5%, and 99.3%, respectively. For
AdvGAN and AI-GAN, we adopt dynamic distillation method to
learn the substitute model, and to make the whole experiments
more convincing, the substitute model and the attacked model
adopt the same network structure. In addition, 𝑐 is 12

√
𝜅.

On Morph-II, CelebA, and IMDB-WIKI, all models are trained for
100k, 200k, and 300k iterations, respectively, and the initial learning
rate is 0.002. On Morph-II, when the whole iterations reach 80k, the
learning rate is decreased by 10% every 10k iterations while that
is reduced by 10 times every 20k iterations after 100k iterations
on CelebA. When the iterations are 180k, the learning rate on
CelebA is reduced by 10% every 10k iterations. On IMDB-WIKI, the
learning rate begins to change when the iterations reach 200k, and
it is reduced by 10% every 20k iterations. That will change to be
decreased by 10% every 10k iterations when the iterations reach
280k. After AdvGAN, MAN, AI-GAN and MBbA are all trained, we
use the test dataset to verify their performance. The success attack
rate is the number of attack success samples divided by the total
number of adversarial examples, which is as the evaluation standard.
Each experiment is performed 10 times, and the corresponding
average value is taken as the final result.

Table 1: Attack success rates of different algorithms on a sin-
gle black-box attack scenario (%).

Algorithms Morph-II CelebA IMDB-WIKI
VGG16 VGG19 VGG16 VGG19 VGG16 VGG19

AdvGAN 85.2 85.4 87.9 86.2 81.4 80.1
MAN 90.8 89.3 90.7 89.5 83.3 81.9

AI-GAN 88.4 87.2 88.9 87.4 82.3 81.4
MBbA 96.1 93.4 95.6 92.8 90.3 86.8

We show the attack success rates in Table 1. Compared with
other algorithms, AdvGAN is less effective in target attacks, but
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because the predicted category is gender (male or female), it is
a binary classification problem which means that the results on
target attacks and on non-target attacks are almost same. As a
consequence, the predictions of AdvGAN is close to other compared
algorithms. In addition, in black-box attacks, both AdvGAN and
AI-GAN need to train a substitute model, and then the generated
adversarial examples are used to attack the substitute model. Since
the substitutemodel cannot completely replace the original attacked
model, their performance is weaker than the other two algorithms.
Our proposed MBbA achieves the best attack performance among
all compared algorithms, mainly because MBbA directly attacks
the target model instead of a substitute model, and multiple loss
functions and input target conditions ensure realistic and effective
adversarial examples to be generated.

4.2.2 Multiple Black-boxes Attack. In this situation, we mainly
considers three scenarios: MBbA𝐷SI, MBbA𝐷SO, and MBbA(𝑆). What
we need to point out is that the six categories of Young, Male,
Eyeglasses, Mustache, Gray_Hair, and Bags_Under_Eyes are all
binary classification problems (1 or 0), so the results of each category
on target attacks and non-target attacks are basically same. In
different scenarios, each attacked model is pre-trained with the
corresponding dataset and labels. Table 2 shows the detailed pre-
training results in different scenarios. The serial numbers ((a) ,(b), ...)
indicate the corresponding training dataset or labels used by each
attacked model, and the others express that the attacked models
use the same training dataset or labels in different scenarios. The
other settings in MBbA𝐷SI, MBbA𝐷SO, and MBbA(𝑆) are the same as
those on the single model attack scenario with CelebA, CelebA, and
Morph-II, respectively. Tables 3, 4, and 5 present the attack success
rates of different algorithms under different scenarios.

Table 2: The attacked models and test accuraies, training
datasets, and output labels in different scenarios.

Scenarios Attacked Models Datasets Labels(Test Accuracies)

MBbA𝐷SI
(a) VGG16(99.1%), (b) VGG16(98.5%)

CelebA
(a) Young, (b) Male

(c) VGG19(98.7%), (d) VGG19(98.4%) (c) Eyeglasses, (d) Mustache
(e) ResNet34(97.3%), (f) ResNet(97.2%) (e) Gray_Hair, (f) Bags_Under_Eyes)

MBbA𝐷SO
(a) VGG16(99.5%) (a) Morph-II

Gender(b) VGG19(99.2%) (b) CelebA
(c) ResNet34(98.1%) (c) IMDB-WIKI

MBbA(𝑆) VGG16(98.6%), VGG19(99.1%) Morph-II GenderResNet34(99.4%)

Table 3: Attack success rates of different algorithms on mul-
tiple black-boxes inMBbA𝐷SI scenario (%).

Algorithms VGG16 VGG19 ResNet34 Training Time for
Young Male Eye. Mus. Gray. Bags. All Models(hours)

AdvGAN 81.8 85.4 74.6 75.3 67.3 63.8 201.3
MAN 87.2 91.3 79.9 77.6 65.2 71.9 190.1

AI-GAN 85.9 86.5 78.2 79.4 70.3 69.2 250.5
MBbA 89.1 90.7 83.2 81.6 68.9 67.2 45.7

From Tables 3, 4, and 5, we can conclude that with the same
size of the training datasets, as the number of neural network lay-
ers deepens, the attack success rates gradually decrease. The main
reason for these are that when the attacked models have been pre-
trained, the deeper the model, the stronger its robust performance.

Regardless of the different attack scenarios, when the attacked mod-
els are VGG16 or VGG19, our MBbA obtains the best performance
among all comparison algorithms. In addition, although its attack
performance on ResNet34 is not the best, it is close to the best
performance achieved by comparison algorithms. They are specifi-
cally: in the MBbA𝐷SI scenario, the gaps are 1.4% and 4.7%, and in
the MBbA𝐷SO and MBbA(𝑆) scenarios, the gaps are 3.8% and 1.8%,
respectively. The main reasons why MBbA can obtain satisfactory
results are as follows: 1) the benign image can quickly find the
areas that needs to be disturbed during the encoding and decod-
ing process through the input targets and optimization functions,
which allows it to generate target adversarial examples faster and
more efficiently; 2) the four loss functions ensure that MBbA adopts
the smallest and most effective perturbance to generate realistic
adversarial examples.

Table 4: Attack success rates of different algorithms on mul-
tiple black-boxes inMBbA𝐷SO scenario (%).

Algorithms VGG16 VGG19 ResNet34 Training Time for
on Morph-II on CelebA on IMDB-WIKI All Models(hours)

AdvGAN 87.2 85.6 63.4 96.3
MAN 91.6 89.7 68.2 87.2

AI-GAN 89.3 86.8 74.9 135.9
MBbA 92.4 89.7 71.1 34.5

Another obvious advantage of our MBbA is that it takes the least
time to obtain satisfactory performance while ensuring that the
most settings are the same as these in other comparison algorithms.
In the MBbA𝐷SI scenario, MBbA spends 45.7 hours training on six
different black-box models and achieves good test performance.
AdvGAN, MAN, and AI-GAN need to be trained on each black-box
model, so they need more time to complete these processes. In the
end, the total training time for AdvGAN, MAN, and AI-GAN is
4.4, 4.16, and 5.48 times longer than that of MBbA, respectively. In
the MBbA𝐷SO scenario, such ratios are 2.79 times, 2.53 times, and
3.94 times, respectively. In the MBbA(𝑆) scenario, the four attack
algorithms spend less time on training than those in the first two
scenarios. The main reason is that the dataset is Morph-II, and the
total number of images is greatly reduced. Meanwhile, MBbA still
takes the least time to train, which is 35%, 40.5%, and 29.6% of the
total training time of AdvGAN, MAN, and AI-GAN, respectively.

Table 5: Attack success rates of different algorithms on mul-
tiple black-boxes inMBbA(𝑆) scenario (%).

Algorithms VGG16 VGG19 ResNet34 Training Time for
on Morph-II on Morph-II on Morph-II All Models(hours)

AdvGAN 85.2 85.4 68.3 18.1
MAN 90.8 89.3 74.9 15.8

AI-GAN 88.4 90.1 77.6 21.6
MBbA 93.2 90.1 75.8 6.4

Finally, each attack success rate of all previous experiments
represents the result on each attackedmodel. Next, we count images
of this kind that aremisjudged as the specified targets by all attacked
models at the same time, and then calculate the ratios between them
and the total number of adversarial examples to achieve the final
attack success rates. Table 6 shows the attack success rates of the
four attack algorithms in different scenarios.
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Table 6: The attack success rates in the scenario where the
same image is misjudged by all black-box models in the test
datasets (%).

Scenario AdvGAN MAN AI-GAN MBbA

MBbA𝐷SI 40.7 54.6 50.7 60.2
MBbA(𝑆) 53.8 59.8 60.2 70.3

It can be seen from Table 6 that the attack success rates in this
case are significantly lower than all previous results. The main
reason is that the same image misjudged by all black-box models
as the specified targets is more difficult than that misjudged by a
single black-box model. Our MBbA achieves the best attack perfor-
mance among all comparison algorithms. The main reason is that
MBbA encodes the input sample and multiple input targets into
associated spaces. Then through the optimization process, it can
quickly exploit appropriate perturbance areas to generate effective
adversarial examples. That process improves the attack success
rates of multiple black-boxes simultaneously.

4.3 Adversarial Training
Adversarial training is one of the most effective ways to improve the
robustness of the attacked systems, which trains these systems by
the adversarial examples with the groundtruth labels. This section
demonstrates the following highlights through adversarial training:

(1) MBbA takes the least time to improve the robustness of
multiple models simultaneously;

(2) In the case of the same training dataset, MBbA generates the
most effective adversarial examples among all comparison algo-
rithms which show good transferability.

Setups: All experiments are implemented in the MBbA𝐷SI sce-
nario, and all the training methods and settings are the same as
those in the MBbA𝐷SI scene in Section 4.2.2. We randomly select
50,000 images from CelebA to generate six types of adversarial
examples via pre-trained AdvGAN, MAN, AI-GAN, and MBbA. The
six attacked models are fine-tuned on the corresponding adversarial
examples, and their outputs are compared with the groundtruth
labels. The maximum iterations is 80k, and the learning rate is 0.002
and it is decreased by 10% every 10k iterations when the iterations
reach 60k. As the same approach used in Ref. [15], we verify the
robustness and transferability brought by MBbA from the attack
success rates.

Table 7: Attack success rates of different algorithms when
the attacked models are fine-tuned on the adversarial exam-
ples generated by MBbA (%).

Attack Attack Fine-tuned on Adv. Exam. Generated by MBbA
Strength Methods Young Male Eye. Mus. Gray. Bags.

12
√
𝜅

AdvGAN 12.9 13.1 10.8 9.7 8.3 8.1
MAN 22.4 21.1 18.5 17.9 14.7 15.1

AI-GAN 19.4 20.3 17.2 18.5 15.1 14.7

16
√
𝜅

AdvGAN 16.8 17.4 15.1 14.2 10.4 9.9
MAN 27.2 24.9 21.1 21.5 13.9 16.9

AI-GAN 24.1 23.8 20.9 22.3 16.7 17.1

20
√
𝜅

AdvGAN 19.7 20.5 18.7 16.9 12.1 12.3
MAN 29.8 28.1 24.7 24.3 15.1 18.6

AI-GAN 26.9 27.2 23.1 25.8 18.4 19.3

Table 8: Attack success rates of MBbA when the attacked
models are fine-tuned on the adversarial examples gener-
ated by AdvGAN, MAN, and AI-GAN (%).

Attack Fine-tuned Attack Method with MBbA
Strength Methods Young Male Eye. Mus. Gray. Bags.

12
√
𝜅

AdvGAN 25.2 26.4 22.8 21.9 21.2 20.7
MAN 35.1 33.9 32.1 31 27.3 27.6

AI-GAN 32.1 33.5 30.8 31.1 27.9 26.5

16
√
𝜅

AdvGAN 30.4 31.3 28.7 27.9 23.8 23.1
MAN 41.2 39.5 34.9 34.9 28.2 30.1

AI-GAN 38.4 37.1 34.2 35.8 29.2 30.2

20
√
𝜅

AdvGAN 34.1 34.9 33.2 30.7 26.4 27.8
MAN 45.1 43.6 39.1 38.7 29.7 32.4

AI-GAN 41.2 42.4 38.3 40.1 32.9 34.7

From Tables 7 and 8, we can find that with adversarial training,
the overall defense performance of the attacked models is greatly
improved, and the corresponding attack success rates drop sharply
compared with the results achieved in the previous MBbA𝐷SI sce-
nario. Furthermore, as the attack strength (𝑐) increases, the attack
success rates gradually increase. For example, when the attack
strength is 12

√
𝜅 , the success rates of the adversarial examples mis-

leading the attacked models are low, and when the attack strength
increases to 20

√
𝜅, the overall attack success rates increase.

In addition, we can draw the two important conclusions from
Tables 7 and 8: (1) the adversarial examples generated by MBbA are
more effective; (2) the adversarial examples generated by MBbA
perform good transferability. In Table 7, when the attacked models
are fine-tuned on the adversarial examples generated by MBbA,
the attack success rates with the adversarial examples generated
by AdvGAN, MAN, and AI-GAN do not exceed 30% even when
the attack strength is 20

√
𝜅. On the contrary, when the black-box

models are fine-tuned on the adversarial examples generated by
AdvGAN, MAN, and AI-GAN, the overall attack success rates with
the adversarial examples generated by MBbA are improved greatly,
which are 10% higher than those in Table 7. For example, the best
attack success rate in Table 7 is 29.8%, while the corresponding
result in Table 8 is 45.1%. Therefore, we can infer that under the
same setting, the adversarial examples generated byMBbA aremore
effective than those generated by other attack algorithms, which
can effectively improve the robustness of the attacked systems.
More importantly, when the adversarial examples generated by
MBbA in Table 8 or generated by AdvGAN, MAN, and AI-GAN in
Table 7 are used to attack the fine-tunedmodels, the former achieves
good attack success rates, which performs good transferability.

Table 9: The time for generating 300,000 adversarial exam-
ples with different attack methods.

Methods AdvGAN MAN AI-GAN MBbA

Time(hours) 17.4 16.9 17.9 2.7

Finally, Table 9 shows the time required for AdvGAN, MAN,
AI-GAN, and MBbA to generate 300,000 adversarial examples. We
can observe that MBbA only takes 2.7 hours to accomplish that task,
while AdvGAN, MAN, and AI-GAN need 17.4 hours, 16.9 hours, and
17.9 hours, respectively. Therefore, we can conclude that our MBbA
takes the least time to obtain the effective adversarial examples.
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Figure 3: Distribution of adversarial perturbanceswithMAN
and MBbA under different attack strength.

4.4 Ablation Study
Attack Strength 𝑐: Here we are still not very clear why MBbA can
obtain satisfactory attack performance, the main reason is whether
MBbA can effectively seek appropriate perturbance areas, and then
generate the corresponding adversarial perturbances, so as to per-
form effective attacks? To resolve this confusion, we consider the
MBbA𝐷SI scenario with the most attacked models, and all settings
are the same as those in Section 4.2.2. We just choose the MAN as
the comparison method because it achieves the best performance
among the comparison algorithms. By changing the attack strength
(12

√
𝜅, 16

√
𝜅, and 20

√
𝜅), we will observe the variations in adver-

sarial perturbances. We use pre-trained MAN and MBbA under
different attack strength to generate the corresponding adversarial
examples with a randomly selected face image from CelebA, and
then calculate the pixel differences between the original image and
each adversarial example. Finally, we visualize these results with
OpenCV [20] in Fig. 3.

It can be seen from Fig. 3 that as the attack strength increases,
the adversarial perturbances become more and more obvious. In
addition, we can see that the areas where MBbA and MAN gener-
ate dense perturbances are all related to the input targets, even if
other regions are disturbed. More importantly, the perturbances
generated by MBbA is closer to the target area than those by MAN.
Therefore, we can conclude that when the input is the target cat-
egory, both MBbA and MAN can capture the associated areas for
interference. The unique structure of MBbA ensures that it can ex-
ploit those areas accurately, even for multiple attacked models. This
is why MBbA can generate the most effective adversarial examples
among all comparative methods.

5 CONCLUSION
In this paper, we first proposed an end-to-end black-box attack
method (MBbA) to attack multiple models at the same time. By

encoding the target categories and the input images into associ-
ated spaces, MBbA tries to exploit appropriate attack areas from
the input images during training, and then conducts effective at-
tacks. Compared with state-of-the-art methods: (1) MBbA not only
achieves the best performance in a single black-box attack scenario,
but also takes the least time to carry out the most effective attacks
toward multiple black-box attacks; (2) the success rates of MBbA
attacking multiple models simultaneously are the best; (3) the ad-
versarial samples generated by MBbA show good transferability
and can effectively improve the robustness of the attacked models.
More importantly, the whole process takes the least amount of
time. In future work, we will try to add the weight regularization
term to reduce the overfitting of the system, thereby enhancing its
generalization ability. Furthermore, we will consider more applica-
tion scenarios, such as enhancing the defensiveness or testing the
robustness of one system.
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