
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 1

CrowdGIS: Updating Digital Maps via Mobile
Crowdsensing

Zhe Peng, Shang Gao, Bin Xiao, Senior Member, IEEE, Songtao Guo, Member, IEEE, and Yuanyuan
Yang, Fellow, IEEE

Abstract—Accurate digital maps play a crucial role in var-
ious location-based services and applications. However, store
information is usually missing or outdated in current maps.
In this paper, we propose CrowdGIS, an automatic store self-
updating system for digital maps that leverages street views and
sensing data crowdsourced from mobile users. We first develop
a new weighted artificial neural network to learn the underlying
relationship between estimated positions and real positions to
localize user’s shooting positions. Then, a novel text detection
method is designed by considering two valuable features, includ-
ing the color and texture information of letters. In this way,
we can recognize complete store name instead of individual
letters as in the previous study. Furthermore, we transfer the
shooting position to the location of recognized stores in the
map. Finally, CrowdGIS considers three updating categories
(replacing, adding, and deleting) to update changed stores in the
map based on the kernel density estimate model. We implement
CrowdGIS and conduct extensive experiments in a real outdoor
region for 1 month. The evaluation results demonstrate that
CrowdGIS effectively accommodates store variations and updates
stores to maintain an up-to-date map with high accuracy.

Note to Practitioners—This paper was motivated by the prob-
lem of automatically updating digital maps in a manner of mobile
crowdsensing. Existing approaches can update stores in maps
through a manual survey or update roads automatically from
mobile crowdsensing data. Since the store information is a crucial
component in digital map, this paper suggests a novel approach
to automatically updating stores in digital maps through mobile
crowdsensing. This is necessary, in general, because the accuracy
of digital map will directly affect the quality of various location
based services. Therefore, the system proposed in this paper is
useful for engineers and developers to obtain precise digital maps
for localization, navigation, automatic drive, etc.

Index Terms—Digital map update, mobile crowdsensing.

I. INTRODUCTION

THE proliferation of mobile computing has prompted the
development of map construction techniques based on

Z. Peng, and S. Gao are with the Department of Computing, The Hong
Kong Polytechnic University, Hong Kong.
E-mail: {cszpeng, cssgao}@comp.polyu.edu.hk.

B. Xiao is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, and The Hong Kong Polytechnic University Shenzhen
Research Institute, Shenzhen 518000, P.R. China.
E-mail: csbxiao@comp.polyu.edu.hk.

S. Guo is with the College of Electronic and Information Engineering,
Southwest University, Chongqing 400715, P.R. China.
E-mail: stguo@swu.edu.cn.

Y. Yang is with the Department of Electrical and Computer Engineering,
Stony Brook University, Stony Brook NY 11794, USA.
E-mail: yuanyuan.yang@stonybrook.edu.

Manuscript received May 8, 2017; revised September 4, 2017; accepted
October 3, 2017.

mobile crowdsourcing. An accurate map with abundant store
information can provide users efficient location-based services,
including localization, navigation and information sharing.
However, stores may be changed and update information may
not be available in current maps. Based on real investigations,
current digital maps still lack a large amount of store in-
formation. Moreover, replaced stores and nonexistent stores
cannot be timely updated in the map neither. For example, in
some large cities around the world such as Hong Kong, Tokyo
and New York, we found plenty of stores are not labelled
in the digital map and changed very frequently. Existing
inaccurate and out-of-date maps may misguide users and even
bring dangers. Therefore, it is crucial to automatically update
stores in maps (i.e. replace old stores, add newly-built stores
and delete nonexistent stores) to provide better location-based
services.

Recently, many works have been devoted to reconstruct and
update maps. These works can be classified into three types.
The first type is to reconstruct maps based on simultaneous
localization and mapping (SLAM) [1][2]. ORB-SLAM2 [3]
utilizes monocular, stereo, and RGB-D sensors to perform
relocalization, loop closing, and reuse its map in real time
on standard CPUs. Authors of [4] present an architecture,
protocol, and parallel algorithms for collaborative 3D mapping
in the cloud with low-cost robots. The robots run a dense
visual odometry algorithm on a smartphone-class processor.
The second type updates maps through a manual survey.
The state-of-the-art Google map leverages crowdsourcing for
map updating, where user-submitted changes are integrated
into their map after a manual review. The third type is to
automatically update maps. CrowdAtlas [5] automate road
updating in a map based on people’s travels, either individually
or crowdsourced. It uses a mobile navigation app to detect
significant portions of GPS traces that do not conform to the
existing map. Roads are updated in the map when sufficient
traces are collected. AcMu [6] updates WiFi Received Signal
Strength (RSS) of each position in a map for wireless indoor
localization. By accurately pinpointing mobile devices, the
system can collect real-time RSS samples when devices are
static. With these reference data, the system updates the
complete radio map by learning an underlying relationship of
RSS dependency between different locations.

While existing studies have tried to explore the possibility of
updating map, accurate store update in a digital map deserves
more attention. First, SLAM-based approaches mainly focus
on reconstructing maps, which cannot be directly utilized
to find changes and update maps. And these methods often

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 2

need extra devices, such as depth camera, robot and vehicle.
Second, updating stores through manual reviews as Google
is both effort-intensive and time-consuming [7]. Even though
the store owner can actively apply to update his store, such
information is not sufficient and changed stores may not
be updated in time, especially for nonexistent stores. Third,
previous works can update specific components in maps. For
example, crowdAtlas [5] focuses on updating changed roads
in maps from GPS traces collected via crowdsourcing. AcMu
[6] mainly updates WiFi RSS values of different positions in
maps from sensor data. However, in a real situation, besides
roads and WiFi RSSs, stores also need to be updated, such
as replacing old stores, adding newly-built stores and deleting
nonexistent stores. The names and positions of stores in maps
are extremely valuable information for user’s reference. Third,
these studies heavily rely on sensory data. Except sensory
information, visual information can preserve more context in-
formation for an unknown environment, such as the geometric
information, color information, and text information. Visual
information based approaches may provide more accurate
geometric (shape, coordinates and orientations) information
compared with the sensor-only approaches. As a consequence,
our further research problem would be: Can we provide a
practical and effective approach to automatically update stores
in a digital map through mobile crowdsensing?

In this paper, we propose an affirmative answer through the
systematic design and implementation of CrowdGIS, which
enables stores to be automatically replaced, added, and deleted
in maps leveraging mobile crowdsourced data. Different from
GPS-based schemes, we estimate user’s shooting positions
from both GPS and images by proposed joint position esti-
mation scheme. Specially, an underlying relationship between
estimated positions and real positions is learned through de-
veloped new weighted artificial neural network. Then, a novel
text detection method is designed by considering two valuable
features to recognize complete store name instead of individual
letters as previous study. After that, we transfer the shooting
position to store position in the map. According to real
observations, we further consider three various categories of
updating stores: replacing old stores, adding newly-built stores
and deleting nonexistent stores. To accurately localize and
update changed stores, position estimation method is proposed
based on the kernel density estimate model. CrowdGIS can
save extensive manpower and time to effectively update stores
in a digital map. When more stores are updated, users can
locate their positions more precisely and receive much better
location-based services. To the best of our knowledge, our
work represents the first attempt to cope with store variations
to automatically update stores via mobile crowdsourcing.

The automatical store update requires store localization and
recognition from street views taken from smartphones. Thus,
implementing such a functional system entails distinct chal-
lenges. (1) Localizing shooting positions with high accuracy
from street views and sensing data. (2) Precisely recognizing
various stores from street views. (3) Accurately localizing the
stores recognized from street views in the map. (4) Updating
changed stores in the map based on their various categories.

To address the above challenges, we make the following

GPS Image

Shooting Position
Localization

Store Recognition

Store Localization

Sensing
data

Output

Digital
Map

Input

Map Updating

Fig. 1: The architecture of CrowdGIS system.

contributions in this work:

• We propose the CrowdGIS system architecture which
leverages mobile crowdsourced data to automatically
update stores in a digital map.

• Different from previous GPS-based schemes, we localize
user’s positions from both GPS and images. An underly-
ing relationship between various estimated positions and
the real position is learned to accurately localize user’s
shooting positions. The average localization accuracy can
be improved by about 25%.

• A novel store name recognition method is proposed by
considering two valuable features (i.e. the position of
text in image and the colour histogram). In this way, we
are able to recognize the complete store name instead of
individual letters as previous study. The results show that
about 80% store names can be accurately recognized.

• According to real observations, we consider three various
categories of updating stores: replacing old stores, adding
newly-built stores and deleting nonexistent stores. To
accurately localize changed stores, we estimate their
positions based on the kernel density estimate model.
More than 75% stores can be updated correctly, and an
average accuracy of about 8 meters can be achieved.

• In addition, we develop a prototype and conduct extensive
evaluations in a real outdoor region for 1 month. The re-
sults illustrate that CrowdGIS effectively accommodates
store variations and maintains an up-to-date map.

The remainder of this paper is organized as follows. We
first describe system overview in Section II and provide
preliminary techniques in Section III. Then we detail system
design in Section IV and present system implementations and
evaluations in Section V. We review related works in Section
VI and conclude our work in Section VII.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 3

II. SYSTEM OVERVIEW

High-performance sensors can provide abundant movement
information and street views can offer luxuriant visible and
valuable description about surroundings. Accordingly, we pro-
pose CrowdGIS system to update stores in the map leveraging
street views and sensing data crowdsourced from smartphones.
This system consists of four major stages. The CrowdGIS
system architecture is sketched in Fig. 1.

Shooting Position Localization. CrowdGIS utilizes street
views and sensing data to jointly estimate the shooting posi-
tions of captured street views. For each captured street view,
we calculate four shooting position candidates by four various
methods (i.e. one GPS method and three image matching
methods). Then the shooting position is predicted through the
relationship between four shooting position candidates and the
real shooting position, which is pre-learned from collected
training data.

Store Recognition. Considering two types of stores (with or
without logos), we integrate two store recognition approaches
to recognizing various store names from street views. For
stores with logos, we utilize the object detection technique
to recognize them from logos. For stores without logos, we
propose a novel store name recognition method to divide
and extract store names by considering two effective features
(distance and colour).

Store Localization. After recognizing store names,
CrowdGIS localizes these stores in the map based on the
captured street views and corresponding shooting positions.
We extract the position of store in street view and then
transfer it into the global coordinate system of the map through
calculating its shooting direction.

Map Updating. With the obtained names and positions of
stores from various street views, we propose a map updating
method to update stores in the map. Based on observations
in real environment, we classify changed stores into three
categories (i.e. replacing old stores, adding newly-built stores
and deleting nonexistent stores) and then update them with
corresponding approach. Specifically, we design a position
estimation model to calculate the accurate position of updating
store based on kernel density estimate model.

III. PRELIMINARIES

In this section, we briefly review some techniques behind
our system, and clarify their necessity for our purpose.

Pinhole Camera: We use the classical Pinhole Camera [8]
to model the imaging principle and photograph parameters
acquiring. In this model, 3D points in the real world and
their projected points in the image plane construct an ideal
pinhole camera, where its aperture is described as a point and
no lenses are used for focusing light. In this way, we can
ignore geometric distortions and unfocused blurring caused
by lenses and finite sized apertures. Based on this model, we
can acquire the angle of view, the size of photo from the
smartphone’s camera parameters, which are essential factors
for store recognition and localization.

Artificial Neural Network: Artificial Neural Network
(ANN) [9] is a computational multi-layer model based on

the structure and functions of interconnected neurons. ANN
is utilized to find relationships between inputs and outputs
given finite data samples. The expression of the weighted sum
to the k-th neuron in the j-th layer (j ≥ 2) is given by

Sj,k =

Nj−1∑
i=1

(ωj−1,i,kIj−1,i) + bj,k (1)

where Ij−1,i is the information from the i-th neuron in the
(j− 1)-th layer, bj,k is the bias term and Nj−1 is the number
of neurons in the (j − 1)-th layer. Thus, drawing on the
ANN framework, we can find the unknown functions between
several estimated positions and real position to accurately
localize the shooting position of captured street view.

Manhattan World Assumption: Most man-made scenes
follow the Manhattan World Assumption [10], where Cartesian
coordinate system is used as a Manhattan grid. All lines in a
photo image are assumed parallel to three directions. Accord-
ingly, we can extract text aligned with the three Manhattan
directions from street view. Hence various store names can be
recognized through clustering extracted letters and numbers.

Kernel Density Estimate: Kernel Density Estimate (KDE)
[11] is a data smoothing method used to estimate the proba-
bility density function based on a finite data sample set. Let
(x1, x2, ..., xn) be an independent and identically distribution
samples drawn from some distribution with an unknown
density function f . The unknown density function f can be
estimated by kernel density estimate (KDE) as following:

f̂h(x) =
1

nh

n∑
i=1

Ki(
x− xi
h

), (2)

where Ki(·) is the kernel function (a nonnegative function
that integrates to one and has mean zero) of the sample xi,
and h > 0 is a smoothing parameter called bandwidth. Since
the store position is unknown, the KDE is a powerful tool to
estimate the probability distribution of store position from a
finite set of candidate positions in the map.

IV. SYSTEM DESIGN

In this section, we first illustrate proposed method to local-
ize shooting positions from collected street views and sensing
data. Then we present schemes to recognize and localize
various stores from captured street views, and further update
changed stores in the map.

A. Shooting Position Localization

In this subsection, we propose a novel scheme to localize
the shooting position of street views captured by user’s smart-
phones. Traditional methods just utilize GPS data collected
by smartphones to localize shooting position. However, the
accuracy of these methods is very limited because of the
inherent error in GPS sensor. Instead, street views captured
by users also provide extremely valuable information about
surroundings, which can be utilized to localize shooting po-
sition. With this insight, we propose a novel joint position
estimation algorithm to localize the shooting position of street

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 4

Shooting
Position

Fig. 2: An example of capturing a street view from shooting
position.

view, combining the GPS data and images. Fig. 2 gives an
example of capturing a street view from shooting position.

Shooting position estimation from GPS. We collect a
sequence of GPS samples to estimate shooting position. The
GPS data contain two parts: one GPS sample while pho-
tographing which is called start data denoted as s, and a series
of GPS samples when the user moves after photographing
which are called tail data denoted as {t1, t2, · · · , tn}. The
estimated shooting position from GPS is denoted as xG. To
calculate the position xG, we utilize a road matching method
[12] to match the collected GPS data with the existing Google
map. The start data s is calibrated to a new position, which is
viewed as the estimated shooting position xG from GPS.

Shooting position estimation from image. Besides the
GPS data, we also leverage captured street view to estimate
shooting position. Through matching captured street view
with existing Google street views via three image retrieval
algorithms [13][14][15], we acquire three estimated shooting
positions donated as x1, x2 and x3.

When a user captures a street view, various parameters of
photographing are collected from smartphone. These param-
eters include the direction of photographing

−→
D , the angle of

pitching ωp, the angle of view ωv and the size of photo sp.
After a street view is captured, CrowdGIS fetches existing

Google street views of various positions around the user with
the same parameters of photographing as the user. These
Google street views are downloaded through the Google Street
View API. Since the system simulates photographing as the
user in various positions with the same parameters, this process
is called virtual photographing, as shown in Fig. 3. To narrow
the data size of downloaded street views, we obtain one
Google street view from every position around the user with
interval of 2 meters in a range of 50 meters radius.

Then CrowdGIS estimates shooting position through match-
ing captured street view with the downloaded Google street
view set. As an image can be represented by three major
categories of features (i.e. colour, texture and shape), we adopt
three state-of-the-art image retrieval methods [13][14][15] to
match street views. Each method outputs a most similar street

Fig. 3: Virtual photographing in various positions to estimate
shooting position from image.

view and its corresponding shooting position. Three estimated
shooting positions are obtained and donated as x1, x2 and x3.

Specially, if a store is changed and different from the
existing street view, our method is still effective. This is
because the GPS first gives a rough position and a limited
area. Then although a store is changed, the surroundings are
generally unchanged (such as building, nearby stores and road
signs). Street views captured by crowdsourcing will include
these unchanged surroundings. The image matching method
only finds the most similar street view. Thus, captured store
can be matched and localized, even if it has been changed.

Joint position estimation of shooting position. To accu-
rately localize shooting position from four estimated shoot-
ing positions, we propose a novel joint location estimation
algorithm based on artificial neural network. Given several
candidate shooting positions estimated from GPS and images,
a naive method is directly taking the average position of all
candidates as the shooting position. However, the average
position may not be accurate since this method supposes a
linear relationship between the candidates and real shooting
position, which is impractical and problematic. Alternatively,
artificial neural network (ANN) [9] is a superior choice
to learn the unknown function between the candidates and
real shooting position. Moreover, since the contributions of
estimated positions are not previously known, we propose a
weighted ANN to localize shooting positions.

First, we calculate the accuracy of each candidate shooting
position. For the shooting position xG estimated from GPS,
this position is calibrated from the start data s with a calibra-
tion distance d. Although the distribution of GPS location is
not perfectly Gaussian because of the shape and acceleration
of satellites and the atmosphere turbulence, its error can be
estimated and bounded by a Gaussian distribution [16]. We

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 5

1 2 3 4

h1 h2 hn-1 hn

y

Input

Layer

Output

Layer

Neuron

layer ...

pG p1 p2 p3xG x1 x2 x3

Oy

Fig. 4: Weighted artificial neural network architecture.

have the distribution of calibration distance d:

f(d) =
1√

2πσG
e
− d2

2σ2
G (3)

with the standard deviation denoted as σG. Thus, the accuracy
pG ∈ [0, 1] of estimated shooting position xG is derived from
the distribution f(d) of calibration distance d.

For the shooting positions (x1, x2 and x3) estimated from
images, the corresponding accuracy p1, p2 and p3, p1,2,3 ∈
[0, 1] is defined from the Hamming Distance H [17] of two
matched street views as follows:

pi =
Hi

sip
, (4)

where sip is the size of matched street view for shooting
position xi.

Second, we design a weighted artificial neural network
to learn the relationship between four estimated shooting
positions and real shooting position. In our case, since each
estimated shooting position contributes to the final estima-
tion differently, we design the input I of artificial neu-
ral network as weighted estimated shooting positions I =
{pGxG, p1x1, p2x2, p3x3}. With these weights, more accurate
relationship function can be learned. The architecture of
weighted artificial neural network is shown in Fig. 4. The
output of the kth neuron in the neuron layer is

Ok =
1

1 + exp(−Sk)
, (5)

where Sk is calculated from Equation (1). And the objective
function F of neural network is:

F =
1

2

Nd∑
i=1

NL∑
s=1

(Xs(i)−Os(i))
2, (6)

where Nd is the number of examples in the data set, NL

corresponds to the number of outputs of the neural network,
Xs represents the target value corresponding to the sth neuron
of the output layer. In our system, the output of weighted

(a) Recognize store name from logo. (b) Recognize store name from text.

Fig. 5: An example of store recognition.

Neural Network is the real shooting position. After the training
process, the relationship between estimated shooting positions
and real shooting position can be learned. Thus, utilizing the
relationship learned from the weighted ANN, CrowdGIS local-
izes the shooting position from estimated shooting positions.

B. Store Recognition

In this subsection, we recognize various store names from
captured street views. For stores with logos, we utilize object
detection technique to recognize their names. For stores with-
out logos, we propose a text clustering method to divide and
extract various store names.

Store name recognition from logo. Motivated by the
observation that most stores have their unique logos, especially
for chain stores, we incorporate object detection technique to
recognize stores with logos. Fig. 5 (a) gives an example. For
each captured street view, we first extract the histogram of
oriented gradients (HOG) and scale-invariant feature transform
(SIFT) features to represent image information. Then we uti-
lize the Locality-constrained Linear Coding (LLC) [18] to fur-
ther encode the local features into final image histograms. The
LLC utilizes the locality constraints to project each descriptor
into its local-coordinate system and captures the correlations
between similar local features by sharing the visual words,
thus it could give better detection results compared with the
traditional bag of visual words methods. For the image classi-
fication, we apply the Multiple Kernel Boosting (MKB) [19] to
classify the logos. MKB is a boosted Multiple Kernel Learning
(MKL) method, which combines several SVMs of different
kernels [20], [21], thus it could provide better classification
performance. Thus, through recognizing corresponding logos,
the names of stores with logos are obtained.

Store name recognition from text. Existing text recog-
nition methods could recognize letters, numbers and words
from an image with extremely high accuracy. However, in
many cases, the store name is a non-semantic word (such
as ”GEOX”) or a combination of words (such as ”bread
n butter”). Moreover, the captured street view may include
several stores. Hence, to accurately recognize stores without
logos, we propose a text clustering technique to infer various
store names based on the Manhattan World Assumption.

With the observation that most texts of store names are
aligned within the three Manhattan directions, we propose a
method to identify various store names from captured street

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 6

Shooting
Position

Captured
Street
View

θ

Fig. 6: Localizing a store in the map through calculating its
deflection angle θ.

views. Fig. 5 (b) gives an example. After recognizing all
letters and numbers from street view with text recognition [22]
technique, we characterize each letter and number with two
features: the position in street view image and color histogram.
Then we cluster these letters and numbers to separate various
store names with BIRCH [23] method. Thus, letters and
numbers with close distance and similar colour histogram are
clustered into one group to generate a store name.

C. Store Localization

In this subsection, we illustrate the method to localize
stores in the map based on the captured street views and
corresponding shooting positions. We extract the position of
store in the captured street view and then transfer it into the
global coordinate system of the map through calculating its
shooting direction.

As shown in Fig. 6, a recognized store name is bounded
with a box. We define the center position of bounding box
as the position (xlocal, ylocal) of recognized store in the
local coordinate system of captured street view. According
to the principle of pinhole imaging, the deflection angle θ of
recognized store in the global coordinate system is:

θ = ωv −
xlocal
sxp
× ωv, (7)

where ωv is the angle of view and sxp is the length size of
photo. Since the direction of photographing

−→
D collected from

smartphone corresponds to half of the angle of view (i.e. ωv
2),

the shooting direction of recognized store is obtained.
Because users capture street views within their sights, the

behind concealed stores can not be captured. Thus, with
the given shooting position and the angle of pitching ωp,
recognized store in the global coordinate system of the map
is localized at the first intersection position of its shooting
direction and walls in the Google map.

D. Map Updating

We update the maps with the obtained names and positions
of stores from street views. Changed stores are classified into

Algorithm 1: Classifying three updating categories
Input:

store tuple set from street view S = {< nis, p
i
s >};

store tuple set from map M = {< njm, p
j
m >};

Output:
category indicator vector Λ;

1 for all (Si,Mj) do
2 initialize Λ with null;
3 if nis == njm and ‖pis − pjm‖ ≤ ε then
4 Λ← maintain;
5 remove the stores from tuple set S and M;
6 end
7 if nis != njm and ‖pis − pjm‖ ≤ ε then
8 Λ← replace;
9 remove the stores from tuple set S and M;

10 end
11 end
12 for all stores left in set S do
13 Λ← add;
14 end
15 for all stores left in set M do
16 Λ← delete;
17 end

three categories, and updated with corresponding approach.
Specifically, we design a position estimation model to calculate
the position of updating store based on kernel density estimate.

Defining three updating categories. Street views captured
by smartphones provide reliable information about the changes
of stores in the map. Based on observations in real envi-
ronments, we consider three categories of updating stores:
replacing old stores, adding newly-built stores and deleting
nonexistent stores.

We classify changed stores into three updating categories
by comparing their names and positions with that in the map.
The process is described in Algorithm 1. Stores identified from
street views are denoted as a set of tuple S = {< nis, p

i
s >

}, i = 1, 2, 3..., where nis represents the name of store i and
pis represents the position of store i, and stores in the existing
Google map are denoted as a set of tuple M = {< njm, p

j
m >

}, j = 1, 2, 3..., where njm represents the name of store j
and pjm represents the position of store j. For each store in
both sets, we set an indicator Λ to indicate the category of
updating it belongs to. We compare the name and position of
each store in both sets. If the names of two stores are the
same and their positions are extremely close, it proves that
the store is unchanged in the map. If two store names are
different in the same position, the store in the map may be
replaced. For the stores identified from street views, if they
cannot be matched with the map, we classify they in the newly-
built store category. In contrast, if there exist unmatched stores
in the map, they are viewed as potential nonexistent stores.
Considering errors in the accuracy of position, we think two
positions are the same if their distance is less than ε.

Updating stores in the map. To improve the robustness of
our system, a significant principle for updating a store is that

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 7

(a) The 2D view of KDE. (b) The 3D view of KDE.

Fig. 7: Estimating probability density function of store position
based on KDE.

this store has been photographed and indicated to conduct the
same updating operation for sufficient times. Thus, for each
category of updating stores, if a store has been indicated to
conduct the same updating operation for sufficient times (more
than a presupposed support threshold), the system conducts
corresponding updating operation.

Deleting nonexistent stores. If a store in current map have
not been captured in nearby street views for more than
presupposed times, this store is viewed as nonexistent and
deleted from current map. Because a large number of street
views are collected through crowdsourcing, it is rational to
assume that real existing stores can be captured in various
street views.

Adding newly-built stores. If a store is indicated to exist in
a limited arrange for more than presupposed times, this store
is viewed as newly-built and added in current map. Because
indicated positions may not be exactly same in each time, we
estimate its precise position based on Kernel Density Estimate
(KDE) [11]. We model the distribution of the i-th indicated
position of store A as a normal distribution. The probability
density function in each position x is:

fi(x) =
1√

2πσi
e
− ‖x−µi‖

2

2σ2
i , (8)

where µi is the position of i-th candidate of store A, σi is
the standard deviation of the position. Considering the prob-
ability distributions of every indicated position are mutually
independent, we model the total probability density function
f̂ by using KDE:

f̂(x) =
1

nh

n∑
i

fi(
x
h

). (9)

According to Equation (9), we estimate the position of store
A as the position x which owns the highest f̂(x). Fig. 7 gives
an example that probability density function of store position
is estimated based on KDE.

Replacing old stores. Similarly, if a store in current map
has been indicated to change into another store for more
than presupposed times, this store is viewed as out-of-date.
The progress of replacing a store can be considered as a
combination of deleting and adding a store.

Thus, through frequently and timely updating, the map
is almost always up-to-date and gracefully adapts to real
environment changes.

V. IMPLEMENTATIONS AND EVALUATION

A. Experimental Methodology

We implement CrowdGIS on an Intel core i7 machine
with 64GB RAM and NVIDIA TITAN X graphics card.
The high-performance graphics card supports sensor data and
image analysis in this work. We conduct experiments in
an outdoor region covering about 3,000m×3,000m in Hong
Kong. Specifically, the experiment area belongs to an urban
environment, which contains 261 various stores. The stores
include convenience stores, supermarkets, banks, etc.

We recruit ten volunteers to collect street views and sensing
data for 1 month. Each user carries a smartphone during his
daily life. The smartphones are pre-installed with a developed
APP for automatically collecting sensing data while the user
captures street views. When the users travel in the experiment
area, they capture street views as they commonly do. The
users do not need to behave intentionally for the sensing data
collection. We believe that the data gathered in such way are
representative for general realistic scenarios.

Besides the street views, various sensing data are automati-
cally collected from sensors, which include GPS, accelerome-
ter, gyroscope, and compass. The users capture one or multiple
street views in one position and then continue to walk. During
this process, the sensing data collection procedure is triggered
for a certain period (ranging from five seconds to five minutes).
The collected sensing data record the orientation and position
of photographing and the subsequent moving trajectory. In
our evaluation, we collect 8,471 images and 2,615 moving
trajectories from volunteers.

To evaluate the location error of our system, we also
collect real shooting positions of street views captured by the
volunteers. For the weighted ANN utilized in shooting position
localization, we build the training data set through sampling
1000 various positions in an outdoor area (different form the
experiment area). And we set the number of neurons as 12
to achieve the best training performance after comparing with
other neuron numbers.

OpenCV library (version 3.0) is adopted to identify stores
from logos. In particular, a training data (logo images) set is
built in advance to conduct the image recognition. The training
images are collected from two parts, which contains 2,000
images about 100 various stores. The first part images (300
out of 2000 samples) are collected via photographing logos
from various viewpoints in the real situation (different form
the experiment area). The second part images (1700 out of
2000 samples) are downloaded from the internet to enable the
generality of the images.

B. Performance Evaluation

Since CrowdGIS consists of four key modules, we evaluate
each module to better understand the effectiveness and limi-
tation of system.

Performance of street view localization. We first evaluate
the localization performance of the proposed street view lo-
calization algorithm. Since street views are utilized to improve
the accuracy of localization, we compare the performance of
localization with and without image data. As shown in Fig. 8

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 8

0 10 40 50
0

0.2

0.4

0.6

0.8

1

20 30
Location error (m)

C
D

F

0 ~ 30 m
30 ~ 60 m
60 ~ 100 m

(a) Position estimation from GPS.

0 10 40 50
0

0.2

0.4

0.6

0.8

1

20 30
Location error (m)

C
D

F

0 ~ 30 m
30 ~ 60 m
60 ~ 100 m

(b) Joint position estimation from GPS and image.

Fig. 8: Performance of street view localization.

(a), localizing street views from GPS yields average accuracy
of about 10.5 meters and 90th percentile accuracy of 15.7
meters when the distance between user and street view is less
than 30 meters. An average accuracy of about 12.4 meters and
90th percentile accuracy of 20.2 meters are achieved when the
distance is between 30 meters and 60 meters. The location
accuracy degrades to 18.2 meters in average error and 27.4
meters in 90th percentile error when the distance is more than
60 meters. The results show that street view localization has
less accuracy when user stands farther away from street view.

In contrast, Fig. 8 (b) illustrates better street view local-
ization performance when CrowdGIS combines GPS data and
street views. CrowdGIS localizes street views with the average
accuracy of about 7.3 meters and 90th percentile accuracy of
11.6 meters when the distance between user and street view is
less than 30 meters. When the distance is between 30 meters
and 60 meters, street view localization yields 9.4 meters in
average error and 15.3 meters in 90th percentile error. And
the location accuracy degrades to 12.1 meters in average error
and 22.1 meters in 90th percentile error when the distance is
more than 60 meters. The high accuracy is benefitted from
the stable performance of joint position estimation combining
GPS and image data.

Performance of store identification. Precision of the
store identification is a critical criteria of CrowdGIS. We
evaluate the performance with various image resolutions and
photographing distances. Fig. 9 (a) shows the accuracy of
store identification with different image resolutions. When the

640x480 3200x2460
0

20

40

60

80

100

1024x768
 Resolution

A
cc

ur
ac

y
(%

)

logo
text
overall

(a) Accuracy of identification vs. resolution.

0~30 60~100
0

20

40

60

80

100

30~60
 Distance (m)

A
cc

ur
ac

y
(%

)

logo
text
overall

(b) Accuracy of identification vs. distance.

Fig. 9: Performance of store identification.

captured street view resolution is 640×480, store identification
has an accuracy of 78.3% from logo, 75.2% from text and
overall 76.9%. When the resolution is 1024×768, the accuracy
is 82.1% from logo, 86.2% from text and overall 84.5%. And
when the resolution is 3200×2460, CrowdGIS achieves better
accuracy with 91.5% from logo, 89.4% from text and overall
90.2%. Fig. 9 (b) shows the accuracy of store identification
with different photographing distances. When the distance
between user and street view is less than 30 meters, store
identification attains an accuracy of 89.1% from logo, 93.8%
from text and overall 91.9%. When the distance is between 30
meters and 60 meters, the accuracy is 92.8% from logo, 88.1%
from text and overall 90.1%. And when the distance is more
than 60 meters, the accuracy degrades to 85.2% from logo,
81.1% from text and overall 82.7%. Thus, with various image
resolutions and photographing distances, CrowdGIS accurately
identifies various stores from captured street views.

Performance of store localization. We use location error
to evaluate the performance of store localization. As shown
in Fig. 10 (a), CrowdGIS produces average accuracy of 8.4
meters and 90th percentile accuracy of 12.2 meters with
resolution 3200×2460. An average accuracy of 9.1 meters
and 90th percentile accuracy of 16.1 meters are achieved
with resolution 1024×768. The location accuracy degrades
to 14.4 meters in average error and 22.6 meters in 90th
percentile error with lower resolution 640×480. Fig. 10 (b)
shows the performance with various photographing distances.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 9

0 10 40 50
0

0.2

0.4

0.6

0.8

1

20 30
Location error (m)

C
D

F

3200x2460
1024x768
640x480

(a) Accuracy of localization vs. resolution.

0 10 40 50
0

0.2

0.4

0.6

0.8

1

20 30
Location error (m)

C
D

F

0~30 m
30~60 m
60~100 m

(b) Accuracy of localization vs. distance.

Fig. 10: Performance of store localization.

Store localization yields average accuracy of 8.1 meters and
90th percentile accuracy of 11.1 meters when the distance
between user and street view is less than 30 meters. An average
accuracy of 8.8 meters and 90th percentile accuracy of 14.8
meters are achieved when the distance is between 30 meters
and 60 meters. The location accuracy degrades to 12.5 meters
in average error and 24.3 meters in 90th percentile error when
the distance is more than 60 meters. Therefore in practice,
CrowdGIS localizes stores from captured street views and
collected sensing data with high accuracy.

Performance of map updating. We evaluate the perfor-
mance of map updating through two aspects: the accuracy of
updated store position and the accuracy of updated store name.
Since updating a store in the map is triggered by collecting
sufficient number of candidates, we conduct experiments with
different support thresholds. Fig. 11 (a) shows the relationship
between the accuracy of updated store position and support
threshold. CrowdGIS achieves average accuracy of about 9.1
meters and 90th percentile accuracy of 15.2 meters when the
support threshold is set to 20. If we set the support threshold
to 30, the average accuracy is 6.3 meters and 90th percentile
accuracy is 11.9 meters. A better performance is obtained with
average accuracy of 6.1 meters and 90th percentile accuracy
of 9.8 meters when the support threshold is added to 40.

Moreover, Fig. 11 (b) shows the accuracy of updating
store names in three categories. For the deleting category, 8
stores are nonexistent in the experiment area and CrowdGIS

0 10 40 50
0

0.2

0.4

0.6

0.8

1

20 30
Location error (m)

C
D

F

 40

 30
 20

(a) Position accuracy vs. support threshold.

Deleting Replacing Adding
0

10

20

30

40

Updating category

nu
m

be
r

of
 s

to
re

s

 100

ac
cu

ra
cy

 (
%

)

75

50

25

0

number of stores
ground truth
accuracy

(b) Name accuracy vs. updating category.

Fig. 11: Performance of map updating.

successfully detects and deletes 6 stores , which achieves 75%
accuracy. For the replacing category, there are 14 stores are
changed to other stores. CrowdGIS correctly recognizes 12
stores and replaces them with new stores, which achieves
85.7% accuracy. For the adding category, some stores are
not labelled in current map and some stores are new-built,
thus we find 27 stores should be added into the map.
CrowdGIS succeeds in adding 24 stores into the map with
88.9% accuracy. Fig. 12 and Fig. 13 give some examples of
updating changed stores in the map. These experiment results
demonstrate that utilizing data collected by only four volunteer
users in 1 month, CrowdGIS achieves comparable accuracy
and quantity of updating stores in the map. In other words,
maps can be continuously updated to maintain their accuracy
when abundance crowdsourcing data are collected. Thus, we
envision CrowdGIS as a fundamental and indispensable reviser
for existing maps to cope with store variations.

Limitation of the proposed CrowdGIS. Although the pro-
posed CrowdGIS performs favorably against existing methods
in updating digital maps with higher accuracy, it is far from
perfect. It might make mistakes or give wrong information in
certain cases as shown in Fig. 14. The proposed method does
not work well if a store name is designed unusually [Fig. 14 (a)
and Fig. 14 (b)], and the store name is hard to be recognized
correctly. In such case, a store may be added in the map with
a wrong name. In addition, when a store name is covered by
an obstacle, the proposed method does not work well [Fig. 14

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 10

(a) The existing map. (b) Two stores are added in the map.

Fig. 12: An example of adding stores.

(c) and Fig. 14 (d)] and the store may be deleted in the map.

VI. RELATED WORK

Among a large body of works in the literature of map
updating, the design of CrowdGIS is closely related to the
following categories of research.

Map Construction and Updating. Smartphones with vari-
ous built-in sensors [24], [25] have been thoroughly exploited
to construct maps. Recent innovations such as Walkie-Markie
[26] propose to construct indoor maps through detecting
various landmarks. Such landmarks can also be used to lo-
calize users and calibrate users’ trajectories in the localization
systems [27], [28], [29]. CrowdInside [30] is a crowdsourcing-
based system for automatically constructing maps. It leverages
various inertial sensing data collected from the smartphones
to generate user motion traces. As these works mainly aim
at constructing maps in the initializing phase, CrowdGIS is
orthogonal to them in focusing on updating existing maps
during serving phase to cope with store variations over time.
Thus, CrowdGIS is compatible to the map construction by
using schemes in these works.

Considering environmental dynamics, LEMT [31] utilizes
reference points to learn a relationship of one location and its
neighbors to cope with the RSS variations. Radio map can be
updated with high accuracy if the reference points are densely
detected. AcMu [6] exploits the static behaviors of mobile
devices to update radio maps. By pinpointing mobile devices
with a trajectory matching algorithm, the system employs them
as mobile reference points to collect real-time RSS samples
when they are static. CrowdAtlas [5] deals with the road
variations in the map. It uses mobile navigation app to detect
significant portions of GPS traces that do not conform to
the existing map. When there is sufficient exceptional traces
collected, map inference algorithms can automatically update
the map. Existing works consider various dynamics in maps,
while CrowdGIS copes with a novel kind of variation which
updates stores in the map.

Relevant Map-based Systems. Location-based service is
an extensively studied field in mobile computing. Most of the
existing systems depend on an accuracy map to achieve high
performance. OPS [32] localizes a distant object in the map
through various sensors in smartphones. ParkSense [33] is a
mobile sensing system to detect available parking spots in the
map. Borealis [34] utilizes commodity smartphones to locate

(a) The existing map. (b) Stores are replaced and deleted.

Fig. 13: An example of replacing and deleting stores.

WiFi access points in real time. Moreover, FOLLOWME [35]
is a navigation system to navigate the users to the same
destination taken by an earlier traveler with an existing map.
All these technologies provide various map-based services to
users, while CrowdGIS underpins a primary support for them
to maintain high performance in the long term.

VII. CONCLUSION

In this paper, we propose CrowdGIS, an automatic store
self-updating system for digital maps that leverages street
views and sensing data crowdsourced from mobile users.
Compared with previous works, CrowdGIS represents the first
attempt to automatically update stores in digital map. To
realize this system, shooting positions of captured street views
are first localized by a novel joint position estimation scheme.
Second, store names are recognized through detecting either
logo or text from street views. Third, we transfer the shooting
position to the location of recognized stores in the map. Fi-
nally, CrowdGIS considers three updating categories to update
them in the map based on the kernel density estimate model.
We implement CrowdGIS and conduct extensive experiments
in a real outdoor region for 1 month. The evaluation results
demonstrate that CrowdGIS effectively accommodates store
variations and maintains an up-to-date map.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61772446,
and HK PolyU 4-ZZFF. The authors would also like to
sincerely thank the editors and reviewers for their thoughtful,
constructive suggestions and comments.

REFERENCES

[1] T. Bailey and H. Durrant-Whyte, “Simultaneous localization and map-
ping (slam): Part ii,” IEEE Robotics & Automation Magazine, vol. 13,
no. 3, pp. 108–117, 2006.

[2] J. Civera, M. Ciocarlie, A. Aydemir, K. Bekris, and S. Sarma, “Guest
editorial special issue on cloud robotics and automation,” IEEE Trans-
actions on Automation Science and Engineering, vol. 12, no. 2, pp.
396–397, 2015.

[3] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, 2017.

[4] G. Mohanarajah, V. Usenko, M. Singh, R. D’Andrea, and M. Waibel,
“Cloud-based collaborative 3d mapping in real-time with low-cost
robots,” IEEE Transactions on Automation Science and Engineering,
vol. 12, no. 2, pp. 423–431, 2015.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 11

(a) Ground truth. (b) A store is added wrongly. (c) Ground truth. (d) A store is deleted wrongly.

Fig. 14: Failure cases: wrongly adding and deleting stores.

[5] Y. Wang, X. Liu, H. Wei, G. Forman, C. Chen, and Y. Zhu, “Crowdatlas:
self-updating maps for cloud and personal use,” in Proc. of ACM
Mobisys, 2013.

[6] C. Wu, Z. Yang, C. Xiao, C. Yang, Y. Liu, and M. Liu, “Static
power of mobile devices: Self-updating radio maps for wireless indoor
localization,” in Proc. of IEEE INFOCOM, 2015.

[7] S. Chen, M. Li, K. Ren, and C. Qiao, “Crowd map: Accurate recon-
struction of indoor floor plans from crowdsourced sensor-rich videos,”
in Proc. of IEEE ICDCS, 2015.

[8] P. Sturm, “Pinhole camera model,” in Computer Vision. Springer, 2014,
pp. 610–613.

[9] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. of NIPS, 2014.

[10] C. A. Vanegas, D. G. Aliaga, and B. Benes, “Automatic extraction of
manhattan-world building masses from 3d laser range scans,” IEEE
transactions on visualization and computer graphics, vol. 18, no. 10,
pp. 1627–1637, 2012.

[11] Z. I. Botev, J. F. Grotowski, D. P. Kroese et al., “Kernel density
estimation via diffusion,” The Annals of Statistics, vol. 38, no. 5, pp.
2916–2957, 2010.

[12] K. Liu, Y. Li, F. He, J. Xu, and Z. Ding, “Effective map-matching on
the most simplified road network,” in Proc. of ACM SIGSPATIAL GIS,
2012.

[13] G. Pass, R. Zabih, and J. Miller, “Comparing images using color
coherence vectors,” in Proc. of ACM MULTIMEDIA, 1997.

[14] B. S. Manjunath and W.-Y. Ma, “Texture features for browsing and
retrieval of image data,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 8, pp. 837–842, 1996.

[15] A. K. Jain, Y. Zhong, and S. Lakshmanan, “Object matching using
deformable templates,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 18, no. 3, pp. 267–278, 1996.

[16] J. Rife, S. Pullen, B. Pervan, and P. Enge, “Paired overbounding and
application to gps augmentation,” in Proc. of IEEE PLANS, 2004.

[17] L. Zhang, Y. Zhang, J. Tang, K. Lu, and Q. Tian, “Binary code ranking
with weighted hamming distance,” in Proc. of IEEE CVPR, 2013.

[18] Y. Yuan, B. Li, and M. Q.-H. Meng, “Wce abnormality detection
based on saliency and adaptive locality-constrained linear coding,” IEEE
Transactions on Automation Science and Engineering, vol. 14, no. 1, pp.
149–159, 2017.

[19] F. Yang, H. Lu, and Y.-W. Chen, “Human tracking by multiple kernel
boosting with locality affinity constraints,” in Proc. of ACCV. Springer,
2011.

[20] Y. Yuan and M. Q.-H. Meng, “Deep learning for polyp recognition in
wireless capsule endoscopy images,” Medical Physics, vol. 44, no. 4,
pp. 1379–1389, 2017.

[21] Y. Yuan, X. Yao, J. Han, L. Guo, and M. Q.-H. Meng, “Discriminative
joint-feature topic model with dual constraints for wce classification,”
IEEE Transactions on Cybernetics, 2017.

[22] C. Yao, X. Bai, and W. Liu, “A unified framework for multioriented
text detection and recognition,” IEEE Transactions on Image Processing,
vol. 23, no. 11, pp. 4737–4749, 2014.

[23] T. Zhang, R. Ramakrishnan, and M. Livny, “Birch: an efficient data
clustering method for very large databases,” in Proc. of ACM SIGMOD,
1996.

[24] J. Li, Z. Peng, S. Gao, B. Xiao, and H. Chan, “Smartphone-assisted
energy efficient data communication for wearable devices,” Computer
Communications, vol. 105, pp. 33–43, 2017.

[25] S. Gao, Z. Peng, B. Xiao, Q. Xiao, and Y. Song, “Scop: Smartphone
energy saving by merging push services in fog computing,” in Proc. of
IEEE IWQoS, 2017.

[26] G. Shen, Z. Chen, P. Zhang, T. Moscibroda, and Y. Zhang, “Walkie-
markie: indoor pathway mapping made easy,” in Proc. of USENIX NSDI,
2013.

[27] Y. Wen, X. Tian, X. Wang, and S. Lu, “Fundamental limits of rss
fingerprinting based indoor localization,” in Proc. of IEEE INFOCOM,
2015.

[28] F. Yang, Q. Zhai, G. Chen, A. C. Champion, J. Zhu, and D. Xuan,
“Flash-loc: Flashing mobile phones for accurate indoor localization,” in
Proc. of IEEE INFOCOM, 2016.

[29] X. Liu, S. Zhang, B. Xiao, and K. Bu, “Flexible and time-efficient
tag scanning with handheld readers,” IEEE Transactions on Mobile
Computing, vol. 15, no. 4, pp. 840–852, 2016.

[30] M. Alzantot and M. Youssef, “Crowdinside: automatic construction of
indoor floorplans,” in Proc. of ACM SIGSPATIAL, 2012.

[31] J. Yin, Q. Yang, and L. M. Ni, “Learning adaptive temporal radio maps
for signal-strength-based location estimation,” IEEE Transactions on
Mobile Computing, vol. 7, no. 7, pp. 869–883, 2008.

[32] J. G. Manweiler, P. Jain, and R. Roy Choudhury, “Satellites in our
pockets: an object positioning system using smartphones,” in Proc. of
ACM MobiSys, 2012.

[33] S. Nawaz, C. Efstratiou, and C. Mascolo, “Parksense: A smartphone
based sensing system for on-street parking,” in Proc. of ACM MobiCom,
2013.

[34] Z. Zhang, X. Zhou, W. Zhang, Y. Zhang, G. Wang, B. Y. Zhao,
and H. Zheng, “I am the antenna: accurate outdoor ap location using
smartphones,” in Proc. of ACM MobiCom, 2011.

[35] Y. Shu, K. G. Shin, T. He, and J. Chen, “Last-mile navigation using
smartphones,” in Proc. of ACM MobiCom, 2015.

Zhe Peng is a Ph.D. candidate in Department of
Computing, The Hong Kong Polytechnic University.
He received his BSc degree in Communication En-
gineering from Northwestern Polytechnical Univer-
sity, and MSc degree in Electronic Engineering and
Information Science from University of Science and
Technology of China, in 2010 and 2013 respectively.
His research interests include computer networks,
mobile computing, data analysis, and machine learn-
ing.

IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING 12

Shang Gao received his B.S. degree from Hangzhou
Dianzi University, China, in 2010, and his M.E.
degree from Southeast University, China, in 2014.
He is currently a PhD candidate with the Department
of Computing, The Hong Kong Polytechnic Uni-
versity, Hong Kong. His research interests include
information security, network security, and software-
defined networks.

Bin Xiao is an associate professor at Department of
Computing, the Hong Kong Polytechnic University,
Hong Kong. Dr. Xiao received the B.Sc and M.Sc
degrees in Electronics Engineering from Fudan Uni-
versity, China, and Ph.D. degree in computer science
from University of Texas at Dallas, USA. After his
Ph.D. graduation, he joined the Department of Com-
puting of the Hong Kong Polytechnic University as
an Assistant Professor. He has been the director of
the Mobile Cloud Computing Lab in the department.
His research interests include distributed wireless

systems and security, mobile data analytics, software-defined networks (SDN)
and network security. Dr. Xiao has published more than 100 technical papers
in international top journals and conferences. He has been the symposium
co-chair of IEEE ICC 2018 and Globecom 2017, and the general chair of
IEEE SECON 2018. Currently, he is the associate editor of the Journal of
Parallel and Distributed Computing (JPDC). He is the IEEE Senior member,
a member of IEEE Communications Society and ACM member.

Songtao Guo received the BS, MS and the PhD
degrees in computer software and theory from
Chongqing University, China, in 1999, 2003 and
2008, respectively. He was a professor from 2011
to 2012 at Chongqing University. He was a se-
nior research associate at City University of Hong
Kong from 2010 to 2011, and a visiting scholar
at Stone Brook University, New York, from May
2011 to May 2012. He is currently a professor at
Southwest University, China. His research interests
include wireless sensor networks, wireless ad hoc

networks and parallel distributed computing. He has published more than 80
scientific papers in leading refereed journals and conferences. He has received
many research grants as a principal investigator from the National Science
Foundation of China and Chongqing and the Postdoctoral Science Foundation
of China. He is a member of the IEEE.

Yuanyuan Yang received the BEng and MS degrees
in computer science and engineering from Tsinghua
University, Beijing, China, and the MSE and PhD
degrees in computer science from Johns Hopkins
University, Baltimore, Maryland. She is a professor
of computer engineering and computer science at
Stony Brook University, New York, and the director
in Communications and Devices Division, New York
State Center of Excellence in Wireless and Infor-
mation Technology (CEWIT). Her research interests
include wireless networks, data center networks,

optical networks, and highspeed networks. She has published more than 300
papers in major journals and refereed conference proceedings and holds seven
US patents in these areas. She has served as an associate editor-in-chief and
associated editor for the IEEE Transactions on Computers and an associate
editor for the IEEE Transactions on Parallel and Distributed Systems. She has
also served as a general chair, program chair, or vice chair for several major
conferences and a program committee member for numerous conferences. She
is a fellow of the IEEE.

