
ENDA: Embracing Network Inconsistency for Dynamic
Application Offloading in Mobile Cloud Computing

Jiwei Li Kai Bu Xuan Liu Bin Xiao
Department of Computing

The Hong Kong Polytechnic University
{csjili, cskbu, csxuanliu, csbxiao}@comp.polyu.edu.hk

ABSTRACT
Mobile Cloud Computing (MCC) enables smartphones to of-
fload compute-intensive codes and data to clouds or cloudlets
for energy conservation. Thus, MCC liberates smartphones
from battery shortage and embraces more versatile mobile
applications. Most pioneering MCC research work requires
a consistent network performance for offloading. However,
such consistency is challenged by frequent mobile user move-
ments and unstable network quality, thereby resulting in a
suboptimal offloading decision. To embrace network incon-
sistency, we propose ENDA, a three-tier architecture that
leverages user track prediction, realtime network performance
and server loads to optimize offloading decisions. On cloud
tier, we first design a greedy searching algorithm to predict
user track using historical user traces stored in database
servers. We then design a cloud-enabled Wi-Fi access point
(AP) selection scheme to find the most energy efficient AP
for smartphone offloading. We evaluate the performance of
ENDA through simulations under a real-world scenario. The
results demonstrate that ENDA can generate offloading de-
cisions with optimized energy efficiency, desirable response
time, and potential adaptability to a variety of scenarios.
ENDA outperforms existing offloading techniques that do
not consider user mobility and server workload balance man-
agement.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
networks

Keywords
Mobile Cloud Computing, smartphones, offloading, user track
prediction, cloudlet

1. INTRODUCTION
We are stepping into an era of advanced mobile comput-

ing that the widespread use of smartphones has moved peo-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ple to a further stage of digital life. Unlike feature phones
or PDAs, smartphones offer complete phone features and
desktop-class application experience while maintaining good
portability. Nowadays, people rely on their smartphones to
do many things that would be hard to imagine several years
ago, such as GPS-based navigation, social network interac-
tion, on-line video streaming, etc. It is predicted that 1.2
billion mobile devices including smartphones and tablets will
be sold in 2013 [4], which will open myriads of opportunities
for manufacturers, application developers and mobile oper-
ating system designers.

Though capable of running advanced PC-like applications,
smartphones suffer severely from limited battery life due to
their inherent small size and slowly-evolving lithium battery
technology, which greatly encumbers innovative ideas and
imagination of application developers. Fortunately, rapid
development in wireless network technology and cloud com-
puting [6, 7, 9] allows smartphones to effortlessly access
nearby computing facilities (i.e. cloudlet) [8] or remote server
clusters (i.e. data centers) [1]. Thus, one intuitive solu-
tion towards battery shortage is to offload compute-intensive
codes of an application to third-party computing facilities [2,
3, 5]. Normally, good network performance allows mobile
applications to benefit from offloading in terms of energy
consumption and response time.

Existing offloading techniques (such as MAUI [3] and Clone-
Cloud [2]) assume that network performance, especially Wi-
Fi, remains consistent throughout the offloading process.
However, keen observations prove the opposite in a real-
world environment. Consider a scenario where a user hold-
ing a Wi-Fi connected smartphone walks from one room to
another wall-separated room. As the user walks into the
second room, the Wi-Fi signal from the first room is weak-
ened by the blocking walls, thereby leading to higher net-
work transmission overheads and even network disconnec-
tion. The optimal offloading decision made in the first room
becomes suboptimal. In such case, an application would
have conserved more energy if executed on the smartphone,
compared to being offloaded to other computing facilities.
Inconsistency in network performance undermines the pos-
itive effects of offloading techniques, which calls for more
efficient mechanisms to make dynamic and accurate offload-
ing decisions. The problem becomes even more challenging
when network performance is affected not only by user mo-
bility, but also by server overload to receive dynamically
changing number of requests.

In this paper, we attempt to solve the problem of how to
make the most cost-effective offloading decisions for smart-

Cloudlet

Cloudlet

Cloudlet

Smartphones

Cellular networks

Wi-Fi AP 1

Wi-Fi AP 2

Wi-Fi AP 3

Clouds

Figure 1: Smartphones can offload applications to
cloudlets through Wi-Fi, to clouds through cellular
networks, or execute them locally. The offloading
decision usually minimizes energy consumption on
smartphones while satisfying certain conditions.

phone applications, considering user mobility, realtime net-
work performance and server loads. Specifically, smartphones
need to know which network to connect to and which com-
puting facility to offload to (see Fig. 1), with objectives
of minimizing overall execution overheads on smartphones
while satisfying certain conditions (such as maximum re-
sponse time).

To this end, we propose a three-tier architecture called
ENDA, i.e. smartphones, cloudlets and clouds, where com-
ponents on each tier interact with one another so as to op-
timize offloading decisions in constantly changing environ-
ment. ENDA has several advantages compared with previ-
ous approaches. First, it introduces user track prediction to
dynamically estimate user moving direction and track based
on current locations and historical user traces in database
servers on clouds. This helps further lower the chances of
network performance downgrading and network disconnec-
tion caused by frequent user movements. Second, ENDA
considers server-side loads and network quality (mainly of
cloudlets), and implements a simple management mecha-
nism to balance workloads among cloudlets. Third, most
operations in ENDA are transparent to smartphones, and
smartphones only need to communicate very few data with
servers on clouds. This can further reduce energy consump-
tion on smartphones. We summarize our contributions as
follows.

1. We propose ENDA, a novel three-tier architecture that
involves smartphones, cloudlets and clouds into the
process of making offloading decisions, which is dif-
ferent from existing approaches that only use smart-
phones. Such division of labor can further reduce en-
ergy consumption on smartphones. Most complex com-

putations and continuous environment profilers are ex-
ecuted on clouds or cloudlets. Smartphones are only
required to transmit very few data.

2. ENDA considers user mobility, realtime network per-
formance and server loads. Therefore, ENDA can make
more efficient offloading decisions than existing ap-
proaches that ignore the issue of network inconsistency.
In addition, ENDA implements a fault-tolerant mech-
anism to handle inaccurate offloading decisions.

3. We design a greedy searching algorithm to predict user
track based on user traces collected in database servers.
We also design a Wi-Fi AP selection scheme that it-
eratively seeks the most energy efficient Wi-Fi access
point for offloading.

4. Preliminary simulation results prove that ENDA can
make better offloading decisions in terms of energy ef-
ficiency under different circumstances, compared with
previous approaches that randomly select network ser-
vice providers.

Next, we introduce the background of application offload-
ing methods and motivation of our work in Section 2. Sec-
tion 3 first presents a high-level overview of ENDA system
architecture, and then discusses three important compo-
nents of ENDA in detail. In Section 4, we also explain the
fault-tolerant mechanism adopted in ENDA. Evaluation and
conclusion can be found in Section 5 and Section 6, respec-
tively.

2. BACKGROUND AND MOTIVATION
Compute-intensive applications, if executed locally on smart-

phones, usually demand a large quantity of CPU cycles,
thereby draining batteries fairly fast. By virtue of ubiq-
uitous access to servers through wireless networks, appli-
cations on smartphones can now be offloaded partially or
completely to nearby cloudlets or distant clouds, thus saving
energy while achieving desirable response time. Current of-
floading techniques usually employ static analyzer, dynamic
profiler and optimization solver that are all implemented on
smartphones to cooperatively make optimized offloading de-
cision [2, 3, 5]. Static analyzer is used to mark which parts
within application codes can be offloaded. Dynamic profiler
monitors smartphone hardware usage, application informa-
tion and network performance. The outputs of static ana-
lyzer and dynamic profiler serve as input for optimization
solver that makes the final optimized offloading decisions.

Nevertheless, existing approaches implicitly assume that
smartphones are connected to networks of constant latency
and bandwidth. We argue that wireless network perfor-
mance is inconsistent due to the inherent mobility of smart-
phone users. It is most likely that optimization solver would
generate offloading decisions that should have been bene-
ficial, but actually drain more batteries since user mobil-
ity causes network disconnection. Note that once discon-
nected from network, the offloaded application waits for re-
connection, thus prolonging response time, or is re-executed,
thus consuming more energy. We propose to utilize GPS, a
feature commonly seen in smartphones, to collect user traces
and store them in database servers on clouds. They will
be compressed into useful information that can be used to
predict user track. We believe that integrating user track

A
P

P
 IN

F
O

Figure 2: ENDA System Architecture

into the process of making offloading decision improves the
efficiency of application offloading, as it will not choose net-
works that may disconnect smartphones.

3. ENDA ARCHITECTURE
ENDA is a three-tier architecture, i.e. smartphones, cloudlets

and clouds, where components on each tier interact with one
another, aiming at optimizing the offloading decisions for
smartphone applications. The key idea is to select the most
energy efficient network for application offloading based on
user track prediction and other environment factors. Through
integrating user mobility, network quality and server load
into decision making, ENDA minimizes the unnecessary over-
heads of data re-transmission or program re-execution, which
usually result from network performance downgrading or
network disconnection.

In ENDA, smartphones are required only to communicate
very few data with clouds, including application informa-
tion and geographical locations, thus preserving more en-
ergy than previous approaches of placing the whole decision
making on smartphones. In order to facilitate user track
prediction, traces of smartphone users are usually collected
and stored in database servers on clouds. We argue that as
nowadays it is trivial to locate smartphones users through
either GPS or cellular network, user trace collection is not of
technical challenges, but more of moral and privacy issues.
Users may be required to sign agreement to avoid such issue.

ENDA shifts the responsibility of profilers from smart-
phones to cloudlets, to save energy on smartphones and
to monitor environment factors more accurately, including
server loads and network performance. These cloudlets are
presumably connected with public Wi-Fi stations, and the
distribution map of Wi-FI APs is always known (e.g. the
PCCW company provides thousands of Wi-Fi APs covering
most regions in Hong Kong as shown in Fig. 3). We argue
that it is possible for clouds to maintain the same distribu-
tion maps of cloudlets as of Wi-Fi. Thus, based on smart-
phone users’ locations, clouds are able to query cloudlets for
realtime environment factors through wired network.

The most complex computations in ENDA are executed
on clouds, including user track prediction and Wi-Fi AP

Figure 3: Google Map for PCCW Wi-Fi Locations
in Hong Kong

selection. To improve accuracy of user track prediction,
ENDA uses database servers on clouds to collect user traces,
and implements aggregation algorithms to compress them
to useful routes. When a smartphone initiates an offload-
ing request, ENDA attempts to find a route that matches
most the smartphone’s reported locations. We design a Wi-
Fi AP selection scheme to filter out those networks that
are either connected with overloaded cloudlets or will dis-
connect smartphones at some point. Then the selection
scheme chooses one qualified network with lowest latency
while achieving specified response time. Fig. 2 provides a
high-level overview of the ENDA architecture.

In the next few sections, we give a more detailed descrip-
tion of important components in ENDA. First, we discuss
cloudlets and how profilers monitor environment factors in
Section 3.1. Followed is an introduction of algorithms used
in user track prediction in Section 3.2. In Section 3.2, we
present the component of Wi-Fi AP selector that imple-
ments our designed Wi-Fi AP selection scheme.

3.1 Cloudlets and Profilers
Offloading applications to nearby cloudlets through Wi-

Fi is arguably more energy efficient than to distant clouds,
since wireless local area network usually has lower latency
that benefits latency-sensitive offloading more. Neverthe-
less, cloudlets are usually limited in computing capability
and storage capacity. In order to guarantee quality of ser-
vice, cloudlets must constrict the number of offloading re-
quests and shall not accept new requests if recourse usage
exceeds specified percentage. On the other hand, as more
smartphones are offloading applications to a cloudlet, aver-
age bandwidth per user is bound to decrease, prolonging the
time needed to transmit the same size of data (i.e. response
time). Signal collision and network congestion also increase
latency, which affects adversely the offloading overheads (as
shown in Table 1 [3]).

Unit: mj Wi-Fi(25ms) Wi-Fi(50ms) 3G(220ms)
10kB 330 542 1573
100kB 576 979 2762

Table 1: Offloading overheads are mainly related to
network latency and offload data size.

In ENDA, we implement profilers on cloudlets, which can
monitor load factor, average bandwidth per user and net-
work latency more accurately. Since an offloading request
triggers a Virtual Machine (VM) to run on cloudlets, we re-
fer to the ratio of the number of running VMs versus overall
VM capacity as the load factor ρ of cloudlets. We refer to
average bandwidth per user as B, and latency as L. When
a query from clouds arrives, cloudlets usually respond with
specific values in <ρ, N , B, L>, where N is the Wi-Fi access
point name.

3.2 User Track Prediction
In ENDA, user track prediction is one important module

implemented on clouds. It predicts the most probable user
track based on reported user locations and collected user
traces in database servers. These collected user traces are
stored in the form of 2-D coordinate <x, y>, with tag infor-
mation of time and date. Simple aggregation algorithms are
implemented to process these traces so that a list of routes
List<R> is generated. Each route in List<R> is comprised
of a series of geographically continuous coordinates List<x,
y>.

We cannot guarantee finding a route in List<R> which
matches exactly with reported user locations, because the
GPS-based location measurement is of errors. Thus, we
propose a greedy searching algorithm to predict user track.
The goal is to find the route that is geographically nearest
to the reported locations. We set a distance threshold α to
filter out apparently irrelevant routes so as to improve the
searching efficiency. Let <x′, y′> denote location coordi-
nate reported by the user and List<x, y> a list of location
coordinates for each route <R> stored in database servers.
Then the route <R> to be considered qualified must satisfy
that there exists at least one coordinate <x, y> such that
d =

p
(x′ − x)2 + (y′ − y)2 ≤ α. Alg. 1 presents a function

called FindRoutes which inputs List<R> and outputs a
list of qualified routes List<R′>.

Algorithm 1: FindRoutes(List<R>, <x′, y′>, α)

Input: List<R>: a list of routes to be compared with,
<x′, y′>: reported location, α: distance
threshold

Output: List<R′>: a list of routes found qualified
List<R> ← null;
for all R ∈ List<R> do

for all coordinate <x, y> in R do
// Calculate distance between reported

and stored location

d =
p

(x′ − x)2 + (y′ − y)2;
if d ≤ α then

add this R to List<R′>;
break;

end

end

end
Return List<R′>;

To improve prediction accuracy, the user is required to
report not only current location but also previous continu-
ous locations. We differentiate these locations by adding a
subscript i indicating the number of locations reported. We

refer to the subscript i−1 as the current report while 0 as the
most previous. FindRoutes is iteratively invoked on each lo-
cation coordinate in the list of reported locations denoted as
List<x′, y′>. The final output is the list of qualified routes.
For each qualified route, its distances with each reported
location are calculated and then aggregated. These aggre-
gated distances are then compared, and the route with the
smallest one is chosen as the ultimate output Rmin. Alg. 2
formally presents the algorithm.

Algorithm 2: Finding the smallest aggregate distance

Input: List<x′, y′>: a list of reported locations,
List<R>: a list of all routes stored in the
database, α: distance threshold

Output: Rmin: the route with the smallest aggregate
distance

Rmin ← null;
i ← List<x′, y′>.length;
dmin ← i ∗ α;
// Find qualified routes

while i ≥ 1 do
List<R> ← FindRoutes(List<R>, <x′i−1, y′i−1>,
α);
i ← i− 1;

end
// Find route with smallest aggregate distance

for all R ∈ List<R> do
Calculate the aggregate distance d between
List<x′, y′> and R;
if d < dmin then

Rmin ← R;
dmin ← d;

end

end
Return Rmin;

3.3 Wi-Fi AP Selector
The goal of Wi-Fi AP selector is to find the most energy

efficient offloading Wi-Fi AP and, if any, forward it back to
the requesting smartphone. Fig. 4 illustrates an example of a
smartphone user faced with multiple Wi-Fi APs. The design
of Wi-Fi AP selector follows three fundamental principles:
1)achieving workload balance among cloudlets, 2)avoiding
Wi-Fi disconnection due to user mobility, and 3)minimizing
transmission overheads through Wi-Fi. To be specific, the
selector declines cloudlets with load factor ρ ≥ 80% (de-
fault) so that workloads can evenly be distributed among
all participating cloud-lets. Then, the selector filters out
Wi-Fi APs that cannot maintain connectivity with smart-
phones along the estimated route, in order to avoid Wi-Fi
disconnection. Finally, the selector chooses the Wi-Fi AP
with lowest latency while achieving desirable response time,
so as to minimize the overheads of the latency-sensitive of-
floading. Note that except application data size, latency is
considered as one significant factor to measure offloading
overheads (see Table. 1).

The outputs of profilers on cloudlets and user track pre-
diction, namely List<ρ, N , B, L> and Rmin, as well as
application information reported by the user, combine to
serve as the inputs for Wi-Fi AP selector. We describe how
Wi-Fi AP selector works as follows.

Figure 4: An example of a smartphone user faced
with multiple choices of Wi-Fi APs. Note that we do
not deem Wi-Fi AP N4 qualified, although it covers
the latter part of the user track.

1. The selector filters out Wi-Fi APs with ρ ≥ 80% (de-
fault) in List<ρ, N , B, L>. The new list is denoted
as List′<ρ, N , B, L>.

2. The selector calculates the overall time tj needed to
complete the whole offloading for each Wi-Fi AP Nj

in List′<ρ, N , B, L>. Normally, tj = D/Bj , where
Bj is average bandwidth per user and D is data size
to be offloaded.

3. For each Wi-Fi AP Nj in List′<ρ, N , B, L>, the se-
lector continues calculating the distance djk between
Nj ’s base station location and each coordinate <xk,
yk> in the estimated route Rmin, until djk ≥ rmax,
where rmax is the radius of the maximum coverage cir-
cle of Nj to transmit data effectively. Then the selec-
tor calculates the route length lj between the starting
coordinate <x0, y0> and the ending coordinate <xk,
yk>, and the time t′j = lj/s needed for the user to
walk the length lj with constant walking speed s.

4. The selector further filters out Wi-Fi APs with its over-
all time tj greater than t′j . The new list is denoted as

List
′′
<ρ, N , B, L>.

5. The selector chooses the Wi-Fi AP Nj with lowest la-

tency in List
′′
<ρ, N , B, L>.

6. If tj ≤ tapp, where tapp is the maximum response time
for the application, then the selector will forward this
Wi-Fi AP Nj back to the smartphone. If not, remove

Nj out of List
′′
<ρ, N , B, L> and return to Step 5.

Normally, Wi-Fi AP selector can find at least one Wi-Fi
AP that satisfies the conditions of keeping Wi-Fi always con-
nected and response time shorter than specified. In the case
of failing to find any qualified Wi-Fi AP, the selector would
notify the requesting smartphone to either offload through
cellular networks or execute applications locally. In our fu-
ture work, we will introduce a delay offloading mechanism
to improve the success rate of finding qualified Wi-Fi AP. It

is possible that some Wi-Fi APs does not cover the starting
part of the user track, but will do as the user moves along the
track. Thus, under the delay offloading mechanism, these
APs will be considered qualified and then compared with
other qualified APs.

4. FAULT-TOLERANCE DESIGN
In ENDA, there exist a number of factors to mislead Wi-Fi

AP selector, resulting in making suboptimal or even inaccu-
rate offloading decisions. These factors can be mistakenly
predicted user track, variable network latency and unstable
bandwidth, etc. Because user track is predicted based on
collected user traces, it is difficult to guarantee that users
follow the predicted user track every time. During the of-
floading process, it is also difficult to guarantee that network
performance remains unchanged. Hence, we propose a fault-
tolerant mechanism to tackle these problems.

The fault-tolerant mechanism is designed mainly to han-
dle mistakenly predicted user track and network disconnec-
tion. First, we propose a remedy that will initiate another
offloading request to clouds, if the user’s subsequent loca-
tions do not fit in the predicted track during specified tol-
erating time. However, if track mismatch is identified after
tolerating time, no new offloading requests will be initiated.
Second, we adopt similar methods for network disconnection
as in previous offloading techniques, i.e. either to wait for
re-connection with previous Wi-Fi AP, or to initiate a new
request to clouds for offloading decisions.

5. EVALUATION
To evaluate ENDA, we simulate a scenario where a smart-

phone user walking in a constant speed would like to offload
applications to cloudlets through Wi-Fi. We assume that
the estimated user track, the distribution map of Wi-Fi APs
and their bandwidth and latency are given in advance. The
objective of this simulation is to compare the energy effi-
ciency of offloading decisions made by ENDA and existing
approaches. We wrote the simulation source codes in graph-
ical user interface with over 300 lines of Java language.

In the simulated scenario, we set the number of Wi-Fi APs
available as four, their maximum radius of effective cover-
age circle as uniformly 100 m. We also record the available
bandwidth and latency of each Wi-Fi AP in Table 2. Mean-
time, we specify the estimated track and direction that the
user would follow. Fig. 5 is a figure generated by our sim-
ulation program according to parameters above. Note that
the track direction is from left to right.

Wi-Fi A Wi-Fi B Wi-Fi C Wi-Fi D
Bandwidth 1 Mbps 2 Mbps 1.5 Mbps 3 Mbps
Latency 50 ms 25 ms 75 ms 25 ms

Route covered 85 m 38 m 205 m 136 m

Table 2: Available bandwidth, latency and covered
route length for each Wi-Fi AP

In our experiments, we vary the application data size from
1 Mb to 1000 Mb, to observe how offloaded data size would
affect the final offloading decisions in ENDA. First, the al-
gorithms implemented in Wi-Fi AP selector generates the
results of the covered route length for each Wi-Fi AP, which
are also recorded in Table 2. Obviously, the selector excludes

Figure 5: The simulated scenario where a smart-
phone user is faced with multiple Wi-Fi APs

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200

U
pl

oa
di

ng
 T

im
e

(s
)

Application Data Size (Mb)

Wi-Fi AP A

Wi-Fi AP B

Wi-Fi AP C

Figure 6: Offloading time of different application
data sizes for each qualified Wifi AP

Wi-Fi AP D out of the list of qualified APs, since it cannot
cover where the user starts. Assuming that users walk in an
average speed of 1.3 m/s, the selector can easily calculate
the maximum offloading times for each qualified Wi-Fi AP,
which are respectively 65 s, 29 s, and 157 s. Fig. 6 illustrates
how offload time changes as application data size varies for
different Wi-Fi AP. Note that the end of each curve corre-
sponds to the maximum offloading times of each Wi-Fi AP.

As offloading overheads are affected largely by network
latency as shown in Table 1, we conclude the simulated re-
sults using latency as the only metric. For application data
size less than 58 Mb, all Wi-Fi APs are qualified and Wi-
Fi AP B is chosen due to its lowest latency 25 ms. When
application data size falls into range between 58 Mb to 65
Mb, Wi-Fi AP A and C are qualified, and A is chosen be-
cause it has lower latency than C, although A has a lower
bandwidth. If application data size exceeds 65 Mb but less
than 235 Mb, Wi-Fi AP C is the only option left. Once ap-
plication data size is greater than 235 Mb, the selector will

immediately inform the requesting smartphone to either ex-
ecute the application locally or wait a few seconds to request
again.

Existing approaches select Wi-Fi APs randomly, which
is different from ENDA. Without considering user mobility
and network quality, they would choose each AP (i.e. A, B
and C) uniformly at random regardless of different applica-
tion data size. Under this scenario, as application data size
varies, existing approaches would yield the most energy effi-
cient decisions only with a probability of 1/3, while ENDA
can generate optimal decisions that adapt to nearly all data
sizes.

6. CONCLUSIONS
In this paper, we propose ENDA, a three-tier architec-

ture that makes adaptable energy efficient offloading deci-
sions in constantly changing environment, such as frequent
user movements, varying server loads and network perfor-
mance. ENDA places most operations of decision making
on clouds and cloudlets, and only requires smartphones to
communicate very few data with clouds. We present how
ENDA predicts user track based on collected user traces,
and how it selects the qualified Wi-Fi APs. ENDA has the
potential to be practically applied in real mobile cloud sys-
tems. Our preliminary results demonstrate that ENDA out-
performs existing approaches in terms of energy efficiency
of offloading decisions. Our future work will focus on de-
veloping delay offloading mechanism and utilizing multiple
Wi-Fi APs to accommodate applications with overlarge of-
fload data size. We will also verify the effectiveness of our
user track prediction algorithms and implement ENDA in a
real-world environment.

7. REFERENCES
[1] P. Bahl, R. Han, L. Li, and M. Satyanarayanan.

Advancing the state of mobile cloud computing. In
Proc. of ACM MCS, 2012.

[2] B. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti.
Clonecloud: Elastic execution between mobile device
and cloud. In Proc. of ACM EuroSys, 2011.

[3] E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl. MAUI: Making
smartphones last longer with code offload. In Proc. of
ACM MobiSys, 2010.

[4] Gartner. http://www.gartner.com/.

[5] M. Gordon, D. Jamshidi, S. Mahlke, Z. Mao, and
X. Chen. Comet: Code offload by migrating execution
transparently. In Proc. of USENIX OSDI, 2012.

[6] Y. Hua, B. Xiao, and X. Liu. Nest: Locality-aware
approximate query service for cloud computing. In
Proc. of IEEE INFOCOM, 2013.

[7] D. Huang. Mobile cloud computing. IEEE COMSOC
Multimedia Communications Technical Committee
(MMTC) E-Letter, 6(10):27–31, October 2011.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies.
The case for vm-based cloudlet in mobile computing.
IEEE Pervasive Computing, 8(4):14–23, October 2009.

[9] P. Shankar, B. Nath, L. Iftode, W. Huang, and
P. Castro. Crowds replace experts: Building better
location-based services using mobile social network
interactions. In Proc. of IEEE PerCom, 2012.

