

Efficient Pinpointing of Misplaced Tags in Large RFID Systems

Kai Bu, Bin Xiao, Qingjun Xiao

DEPARTMENT OF COMPUTING 電子計算學系

Shigang Chen

Optimal Placement

Product Misplacement

8.1%
Profit Increase by Optimal Placement

\$1.1 billion
Bonus for WAL*MART

Wait! It's Not Easy

RFID Makes All The Difference

Products attached with RFID tags get connected, networked, and enabled with abilities such as

computation, communication.

How to pinpoint misplaced tags in large RFID systems?

Assumptions

Tag IDs, Category IDs

 A majority of tags in each category placing properly

RFID localization system

Not necessarily stick to layout plans

Formulation

A misplaced tag

locates away from the area where the majority of tags in the same category as it locate.

Misplaced-Tag Pinpointing (MTP)

Protocols To Be Proposed

B-MTP: Basic MTP Protocol

T-MTP: Time-efficient MTP Protocol

 ET-MTP: Energy- and Time-efficient MTP Protocol

B-MTP: Basic Protocol That Locate All Tags

```
for each category do
  locate all tags in this category;
  cluster tag positions;
  CategoryArea ← the cluster by positions of a
```

if a tag is away from *CategoryArea* then the tag is misplaced;

majority of tags;

end

Seriously? Locate all tags?

T-MTP: Time-efficient MTP Protocol

Reader Cluster Formation

for each category do

for each reader do

the reader broadcasts a query message containing the category ID;

tags in the queried category respond to the reader;

end

ReaderCluster ← neighboring readers that received tag responses;

end

False Negatives of T-MTP

Huh? All tags respond?

Active tags

initiate communication, have longer communication radius, But, work with self-equipped batteries.

Active tags:

"We want to respond less!"

Reader Cluster Formation Without All Tags Responding

The reader informs tags a probability *p* (e.g., 1/27);

Tags respond with probability *p*;

One tag response is enough for the reader verifying tag coverage.

ET-MTP: Energy- and Time-efficient MTP Protocol

Stage I: tags respond to readers with probability *p*;

Stage II: readers receiving no responses send one more query message, and tags must respond.

Simulation Results

Fig. 7. Performance comparison of RPCV, B-MTP, T-MTP, and ET-MTP with varying tag number n and misplacement ratio α .

>70%

time/energy reduction compared with RPCV

Conclusion

 Misplaced products affect retailer profits but are hard to deal with.

 Finding misplaced tags in RFID-enabled retails makes it different.

 The proposed protocols pinpoint misplaced tags more time- and energy-efficiently than does the state-of-the-art.

