20 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 1, JANUARY 2010

Using Parallel Bloom Filters for Multiattribute
Representation on Network Services

Bin Xiao, Member, IEEE, and Yu Hua, Member, IEEE

Abstract—One widely used mechanism for representing membership of a set of items is the simple space-efficient randomized data
structure known as Bloom filters. Yet, Bloom filters are not entirely suitable for many new network applications that support network
services like the representation and querying of items that have multiple attributes as opposed to a single attribute. In this paper, we
present an approach to the accurate and efficient representation and querying of multiattribute items using Bloom filters. The approach
proposes three variant structures of Bloom filters: Parallel Bloom Filter (referred as PBF) structure, PBF with a hash table (PBF-HT),
and PBF with a Bloom filter (PBF-BF). PBF stores multiple attributes of an item in parallel Bloom filters. The auxiliary HT and BF

provide functions to capture the inherent dependency of all attributes of an item. Compared to standard Bloom filters to represent items
with multiple attributes, the proposed PBF facilitates much faster query service and both PBF-HT and PBF-BF structures achieve

much lower false positive probability with a result to save storage space. Simulation and experimental results demonstrate that the new
space-efficient Bloom filter structures can efficiently and accurately represent multiattribute items and quickly respond queries at the

cost of a relatively small false positive probability.

Index Terms—Network services, parallel Bloom filters, false positives, data structure.

1 INTRODUCTION

STANDARD Bloom filter is an important and widely used
tool for supporting efficient query services in network-
ing because of its ability to represent a set of items by using
a bit array with several independent hash functions [1]. This
allows queries to be made about whether an item is a
member of the set and obviates the need to query every
individual item in the set. Though this approach causes a
small probability of a false positive replying to any
membership query, but, to the degree that this is acceptable
in particular circumstances, Bloom filters provide an
effective tool for saving space when space is at a premium.
Recent developments in network services, however, have
led to a greater need for the ability to make queries based on
the accurate representation of a set of items with multiple,
rather than merely single, attributes. Yet, to date, not much
work has been done in this area. A chief difficulty is that if,
as a result of computing hash functions independently, we
store different attributes of a multiattribute item in different
places, we will loose information as to the dependency of
multiple attributes of an item and this in turn greatly
increases the probability of false positives. Currently,
standard Bloom filters contain no functional units for
recording the dependency of multiple attributes. Clearly,
there is a need to develop a new structure for representing
items with multiple attributes.

e B. Xiao is with the Department of Computing, Hong Kong Polytechnic
University, Hung Hom, Kowloon, Hong Kong, China.
E-mail: csbxiao@comp.polyu.edu.hk.

o Y. Hua is with the School of Computer, Huazhong University of Science and
Technology, Wuhan, China 430074. E-mail: csyhua@mail hust.edu.cn.

Manuscript received 27 Feb. 2008; revised 31 Oct. 2008; accepted 17 Feb.
2009; published online 25 Feb. 2009.

Recommended for acceptance by C.-Z. Xu.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-02-0077.
Digital Object Identifier no. 10.1109/TPDS.2009.39.

1045-9219/10/$26.00 © 2010 IEEE

Bloom filters have an essential role in network services and
consequently the growing importance of operations such as
information retrieval, distributed databases, packet content
inspection, and cooperative caching [2], [3], [4] results in the
wide applications of Bloom filters that provide set-member-
ship queries based on a relatively easy hardware implemen-
tation. However, succinct representation and queries for
items that have multidimensional attributes are still becom-
ing a critical challenge, although recent work [5], [6], [7], [8]
begins some meaningful attempts based on the fact that many
existing data structures are able to provide richer information
for indexing. In [9], the authors proposed multidimension
dynamic Bloom filters (MDDBFs) for items with multiple
attributes. The basic idea was to represent a dynamic set A
with a dynamic s x m bit matrix that consists of s standard
Bloom filters with m-bit size. However, the MDDBF approach
lacks a way to verify the dependency of multiple attributes of
an item, which may increase the probability of false positives.
In [10], only preliminary work has been reported, which
supported the representation of items with multiple attri-
butes by using parallel Bloom filters and a hash table.

Anintuitive approach to representing multiattribute items
can concatenate multiple attributes into a single-attribute
array to be stored in a Standard Bloom Filter (SBF), which is a
way to maintain the inherent dependency of multiple
attributes of an item. However, such approach has the
overhead for the concatenation operation that may delay
query replies to users if multiple attributes have different
formats (e.g., string, digit). In fact, it takes a long time to get the
hashed result for a single but long attribute array. None-
theless, standard form in an SBF is essentially a compressed
representation, limiting its rich query services. There are no
membership query services given a single or partial attributes
because an SBF strips off explicit attribute values of an item in
the hash function operation. For example, given an existing
“Table” with “red” and “large” attributes in an SBF, the
intuitive approach cannot provide any meaningful answer to
query requests like “Does the room have a “red” table?” or “Is a

Published by the IEEE Computer Society

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

XIAO AND HUA: USING PARALLEL BLOOM FILTERS FOR MULTIATTRIBUTE REPRESENTATION ON NETWORK SERVICES 21

“large” table a member?”. In real-world applications, many
query requests cannot provide exact and complete descrip-
tions of queried items, which limits the usage of SBFs for
queries of partial attributes.

In this paper, we present an approach to the space-efficient
representation of multiattribute items. The proposed ap-
proach utilizes data structures to carry out fast but accurate
membership queries and achieve space savings. We describe
data structures in three phases: first, we describe a Parallel-
Bloom filter (PBF) structure, then, PBF with a Hash Table
(PBF-HT), and finally, PBF with a Bloom Filter (°PBF-BF). PBF
is a counter-based matrix and consists of multiple subma-
trices. Each submatrix functions as a Bloom filter and can
store one attribute of an item. PBF-HT uses a hash table to
store the verification value of an item. This value reflects the
inherent dependency of all attributes of an item. We generate
this verification value by using an attenuation method to
reduce false positives. PBF-BF uses a Bloom filter instead of a
hash table to store verification values, achieving greater space
savings at the expense of a very small increase to its false
positive probability. Note that we only proceed with the
verification in HT or BF only when the PBF part returns
positive for a query in the PBF-HT and PBF-BF.

This paper has the following technical contributions:

e First, we propose PBF-based structures to represent
items with multiple attributes with high query
accuracy. To justify the presence of a queried item in
PBF-HT and PBEF-BF, that is, unrelated attributes are
not falsely inferred to a nonexistent item, we utilize a
double verification process. The first verification takes
place in the PBF part and the second takes place in
either HT or BF. Double verifications are necessary
because the querying of multiattribute items can be
complex and a single verification in PBF alone may not
be able to tell multiple attributes from a single item.
The verification within the auxiliary HT /BF improves
the query accuracy.

o We illustrate data operations of adding, querying,
and removing items in proposed novel data struc-
tures. We show that they are suitable for fast
network query services because these operations
maintain computational complexity of O(1).

e We provide mathematical analysis of the query
accuracy of proposed data structures by showing
their low false positive probabilities. The PBF-based
data structures can support algebraic operations to
quickly respond queries among multiple (and per-
haps distributed) data sets [10]. We show that SBF and
PBF structures have the same minimum false positive
probability when they use the same amount of space
to store n items. PBF-HT and PBF-BF, using very
limited storage space to implement HT and BF, can
greatly improve query accuracy by minimizing the
false positive probability for random queries.

Rather than storing multiattribute items in a standard
Bloom filter concatenating multiple attributes into a single-
dimensional long array, PBF using parallel Bloom filters can
quickly respond to a query by simultaneously carrying out
hash operations in each submatrix for a short attribute. There
is no need for the concatenation operation of multiple
attributes while partial attribute queries are supported by
looking at corresponding submatrices. A reply to nonexistent

r T T T T T T T oo~ 1 |mT T T T T T T T T T T T |
| | | 1 m
1 1 |
H Ho@ | o] @) | 10 o7T] |
I I : I
1 | I
|
I I
! [[Hea) | 1 | [
| [T-T-To[0]
L b) [He@] [OO-T-ToT0]!
| | | . " |
. . I I
| I I - :
I . ! [|
1 . ! | |
| 0 [| |
] - 1 : | |
I I I
| [Hig@)] m 1] i (oL T-ToT
I I
|

Fig. 1. Standard Bloom filter structures. (a) Flat form. (b) Segment form.

items can be obtained immediately if any submatrix in PBF
returns negative. We also provide simulation and experi-
mental results to show the space efficiency and query
accuracy of newly proposed data structures. Simulation
results illustrate that both PBF-HT and PBE-BF can remark-
ably reduce the query false positive probability. To maintain
the same low false positive probability as PBF-HT and PBF-
BF, SBF needs to use much larger amount of storage space. We
conducted experiments using the real-world HP trace [11]
and results show the space and query efficiency of PBF-HT
and PBF-BF over SBF.

The rest of the paper is organized as follows: Section 2
shows basic Bloom filter structures, including standard
Bloom filters and the basic PBF. Sections 3 and 4 present
the PBF-HT and PBF-BF structures, respectively, and their
data operations. In Section 5, we give mathematical analysis
on the false positive probability of proposed PBF-based
structures. Section 6 provides the performance evaluation.
Section 7 describes some related work. Finally, Section 8
concludes our paper.

2 BrLoom FILTER-BASED STRUCTURES

In this section, we first describe the structure of an SBF,
which can support operations on single-attribute items. We
then describe the parallel Bloom filter (referred as PBF)
structure, which is used to represent and query items with
multiple attributes.

2.1 Standard Bloom Filter

An SBF, as shown in Fig. 1a, is a bit array of M bits for
representing a set S = {ay,as,...,a,} of nitems. All bits in
the array are initially set to 0. Then, a Bloom filter uses ¢
independent hash functions {4, ..., h,} to map the set to the
bit address space [1, ..., M]. For each item q, the bits of h;(a)
are set to 1. To check whether an item a is a member of S, we
need to check whether all h;(a) are set to 1. If not, a is not in
the set S. If so, a is regarded as a member of S with a false
positive probability, which suggests that set S contains an
item a although it in fact does not. Generally, the false
positive is acceptable if the false positive probability is
sufficiently small. Note that a standard Bloom filter often
displays either the flat form as shown in Fig. 1la or the
segment form as shown in Fig. 1b. Two forms have the same
filter size, i.e., M bits totally. The segment form, instead of
using one single array of size M that is shared by all ¢ hash
functions, divides equally M bits for ¢ hash functions, and
thus, each hash function has an array with range [1,...,m]

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

22 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

1 m
(T3] -[-]0]0]

.

Y
.

[4]0].. T..J0J3]

1/0[..1..]0]1
0f2]..1..[0]0
. .

S E

Hpy(as)
12112132

v

Hog@n

[Hiru(as)
Hipizi(ap)

=[O
w| O
=[O
=[O

(3]0 .. T.ToT1]

Fig. 2. The basic PBF structure.

and mg = M [3]. The popular segment-based design facil-
itates the implementation by making easier parallel access to
bit arrays of a Bloom filter. Therefore, in our design, we use
the segment-based form, which, in essence, is the same as
the flat form.

2.2 PBF Structure

An SBF can effectively represent items with a single
attribute but it cannot support the representation and
querying of items that have multiple attributes. To allow
operations on multiattribute items, we propose a simple
structure called PBF. To support the deletion operation, PBF
utilizes the form of counting Bloom filters. In [12], counting
Bloom filters replace bits of standard Bloom filters with
counters and the counter size is set to 4 bits to minimize its
overflow probability for most real-world applications.

2.2.1 Structural Representation

Fig. 2 shows the architecture of the basic PBF. PBF uses the
counting Bloom filters [12] to support the deletion operation
and can be viewed as a matrix, which consists of p parallel
submatrices in order to represent p attributes. A submatrix is
composed of ¢ parallel arrays and can be used to represent
one attribute. An array consists of m counters and is related
to one hash function. Let Cliiim be the kth (1 <k<m)
counter, which is in the jth array of the ith submatrix.
g arrays in parallel store results from ¢ hash functions
correspondingly. Assume that q; is the ith attribute of item
a. We use H[Z-]m(ai)(l <i<p,1<j<gq) to represent the
hash value computed by the jth hash function for the
ith attribute of item a. Thus, each submatrix has

NO. 1, JANUARY 2010

Membership_Query_Item (Input: Item a)

1: for (i =1;i < p;i++) do

22 for(j=1;7<¢j++) do
3 k= Hyp(a)

4: if Cpyp5) == 0 then

5: Return False

6 end if

7 end for

8: end for

9: Return True

Fig. 4. Query algorithm in the basic PBF.

g x m counters and PBF composed of p submatrices utilizes
p X ¢ X m counters to store n items with p attributes.

2.2.2 Practical Algorithms
When an item with p attributes arrives, we allocate its
p attributes separately into p submatrices. We compute the
hash value of each attribute based on the given ¢ hash
functions and increase corresponding location counters by
one. Fig. 3 shows the algorithm for inserting an item with
p attributes. To represent a new item, the insertion algorithm
must know the computed positions (i.e., k) from ¢ hash
functions. It can then increase counters by one in these
positions.

Fig. 4 shows the querying algorithm in the basic PBF.
g positions computed in ¢ hash functions, as shown in Line 3,
are then probed and if all of them are nonzero, the queried
item is said to be present; otherwise, it is absent. Since each
bucket in an array is a counter, the deletion operation is easy
to implement, similar to the item insertion but with counter
decrements. The deletion algorithm in the basic PBF is shown
in Fig. 5. All operations on PBF can be done in O(1), the same
complexity as SBFs.

2.2.3 Limitations of the Basic PBF

The basic PBF uses parallel submatrices to store p attributes of
an item, yet such an approach can lead to false positives
because the basic PBF cannot distinguish one’s attributes from
the other’s. Take, for example, a situation in which two tables
with two attributes, Table-1 (Large, Red) and Table-2 (Small,
Green), are inserted into the basic PBF. The attributes in the
same type should be hashed to the same submatrix as shown
in Fig. 6. However, a future query, “Is the table with attributes
(Large, Green) in the Bloom filters?”, would receive the answer
True even though the filters do not contain such a table.

Insert_Item (Input: Item a)

Delete_Item (Input: Item a)

1: for (1 = 1;¢ < p;i+ +) do
22 for(j=1;7<gq;j++) do
3 k = Hpjpjp(aq)
& Clayir + +
5 end for

6: end for

1. for i =1;i < p;i++) do
2 for(j=1;j<¢j++)do
3 k= Hyp(a:)
& Clpim — —
5. end for

6: end for

Fig. 3. Insertion algorithm in the basic PBF.

Fig. 5. Deletion algorithm in the basic PBF.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

XIAO AND HUA: USING PARALLEL BLOOM FILTERS FOR MULTIATTRIBUTE REPRESENTATION ON NETWORK SERVICES 23

Hrm(a) of..]o
Hiey(a1) 2..]o
: —
Homa@) | [1]-T4]
Hizpn(@2) 3]..]4
Hppz(a2) 0]|]..|]0
- . -
[Howeny | [0]..]2]

Fig. 6. Two items stored in the basic PBF.

This kind of false positives arises because the basic PBF
only knows the existence of attributes and cannot determine
whether the existing attributes belong to one item. The
attribute integrity of an item is lost to separately store
p attributes into p submatrices, leading to confused query
conflicts. Thus, to accurately denote the presence of an item
of p attributes, it requires an auxiliary structure that can
record the attribute inherent dependency to preserve
attribute integrity.

3 A NOVEL STRUCTURE: PBF-HT

In this section, we introduce a novel structure for
representing items of p attributes. The proposed structure
is composed of parallel Bloom filters and a hash table (HT)
that stores the verification values of items. One novel
feature of this hash table is that it uses an improved
method for generating verification values. We also describe
adding, querying, and deleting operations on the proposed
PBF-HT Structure.

3.1 Proposed Structure

Fig. 7 shows the proposed structure, which is composed of
two parts: PBF and a hash table. PBF and the hash table are
used to store multiple attributes and verification values of
items, respectively. A verification value in the hash table
can verify p-attribute integrity from one item. Let
v; = F(Hp;(a;)), where F is a function, be the verification
value of the ith attribute of item a. The verification value of
item a with p attributes can be computed by V, =7, v,
which will be inserted into the hash table for future
dependency tests. In practical implementations, we only
keep nonempty hash buckets to reduce required storage
space. Any hash function can be used in the hash table. In
this paper, we used MD5 [13].

3.2 Hash Table for Dependency Verification

Onereason for false positives in multiattribute item queries is
that the dependency among multiple attributes is lost after we
insert p attributes into p independent submatrices. A hash
table is required to confirm whether the queried multiple
attributes belong to one item because the PBF structure can
only verify the presence of multiple attributes but cannot
conclude them from a single item. The presence of a multi-
attribute item can be verified when both PBF and the hash
table answer Yes. Traditionally, hash values computed by
hash functions are only used to update location counters in the
counting Bloom filters. In the proposed structure PBF-HT, we

1 m

H11i31i ': 4l0[.[..]Jof1]:
[1[3[.[..]0]0]
- 2 : :
[Hu@)) [4T0T..T..TOT3] !
7 S —— S
I
I
Hprn(as 1{o]..[.Jof1] : |
Hipyzi(@2) 0[2[..[.]0[0] |
>] -)] v
[Heg@n [AToT..T.TOT3]
0N S - =
. . l
______________ 4
[O]OoT..T..TOT®]
o T
BIol.T.1011] |

Parallel Bloom Filters Hash Table

Fig. 7. PBF-HT structure using counting Bloom filters.

utilize the hash values to generate verification values to be
stored in HT, which provides a double verification process,
onein PBF and the otherin HT, toreduce query false positives.

There are two methods to implement function F' to
calculate v;. A basic method of generating the verification
value v; is to add all hash values from ¢ hash functions. For
example, the value of v; can be wv; = F(Hjp(a;)) =
32921 Hyjjy(aq) for the ith attribute of item a, where function
F' is the sum operation. The verification value of item « is
Vo=>", Z;}: | Hyjpj(a;), which will be inserted into the
hash table. The problem with this method, however, is that
the values computed by different hash functions can be the
same, as might be their sums. As a result, different items
can have a high probability with the same verification value
in the hash table that leads to verification collisions and
minimizes the verification effect on HT.

An improved attenuated method can distinguish verifica-
tion values from different attributes in which we assign
different weights to sequential hash functions. As for the
ith attribute of item a, the value from the jth hash function in
the 7th submatrix is defined as H”Q’—]j(a), which is similar to the
idea of the Attenuate Bloom Filters [14] adopting a lossy
distributed index. The verification value of the ith attribute of

item a becomes

= Higj)(as)
vi = F(Hyp(a) = > =2

J=

—_

The verification value of item « in the improved
attenuated method is

P
n-y

i=1 j

= Hy)(ai)
—1 2

3.3 Operations on the PBF-HT Structure

Given a certain item aq, it has p attributes and each attribute
can be represented using ¢ hash functions. We denote its
verification value by V,, which is initialized to zero. We
implement the corresponding operations, such as the
adding, querying, and deleting items, with a complexity
of O(1) in the PBF-HT structure.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

24 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

NO. 1, JANUARY 2010

Insert_Item (Input: Item a)

Delete_Item (Input: Item a)

1: Initialize V, =0
2: for (i=1;i < p;i++) do
3 for(j=1;<¢j++)do

4: Compute H;p;)(ai)
5 Ve=V,+ 2y
6: PBF[H[l][J](aZ)} + 4+
7 end for

8: end for

9: Insert V, into the hash table

1: Initialize V, =0
2: for (i =1;i < p;i++) do
3 for(j=1;j<¢q;j++) do

4: Compute Hj;(ai)

5 Vo=V, + e

6: PBF[H[Z][J]((]Z)] ==
7. end for

8: end for

9: Delete V, from the hash table

Fig. 8. Insertion algorithm in PBF-HT.

Membership_Query_Item (Input: Item a)

1: Initialize V, =0
2: for (1 =1;i < p;i++) do
3: for(j=1;7<¢j++) do
Compute Hp5(as)
if PBF[HM[]]((II)}==O then
Return False
end if
Vo =V, + agled
end for
10: end for
11: if V, is in the hash table then
12 Return True
13: end if
14: Return False

o 2N TR

Fig. 9. Query algorithm in PBF-HT.

3.3.1 Adding Items

Fig. 8 presents the algorithm for inserting items in the PBF-
HT structure. We need to compute the hash value of
multiple attributes from ¢ hash functions and then generate
the verification value based on the improved method, as
shown in Lines 4 and 5, respectively. Meanwhile, counters
in the indexed positions in PBF are incremented by 1,
denoted by PBF[Hjj;(a;)] ++. Finally, we insert the
verification value of item a into the hash table.

3.3.2 Querying Items

Fig. 9 shows the multiattribute query algorithm, which
realizes the two-step verification process. After computing
hash values of multiple attributes, we need to check
whether all p attributes exist in PBF as shown in Lines 2-
10. If any PBF[Hjp;(a;)] is O for item a, the query returns
the answer False showing that the queried item a does not
exist. Otherwise, all hash values are added to generate the
verification value V. If V; is also in the hash table, we say
that item a is a member.

3.3.3 Deleting Items

The deleting item operation must delete both the attributes in
PBF and verification value in the hash table. Fig. 10 shows the
algorithm for deleting an item a. On the contrary, to the item
insertion process, the counter indexed by the position
Hpj(a;) is decremented by 1 in PBF. Afterward, the
verification value of item a, V,, is deleted from the hash table.

Fig. 10. Deletion algorithm in PBF-HT.

[Hupnfad |+ [
| Hiyp (@) H |

[(Higg(@) 17

Hpyn(ay 100]..{.
Hipya(ay) 02l

[0]0]
- T—) 1 m
[(Hog@y T3 [T0T.T.J0[3] HM][‘](VB) (1] % u (1) (1)
o) Fmm————— = _ —»i| HprmalVe) [oTTT.T.[170]
W) > . i :

. (FogalVd OO

30 .I0[1]

Fig. 11. The PBF-BF structure with multiattribute dependency
verification.

4 AN IMPROVED STRUCTURE: PBF-BF

In this section, we extend PBF-HT structure into an
improved structure PBF-BF. Although PBF-HT can provide
exact match of verification values for multiattribute items in
a hash table, it is not a space-efficient way to do so. The
proposed PBF-BF structure makes use of a Bloom filter (BF)
to store verification values to allow greater space savings
than PBF-HT, but at the expense of a very small increased
probability of false positives in the BF.

4.1 Proposed Structure

Fig. 11 presents PBF-BF structure, which replaces the hash
table in PBF-HT with an additional Bloom filter. This
additional Bloom filter, i.e.,, the (p+ 1)th submatrix, is
used to store a verification value of an item to represent
the inherent dependency of its p attributes. The PBF part,
composed of p submatrices, functions the same as the
PBF structure. When we add an item a with p attributes
into PBF-BF, its p attributes are separately stored in
p submatrices. Its verification value can be obtained using
the attenuated method as in the PBF-HT structure and
stored in the additional Bloom filter. Thus, similar to PBF-
HT, the presence of an item in PBF-BF is confirmed when
both PBF and BF answer Yes in the double verification
process. The presence of an item is denied when any
submatrix in PBF answers No. Compared to HT that can
give exact match, the (p + 1)th submatrix may cause false
positives due to the Bloom filter property. PBF-BF is able
to support operations like item insertion, query, and
deletion. All operations are done on Bloom filters, having
the same running time to be O(1).

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

XIAO AND HUA: USING PARALLEL BLOOM FILTERS FOR MULTIATTRIBUTE REPRESENTATION ON NETWORK SERVICES 25

Insert_Item (Input: Item a)

Delete_Item (Input: Item a)

1: Initialize V, =0
2. for i =1;i < p;i++) do
3 for(j=1j<¢j++)do

4 k = Hiypy) (as)

5 Clijyym + +

6 Vo=Vo+ &

7 end for

8: end for

9: for (j =1;7<q;j++) do

10: k= Hypip)(Va)
12 Cpaypw + +
12: end for

1: Initialize V, =0

2: for (i = 1;i < p;i+ +) do

3: for(j=1;7<¢j++) do
& k= Hypy(a)

5 Vo=Vo+ &

6 Clm — —

7. end for

8: end for

9: for (j =1;7<q;j++) do
10: k= Hpqp) (Va)

1 Clpppji) — —

12: end for

Fig. 12. Insertion algorithm in PBF-BF.

4.2 Practical Algorithms

Fig. 12 presents the insertion algorithm in the PBF-BF
structure to represent multiattribute items. When adding
item a, we first obtain the position of a counter to be increased
by one, computed by the hash function as shown in Line 4.
Line 5 increases the value of the counter and Line 6 generates
the verification value V, using the attenuated method, which
will be stored in the (p+ 1)th submatrix (the additional
Bloom filter) as shown in Lines 9-12.

Fig. 13 gives the query algorithm. Given an item a with
p attributes, we first compute ¢ hash functions for each
attribute and check corresponding counters. If any counter
is zero, item a is not a member. Otherwise, PBF indicates
that p attributes exist. We need to further verify whether
item a is in the (p+ 1)th submatrix by checking its
verification value presence in this verification Bloom filter.
Similarly, we compute ¢ hash functions for the verification
value (V,). If all the counters are nonzero, we can determine
that the verification value of the queried item exists in the
(p + 1)th submatrix, which implies the existence of item a in

Membership_Query_Item (Input: Item a)

1: Initialize V, =0
2: for (i =1;i <p;i++) do
3 for(j=1;j<gqj++)do
k = Higpj)(as)
Vo=Vo+ &
if Cmm[k] == 0 then
Return False
end if
end for
10: end for
11: for (j = 1;j < ¢;j + +) do
122 k= Hpyp) (Va)

o PN 9.

13: if C[p+1][j][;€] == 0 then
14: Return False

15: end if

16: end for

17: Return True

Fig. 13. Query algorithm in PBF-BF.

Fig. 14. Deletion algorithm in PBF-BF.

the PBF-BF structure. In this double verification process,
one in PBF and one in BF, the queried item « is not a
member in PBF-BF when either one returns False. In other
words, the query service can be very fast to a nonexistent
item in PBF-BF in most cases because any submatrix in PBF
returning False can terminate the query process.

Fig. 14 shows the deletion algorithm of a multiattribute
item @ in PBF-BF. The deletion algorithm must delete both its
p attributes and verification value in totally (p + 1) subma-
trices. We first delete multiple attributes by decreasing
counter values indexed by hash function results in
p parallel Bloom filters, as shown in Lines 2-8. We then delete
its verification value in the (p + 1)th Bloom filter as shown in
Lines 9-12.

5 FALSE PoSITIVE PROBABILITY

A False Positive (FP) occurs when a Bloom filter suggests that
anitemisinaset wheninfactitisnot[3]. Thereis some degree
of probability of obtaining a false positive when using any
Bloom filter. In this section, we describe and analyze the false
positive probability for SBF, PBF, PBF-HT, and PBF-BF
structures containing bit arrays. Although the FP analysis is
given for bit arrays for Bloom filters in this section, it is
applicable to Bloom filters with counters when we treat a
nonzero counter as bit 1 in the counter array.

5.1 FP of SBF

A standard Bloom filter consisting of a bit array of M bits,
which are initially set to 0, can store and represent a set
S ={a1,as,...,a,} of nitems based on the computation of
q independent hash functions {%1,...,h,}, which map the
set to the bit address space [1,...,M]. When an SBF
displays the segment form, we have M = gm.

One can insert an item a into a Bloom filter by setting the
bits of h;(a) to 1. Furthermore, one can determine the
membership of item « in a set S by checking whether all
hi(a)aresetto 1.Ifnot, item aisnotin the set S.If they are, item
ais a member of set S with an FP, which says that an item a is
in set S although it is actually not. According to the
conclusion, to get a low FP probability in [3], gn is set to be
smaller than M (gn < M). Assume thata hash function selects
each array position with equal probability. Theorem 5.1 gives

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

26 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

the FP probability approximation of an SBF, in either flat form
or segment form as shown in Fig. 1.

Theorem 5.1. The false positive probability of an SBF is

fspr~ (1—e)" = (1)

when the Bloom filter has totally M bits and q hash functions
for storing n items. The probability can obtain the minimum
(1/2)7 or (0.6185)™/™ when q = (M /n)In2.

Proof. We prove the theorem for an SBF in the segment form
since the proof for the flat form can be found in [3].
Assume that ¢ hash functions are perfectly random and
each hash function is associated with m (m = M /q and
m > n) bits. The probability that a particular bit in an
array is set to 1 by a hash function is % Thus, the
probability that a bit is not set by the hash function is
(1 — %) (or (1 —L1)). After inserting n items into the Bloom
filter, the probability that a bit is still 0 is (1 —)" ~ e~ 1.
Thus, the false positive probability in the standard Bloom
filter is fspr=(1—(1—£)")! ~ (1 —e)? = (1 —e)"
because indexed bits in g arrays must be 1.

It is easy to check that the minimum of the false
positive probability min(fspr) = (1/2)? ~ (0.6185)/"
when ¢ =1n2(M/n).]

Obviously, the probability of false positives decreases as
M (the number of bits used for storage) increases and
increases as n (the number of inserted items) increases. In
other words, an SBF can decrease its FP probability by
increasing the storage space (M) for a fixed number of
stored items. Although false positives are possible in an
SBF, false negatives are not, which means that an SBF
always returns Yes for a query of a stored item. Note that
fspr also shows the probability when an SBF returns Yes for
a randomly queried item, denoted by hit rate in this paper.

5.2 FP of PBF

A PBF structure is composed of p submatrices, i.e., p SBFs,
to store p attributes of an item. Since each submatrix needs
to store n distinct attributes, similar to n items in an SBF, we
set each array with the bit address space [1,...,m]. In the
following, we describe the false positive probability of the
basic PBF.

Theorem 5.2. The false positive probability of PBF is

fror = (fspr)! ~ (1 —e)™

when PBFs have totally p - M bits and q hash functions for
storing n items with p attributes. The probability can obtain
the minimum (1/2)" or (0.6185)"™/" when q = (M /n)In2.
Proof. The FP of PBF occurs when p submatrices return
positive for a random query. Each submatrix in the PBF is
in essence an SBF with M bits and ¢ hash functions.
According to Theorem 5.1, a submatrix returns positive
with the probability of fspr ~ (1 — e)? to a random
attribute request. Thus, we have fprgr = (fspr)’ =
(1—e)%, fppr can have the minimum (1/2)® or
(0.6185)" M/ for the derivative of 0 of fper with respect
to g when ¢ = (M /n)In2.]

NO. 1, JANUARY 2010

The false positive probability, fepr = (fspr)’ ~ (1 —
e~m)", also denotes the hit rate for a randomly queried item
to be in the PBF. PBF using p times storage space (pM bits
totally) as an SBF does can reduce the minimum FP
probability to be (0.6185)"/", which yields the minimum
FP probability of an SBF to the power of p. Of course, an SBF
can reduce its FP probability by increasing the storage space
for n items. For example, when an SBF uses pJ bits to store
n items, its FP probability decreases to (0.6185)"*/". In
summary, PBF does not add or lose any attribute informa-
tion of items as an SBF does and when they use pM bits to
store n items, they both can maintain a very low FP
probability to be around (0.6185)"/" when taking ¢ =
(M /n)In2 hash functions.

5.3 FP of PBF-HT

The PBF-HT structure utilizes an extra hash table to contain
verification values of items whose attributes have been
stored in p submatrices in the PBF part. Thus, an FP occurs
when both the PBF and HT falsely return positive for a
queried item that in fact does not exist. To know the FP
probability in PBF-HT, we need to calculate the FP
probability that a randomly queried item has its verification
value stored in the hash table. Since there are two different
methods, basic and attenuated, to implement the hash table
as in Section 3.2, we first give the FP probability bound for
these two methods and then show the FP probability in our
proposed PBF-HT structure.

Theorem 5.3. Given n items and their verification values stored
in a hash table using the basic method, the probability fur,,,.
that a randomly queried item has its verification value in the
hash table is bounded by 2®(—¥3"_) — 1, where ®(x) stands

] (mfl)\/‘[ﬁ
for the standard Normal Distribution.

Proof. Givenanitem a with p attributes, a;, as, . . ., ap,let V, be
the random variable representing its verification value in
the basic method. Thus, V, = >0, >°% | Hjj(a;). The
range of each hash function is [1, m], which means that V,
can take any value in the range [pq, pgm]. Hjj;(a;) is a
random variable following the Uniform Distribution with
the expected value of 4™ and variance of (m;;)z.

According to the central limit theorem! [15], the random

variable V, satisfies a Normal Distribution with the

expected value of y = pgi4™ and variance of o* = pq@.
Let p(V,) be the probability that the verification value

of a randomly queried item is the same to the one of q,

ie., V,. If V, is stored in the hash table, it will return

positive for the presence of the queried item. Thus, given

n verification values (V1,V3,...,V,) stored in a hash

table, following the normal distribution, the FP prob-

ability fur,.,. in the HT for a randomly queried item
becomes > p(V;). As illustrated in Fig. 15a, the FP
probability is the sum of n shaded areas. For simplicity,
we only provide an upper bound which is the sum of

n consecutive areas in the center as shown in Fig. 15b:

1. The central limit theorem states that the probability of the sample sum
of independent random variables converges to a normal distribution as the
sample size grows.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

XIAO AND HUA: USING PARALLEL BLOOM FILTERS FOR MULTIATTRIBUTE REPRESENTATION ON NETWORK SERVICES 27

AT

Fig. 15. Approximate upper bound representation of FP probability
in a normal distribution. (a) n shaded regions in a normal
distribution. (b) n shaded regions in the center as the upper bound.

ToT =

=p(f%§ VZU “SQE)

=2(5;) ~2(-3;) g
=2(5;) ~ [1-2(5;)]

:2@(%) 1

a

Theorem 5.4. Given n items and their verification values stored
in a hash table using the attenuated method, the probability
for that a randomly queried item has its verification value in
the hash table is bounded by 2®(~—321_) _ 1, where ®(x)

p(m—1)(27-1)
stands for the standard Normal Distribution.

Proof. In the attenuated method, an item « has its
verification value

where

1 1
p(1—§> S%Spm(l—g)

Since the hash value Hjy;(a;) is a random variable
following the Uniform Distribution, we obtain the
expected value and variance of

Hijp(a:)
2

E(Hmm_(ai)) _1+m (1 B i)
27 2 2q

V(ngﬂ(aiv _ (ml—2 1)’ (1 ~ %)2

ie.,

and

which are constants. The verification value V, is the sum
of all (p x ¢) independent random variables, i.e.,%,(a"),
and thus, follows the Normal Distribution, i.e.,

{2 (1 1) o (1 1y

As shown in (1), we can obtain the upper bound of
frur similarly. The only difference is the variance value of
V, in the attenuated method to affect the upper bound.
Thus, considering the attenuated method that has the
variance ¢’ = % (1-2),

n V321n
fur <20(55) —1= 2@(]%) -1,

where &(x) stands for the standard Normal Dis-
tribution. 0

The PBF-HT structure involves a two-step query
process, respectively, in PBF and the hash table, as shown
in Section 3.3. Only when the basic PBF returns positive for
the usual presence check for a queried item, does the
second-step verification value check proceed with the HT.
Using the attenuated method to generate verification
values, different items may have the same result, causing
FPs. The reason is that it is possible for a nonexistent item
viewed as a member of the hash table because its
verification value happens to be the one already in the
hash table.

Theorem 5.5. The false positive probability of PBF-HT structure
is feppr_nr = fppr fur, which utilizes p submatrices to store
p attributes and a hash table to store verification values
through the attenuated method.

Proof. The false positive in the PBF-HT structure occurs
when false positives occur in both PBF and HT parts
for a randomly queried item, which implies that
frep-ur = frorfar o

5.4 FP of PBF-BF

The PBE-BF structure utilizes a submatrix to store the
verification values of items. This allows it to save space but
at the cost of an increase of very small probability of false
positives when compared with PBF-HT. The query opera-
tion in the PBF-BF structure also adopts a two-step
verification approach. We first verify whether p attributes
of a queried item exist in p submatrices and further, in the
(p+ 1)th submatrix (i.e., an SBF), determine whether the
verification value of those p attributes also exists. Thus, we
give the FP probability of PBF-BF in Theorem 5.6, where a
PBE-BF structure uses pM bits to implement p submatrices
in the PBF part and M bits for the (p + 1)th submatrix in the
BF part to store n items.

Theorem 5.6. The false positive probability of PBF-BF structure
is fpr_pr = frerfopr ~ (1 — e*ﬁ)(pﬂ)q, which utilizes
p submatrices to store p attributes and an SBF to store
verification values.

Proof. The false positive in the PBF-BF structure occurs
when false positives occur in both PBF and SBF parts

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

28 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

for a randomly queried item, which implies that
frer-Br = [frBrfspr

In the PBF-BF structure, each submatrix encompasses
q arrays with the range [1, m]. From Theorem 5.1, we have
fspr ~ (1 —e™)% From Theorem 5.2, we have fppr =
(fsr)’ = (1 — e)" Thus, fppr-pr canberepresented as

fPBF-BF = (fSBF)(pH) ~(1-— e*ﬁ)(pﬂ)q. 0

6 PERFORMANCE EVALUATION

We conducted both simulations and experiments to
evaluate the space usage and query accuracy of SBF, PBF,
PBE-HT, and PBF-BF. The SBF structure in this paper uses a
concatenated array from multiple attributes as an input to
hash functions and the approach is an extension of the
Bloom filters in [3] for items with multiple attributes. In
simulations, we generated items with multidimensional
(from two to four) attributes that follow the uniform
distribution. The tested queries were arbitrarily produced
in the same range as stored items. Simulation results first
show the impact of the generated verification value on the
query accuracy in PBF-HT and PBF-BF structures. Then, we
show the much lower false positive probability and smaller
space requirement of PBF-HT and PBF-BF than SBF and
PBF. Our experimental results are obtained by taking the
average from 10 repeated experiments and the tested
performance is consistent with our theoretical analysis.

6.1 Verification Values

Verification values can be used to check whether queried
multiple attributes belong to one item. Inaccurate verifica-
tion value generation method may lead to high false
positives in which a nonexistent item is falsely considered
as a member because the item has the same verification
value as an existing item. We compare the false positive
probability of two methods, i.e., Basic Method (BM) and
Attenuated Method (AM), based on the same hash functions
and space ranges. In the simulation, each item has four
attributes and each attribute is computed by six hash
functions, i.e., p =4 and ¢ = 6, respectively.

Fig. 16 illustrates the simulation results that display the
query accuracy, respectively, using BM and AM generation
methods proposed in Section 3.2. The attenuated method is
able to obtain much smaller false positive probability than
the basic method when the address space m is set to 320 and
640. The attenuated method takes into account the
sequential information of hash functions and this allows it
to tremendously decrease false positives on verification
values. The average false positive probability of AM can be
bounded by 0.002, which is much smaller than BM.

6.2 Low False Positive Probability
of PBF-HT and PBF-BF

This section describes the false positive probability of SBF,
PBF, PBF-HT, and PBF-BF structures for multiattribute item
queries. We select the MD5 [13] as the hash function for its
well-known properties and relatively fast implementation.
The hashed value for an attribute is 128 bits by calculating
the MD5 signature. We set three attributes for each item and
each attribute is computed using seven hash functions, i.e.,
p=3 and ¢=7. The storage space is set by m, where

NO. 1, JANUARY 2010

1.0E+00

1.0E-01 /
1.0E-02

False Positive Probability

500 1000 1500 2000 2500 3000

the Number of Items

(@)

1.0E400
>
£
5
g 10801
° ——Am
o —=— BM
g
2 1.0E02
[7]
S
o
o
2 10e03 |
[ns F o oo
[e — i
o
1.0E-04 to—o—ol oo |
0

1000 1500 2000 2500 3000

the Number of ltems
(b)

Fig. 16. False positive probability of Basic and Attenuated Methods.
(a) Address space m = 320. (b) Address space m = 640.

m = 320, m = 640, m = 1,280, and m = 2,560 counters are
used in comparisons. In simulations, SBF and PBF always
use the same storage space to store n items.

Fig. 17 shows the false positive probability of SBF, PBF,
PBF-HT, and PBF-BF for different storage spaces. We
observe that both SBF and PBF generate similar probability
of false positives (curves almost overlapped) since they
utilize the same space overhead to maintain multidimen-
sional attributes of items, which is consistent with our
theoretical analysis described in Section 5.2. The PBF
structure has a slightly higher false positive probability
than SBF. The reason is that PBF adopts the segment form to
confine the hash results within a segment for each hash
function. The actual false positive probability for PBF using
¢q hash functions is (1 — (1 —44)")?, which is always at least
as large as the false positive probability (1 — (1 —4;)")? for
SBF in a flat form. Both (1—4)" and (1-4)"
approximate to ¢~ because their difference is very small.

Given a certain number of items, PBF-HT and PBF-BF
structures always achieve much smaller false positive
probability than SBF and PBF. The reason is that PBF-HT
and PBE-BF structures check the multiattribute integrity of an
item by using an extra hash table or submatrix to record
verification values of items. Among them, PBF-HT structure
has the smallest probability because PBF-HT uses a hash table
to store the real verification values and can obtain exact
matching. Instead, PBF-BF uses a Bloom filter to store
verification values with false positives. However, the

can

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

XIAO AND HUA: USING PARALLEL BLOOM FILTERS FOR MULTIATTRIBUTE REPRESENTATION ON NETWORK SERVICES 29

1.0E+00
2
£ 10801 |-
]
[
S
1.0E-02
a
o
2
]
% 1.0E-03
o
[
]
< 1.0E-04
[
y
1.0E-05
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Number of ltems
(@)
1.0E+00
e SBF
2 —*— PBF
E 1O0E0 -l pgrgF
2 —— PBF-HT
]
S 10e02
o
2
B
% 1.0E-03
o
o
8
£ 10E04
w
1.0E-05 #—<L - . A—"
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Number of kems

(©

1.0E+00
2
= 1.0E-01 [
-}
[}
Qo
e 1.0E-02
& 10E0
2
=
@ 1.0E-03
o
o
&
« 1.0E-04
[T
1.0E-05 4 i o
0 400 800 1200 1600 2000 2400 2800 3200 3600 4000
Number of ltems
(b)

1.0E+00 [
2 —*— PBF
£ 1.0E01 |- pRF.BF
2
3 —— PBF-HT
Q2
© o002
& 1.0E-0
(]
2
=
® 1.0E-03
o
o
b
< 1-0E-04 |
L 5 g

1.0E-05 == ‘

0 400 800 1200 1600 2000 2400 2800 3200 3600 4000

Number of tems

(d)

Fig. 17. False positive probability of SBF, PBF, PBF-HT, and PBF-BF. (a) Address space m = 320. (b) Address space m = 640. (c) Address space

m = 1,280. (d) Address space m = 2,560.

difference of false positive probability between PBF-HT and
PBF-BF is very obscure, maximally 0.01 percent, which in fact
reflects that PBF-BF only produces a very small probability of
false positives. Therefore, PBF-BF structure with space
savings (i.e., no real value storage) could be a better choice
than PBF-HT to support query services for multiattribute
items. When the number of inserted items increases, the false
positive probability curves of PBF-HT and PBF-BF arise
smoothly because the proposed structures utilize a two-step
verification process to reduce false positives, effectively
tolerating increasing number of added items.

6.3 Storage Space

Fig. 18 shows the amount of space required by SBF, PBF,
PBF-HT, and PBF-BF in order to maintain a given threshold
of false positive probability. The amount of space required
is compared when the attribute number of an item increases
from two to four, while the predefined threshold of false
positive probability is 0.0039.

Toyield the minimum false positive probability, according
to Theorem 5.2, the space used by PBF and SBF is linear to the
number of items to attain a predefined threshold of false
positive probability. We observe that PBF, without any
attribute verification process, requires the approximate space
as SBF does. However, PBF-HT exhibits the advantage to
reduce storage space by using a double verification process in
which the presence of a queried item is confirmed only when
both PBF and HT return positive. Since PBF-HT uses a hash
table to maintain real verification values of items, rather than

their hashed results in a Bloom filter, it requires a larger space
than PBF-BF does as shown in Fig. 18.

Both PBF-HT and PBF-BF require smaller storage space
with the same threshold of false positive probability than SBF
and PBF. The space used in PBF-BF and PBF-HT increases
slowly and we attribute such slow increment to the PBF-BF
and PBF-HT structures that efficiently utilize the sequential
information of hash functions to distinguish different
attributes. Although it may require additional computation
in BF and HT, PBF-BF and PBF-HT, executing a double
verification process, can store more multiattribute items than
other structures in the same condition of space usage while
maintaining a very low false positive probability.

Fig. 19 shows results when decreasing the predefined
threshold of false positive probability into 0.00098. PBF-BF
explicitly displays its advantage over other Bloom filter-
based variants to efficiently achieve space savings.

6.4 Implementation

We have implemented the proposed structures, including
SBF, PBF, PBF-HT, and PBEF-BF, to verify their feasibility and
efficiency in real-world applications. We evaluate them
using a public file system trace, HP trace [11]. The HP trace is
a 10-day file system trace collected on a time-sharing server.
The trace records multiple operations, such as READ,
WRITE, LOOKUP, OPEN, and CLOSE, on file systems. We
select file name, device number, and last modified time (from
last “WRITE” operation) as three attributes of a file, which
were hashed into different data structures for performance

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

30 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

400 400

NO. 1, JANUARY 2010

350 SBF(2) - SBF(3)

350 |-

400

- SBF(4)

—+— PBF(2)
PBF-HT(2)

—*— PBF(3)
i PBE-HT (3)

300 |-

350 |-| —— PBF(4)
-~ PBF-HT(4)

300 - PBF-BF(2) —<— PBF-BF(3)

250

250

300 |.|—— PBF-BF(4)

200

200

250

150

150

200

100

150

100

Number of 4-bit Counters(x100)
Number of 4-bit Counters (x100)

KKK KA

XA
! . 0

50

Number of 4-bit Counters (x100)

L L 0 L

0 100 200 300 400 500 600 700 800 900 1000 [

Number of ltems

(@)

L
100 200 300 400 500 600 700 800 900 1000 0

Number of ltems

100 200 300 400 500 600 700 800 900 1000

Number of ltems

(b) (©)

Fig. 18. Storage space required for SBF, PBF, PBF-HT, and PBF-BF to maintain a predefined threshold of false positive probability to be 0.0039.
(a) Tested with two-dimensional attributes. (b) Tested with three-dimensional attributes. (c) Tested with four-dimensional attributes.

400 400 - 400
= SBF(3) / SBF(4)
350 |- ggig; 7 350 PBF(3) s 350 [+PBF=4;
- PBF-HT(2) / PEENTE) / - PBF-HT(4)
300 || < PBF-BF(2) . 300 |- PBF-BF(3) 4 300 |- —<— PBF-BF(4)

250 250

200

200

250 / ‘-
200

150 150

100 100

150 /

100

50

Number of 4-bit Counters (x100)
Number of 4-bit Counters (x100)

T i At AN

50 e
f T f; e HEHTR
£

Number of 4-bit Counters (x100)

= [
0 100 200 300 400 500 600 700 800 900 1000 o

Number of tems

(@)

I 0
100 200 300 400 500 600 700 800 900 1000 o

Number of ltems

100 200 300 400 500 600 700 800 900 1000

Number of ltems

(b) (c)

Fig. 19. Storage space required for SBF, PBF, PBF-HT, and PBF-BF to maintain a predefined threshold of false positive probability to be 0.00098.
(a) Tested with two-dimensional attributes. (b) Tested with three-dimensional attributes. (c) Tested with four-dimensional attributes.

comparisons. Our experiments run on a computer with
3.2 GHz Dual Core processors and 2 GB RAM. Initially, each
Bloom-filter-based structure needs to read collected trace
segments into the main memory. Since our PBF-based
structures are very space efficient, 2 GB main memory is
large enough to contain the index structures.

Fig. 20 shows the comparison results by using a real HP
trace file system. We compared PBF-HT and PBF-BF with
SBF and PBEF. The experimental results from real implemen-
tations illustrate that PBF and SBF present approximately the
same probability of false positive, which is consistent with
our theoretical analysis described in Section 5.2. In contrast
to PBF and SBF, the two-step verification-based structures,
i.e., PBF-HT and PBF-BF, obtain very high query accuracy by
utilizing our proposed verification method. The false
positive probability of PBF-HT is smaller than that of PBF-
BF since the former uses a hash table to store actual
verification values, which are hashed into Bloom filters in
the latter, thus introducing some false positives.

Fig. 21 shows the query latency for discussed structures
when using the HP trace. We observe that SBF has the largest
query latency since it has the overhead to concatenate all
attributes into a long vector. Nonetheless, it requires more
time to get the hashed result for a long vector. In contrast,
PBF produces the smallest query latency since it uses parallel
execution on all independent attributes and can obtain query
results very quickly. Meanwhile, PBF only needs to carry out
one-step verification to check the presence of each attribute
in a submatrix, thus showing smaller latency than both PBF-
HT and PBF-BF. Compared with PBE-BF, PBF-HT has a
larger latency since a hash table needs to attach short linked

lists to conflicted buckets and these lists must be checked to
obtain final results for queries.

Table 1 presents the required physical storage space of
all structures. The comparison results are normalized to SBF
to keep a bounded false positive probability in each data
structure by running the HP trace. PBF requires the same
space as SBF. However, their physical storage space is much
larger than the one used in PBE-HT and PBE-BF. Compared
with SBF and PBF structures, PBF-HT and PBF-BF utilizing
an additional verification structure can greatly reduce
storage space. When the bounded false positive probability
(FP Prob.) decreases from 10 to 2 percent, the space saving
merit becomes more outstanding in PBF-HT and PBF-BF.
Moreover, PBE-BF using a Bloom filter to store verification

100

B SBF W PBF-HT
M PBF W PBF-BF

10

False Positive Probability (%)

0.1

5 10 20 30 40 50 60 70 80 90
Percentage of Tested Dataset (%)

100

Fig. 20.
PBF-BF.

The false positive probability for SBF, PBF, PBF-HT, and

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

XIAO AND HUA: USING PARALLEL BLOOM FILTERS FOR MULTIATTRIBUTE REPRESENTATION ON NETWORK SERVICES 31

10

~—SBF —— PBF-HT)
——PBF —— PBF-BF =

Average Latency (ms)

Percentage of Tested Dataset (%)

Fig. 21. The query latency for SBF, PBF, PBF-HT, and PBF-BF.

values further shows its space efficiency advantage over
PBF-HT that uses a hash table to have the same function.

7 RELATED WORK

A Bloom filter can be used to support membership queries
[3] because it uses a simple space-efficient data structure to
represent a set. Bloom filters are broadly applied to network-
related applications, e.g., they are used to find heavy flows
for stochastic fair blue queue management scheme [16],
summarize contents to help the global collaboration [17],
and achieve optimal replacement [4] and the longest prefix
matching [18]. Bloom filters provide a useful tool to assist
the network routing, such as route lookup [19], packet
classification [20], and active detection [21].

Standard Bloom filters have been the basis of many other
types of Bloom filters such as compressed Bloom filters [22],
hierarchical Bloom filter arrays [23], space-code Bloom filters
[24], spectral Bloom filters [25], and counting Bloom filters
[12]. Compressed Bloom filters can achieve a smaller false
positive probability using a function of compressed size than
a standard Bloom filter without compression. Hierarchical
Bloom filters maintain two levels of Bloom filter arrays to
represent the metadata location and distribution informa-
tion. Space-code Bloom filters and spectral Bloom filters are
used to represent a multiset and allow querying as to how
many occurrences of an item there are in a given set. Both of
these Bloom filters are also suitable for representing a static
set whose size can be well estimated in advance. Counting
Bloom filters replace an array of bits with counters, allowing
them to count the number of items hashed to a location and
to deal with item update and deletion operations. They can
be very useful for handling a set that is changing over time,
where items can be added, updated, or removed. Using a
counter rather than a bit allows a record to be kept of how
many times a counter has been indexed. When an item is
deleted, the corresponding counters are decremented. If an
entry in a counting Bloom filter becomes 0, the filter does not
contain its corresponding item. It has been shown that 4 bits
per counter should suffice to avoid counter overflows in
most applications [12].

There is a great deal of room to develop variants or
extensions of Bloom filters for specific applications. When
space is an issue, a Bloom filter can be an excellent

TABLE 1
Required Storage Space Normalized to SBF in a
Bounded False Positive Probability

FP SBE PBF PBF-HT | PBEF-BF
Prob.

10% 1.000 1.005 0.196 0.058
8% 1.000 1.006 0.178 0.054
6% 1.000 1.008 0.157 0.049
4% 1.000 1.011 0.132 0.042
2% 1.000 1.015 0.101 0.032

alternative to keeping an explicit list. Group-based Hier-
archical Bloom filter Array (G-HBA) is designed to manage
metadata in large-scale file systems and improve metadata
operation performance [26]. In [24], the authors designed a
data structure called an exponentially decaying Bloom filter
(EDBF) that encoded probabilistic routing tables in a highly
compressed manner and allowed for efficient aggregation
and propagation. Based on research into stale streaming
data information, stable Bloom filters [27] were proposed to
detect the duplicates of streaming data that had a tight
upper bound of false positive rates. Attenuated Bloom
filters are used to perform context discovery in ad hoc
networks [28], where Bloom filters can represent context
information to facilitate fast queries. Beyond Bloom filters
[29] further considered the question of how to compactly
represent concurrent state machines and took into account
approximate finite state machines by allowing a “don’t
know” state in the Bloom filter to represent set membership.

In addition, network applications emphasize a strong
need to engineer hash-based data structures as these can
achieve faster lookup speeds with better worst-case
performance in practice. From the engineering perspective,
the authors of [30] extended the multiple-hashing Bloom
filter by using a small amount of multiport on-chip
memory, which can support better throughput for router
applications based on hash tables. Not much previous work
has addressed the efficient representation of items with
multiple attributes, which may be common in many
network applications. Compared to the work in [10], this
paper presents a new data structure PBF-BF and gives more
detailed false positive probability analysis on PBF-based
Bloom filter structures.

8 CONCLUSION

In this paper, we presented a comprehensive solution to
support the representation and membership queries of
multiattribute items with accurate query results. The solution
consists of three Bloom filter-based structures, PBF, PBF-HT
and PBF-BF, in series to store and represent multiattribute
items, with each structure supporting queries at different
levels of accuracy. For random queries, we showed that the
hit rate is very low for proposed PBF-based structures. The
false positive probability analysis in the paper reveals that
SBF and PBF yield the same minimum false positive
probability using the same storage space. However, PBF-
HT and PBF-BF can significantly reduce the false positive
probability because of their verification value storage ata HT

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

32 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21,

or BF, respectively. The explored PBF-based structures also
support practical algebraic operations [10], facilitating
queries among distributed data sets. Through simulations
and real experiments, we demonstrated that the novel
structures, PBF-HT and PBF-BF, can efficiently be applied
in network services for their small space requirement, short
delay to queries, and very low false positive probability.

ACKNOWLEDGMENTS

This work was supported in part by HK RGC PolyU 5307/
07E and the National Natural Science Foundation of China
(NSFC) under Grant 60703046. The authors greatly appreci-
ate HP Labs for providing the HP trace and the anonymous
reviewers for their constructive comments.

REFERENCES

[1] H. Burton, “Space/Time Trade-Offs in Hash Coding with
Allowable Errors,” Comm. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[2] D. Ficara, S. Giordano, G. Procissi, and F. Vitucci, “MultiLayer
Compressed Counting Bloom Filters,” Proc. IEEE INFOCOM,
pp- 311-315, 2008.

[3] A. Broder and M. Mitzenmacher, “Network Applications of
Bloom Filters: A Survey,” Internet Math., vol. 1, pp. 485-509, 2005.

[4] A. Pagh, R. Pagh, and S. Rao, “An Optimal Bloom Filter
Replacement,” Proc. 16th Ann. ACM-SIAM Symp. Discrete Algo-
rithms, pp. 823-829, 2005.

[S] M. Zhong, P. Lu, K. Shen, and]. Seiferas, “Optimizing Data
Popularity Conscious Bloom Filters,” Proc. ACM Symp. Principles
of Distributed Computing (PODC), 2008.

[6] F.Hao, M. Kodialam, and T. Lakshman, “Building High Accuracy
Bloom Filters Using Partitioned Hashing,” Proc. ACM SIG-
METRICS, pp. 277-288, 2007.

[71 F. Hao, M. Kodialam, and T.V. Lakshman, “Incremental Bloom
Filters,” Proc. IEEE INFOCOM, pp. 1741-1749, 2008.

[8] B.Donnet, B. Baynat, and T. Friedman, “Retouched Bloom Filters:
Allowing Networked Applications to Trade Off Selected False
Positives Against False Negatives,” Proc. Int’l Conf. Emerging
Networking Experiments and Technologies (CONEXT), 2006.

[91 D. Guo,]J. Wu, H. Chen, and X. Luo, “Theory and Network

Application of Dynamic Bloom Filters,” Proc. IEEE INFOCOM,

2006.

Y. Hua and B. Xiao, “A Multi-Attribute Data Structure with

Parallel Bloom Filters for Network Services,” Proc. IEEE Int’l Conf.

High Performance Computing (HiPC), pp. 277-288, Dec. 2006.

E. Riedel, M. Kallahalla, and R. Swaminathan, “A Framework for

Evaluating Storage System Security,” Proc. Conf. File and Storage

Technologies (FAST), pp. 15-30, 2002.

L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A

Scalable Wide Area Web Cache Sharing Protocol,” IEEE/ACM

Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.

A.]. Menezes, P.C. van Oorschot, and S.A. Vanstone, Handbook of

Applied Cryptography. CRC Press, 1997.

S.C. Rhea and]. Kubiatowicz, “Probabilistic Location and

Routing,” Proc. IEEE INFOCOM, 2002.

A. Barron, “Entropy and the Central Limit Theorem,” The Annals

of Probability, vol. 14, no. 1, pp. 336-342, 1986.

W. chang Feng, D.D. Kandlur, D. Saha, and K.G. Shin, “Stochastic

Fair Blue: A Queue Management Algorithm for Enforcing Fair-

ness,” Proc. IEEE INFOCOM, 2001.

F.M. Cuenca-Acuna, C. Peery, R.P. Martin, and T.D. Nguyen,

“PlantP: Using Gossiping to Build Content Addressable Peer-to-

Peer Information Sharing Communities,” Proc. Conf. High Perfor-

mance Distributed Computing (HPDC), 2003.

S. Dharmapurikar, P. Krishnamurthy, and D.E. Taylor, “Longest

Prefix Matching Using Bloom Filters,” Proc. ACM SIGCOMM,

2003.

A. Broder and M. Mitzenmacher, “Using Multiple Hash Functions

to Improve IP Lookups,” Proc. IEEE INFOCOM, 2001.

F. Baboescu and G. Varghese, “Scalable Packet Classification,”

Proc. ACM SIGCOMM, 2001.

[10]

[11]

[12]

(13]
(14]
[15]

(o]

(171

(18]

[19]

[20]

NO. 1, JANUARY 2010

[21] B. Xiao, W. Chen, and Y. He, “A Novel Technique for Detecting
DDoS Attacks at the Early Stage,”]. Supercomputing, vol. 36,
pp- 235-248, 2006.

M. Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM Trans.
Networking, vol. 10, no. 5, pp. 604-612, Oct. 2002.

[23] Y. Zhu, H. Jiang, J. Wang, and F. Xian, “HBA: Distributed
Metadata Management for Large Cluster-Based Storage Systems,”
IEEE Trans. Parallel and Distributed Systems, vol. 19, no. 6, pp. 750-
763, June 2008.

A. Kumar, J. Xu, and E.W. Zegura, “Efficient and Scalable Query
Routing for Unstructured Peer-to-Peer Networks,” Proc. IEEE
INFOCOM, 2005.

C. Saar and M. Yossi, “Spectral Bloom Filters,” Proc. ACM
SIGMOD, 2003.

Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, “Scalable and
Adaptive Metadata Management in Ultra Large-Scale File
Systems,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS),
pp- 403-410, 2008.

F. Deng and D. Rafiei, “Approximately Detecting Duplicates for
Streaming Data Using Stable Bloom Filters,” Proc. ACM SIGMOD,
2006.

F. Liu and G. Heijenk, “Context Discovery Using Attenuated
Bloom Filters in Ad-Hoc Networks,” J. Internet Eng., vol. 1, no. 1,
pp- 49-58, 2007.

F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G.
Varghese, “Beyond Bloom Filters: From Approximate Member-
ship Checks to Approximate State Machines,” Proc. ACM
SIGCOMM, 2006.

H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast
Hash Table Lookup Using Extended Bloom Filter: An Aid to
Network Processing,” Proc. ACM SIGCOMM, 2005.

[22]

(24]

(23]

[26]

(27]
(28]

[29]

(30]

Bin Xiao received the BSc and MSc degrees in
electronics engineering from Fudan University,
China, in 1997 and 2000, respectively, and the
PhD degree in computer science from the
University of Texas at Dallas in 2003. Currently,
he is an assistant professor in the Department of
Computing at Hong Kong Polytechnic Univer-
sity, Hong Kong. His research interests include
communication and security in computer net-

- works, peer-to-peer networks, and wireless
mobile ad hoc and sensor networks. He is a member of the IEEE.

Yu Hua received the bachelor and PhD degrees
in computer science from Wuhan University,
China, in 2001 and 2005, respectively. Cur-
rently, he is an assistant professor in the School
of Computer at Huazhong University of Science
and Technology, China. He was a research
assistant in the Department of Computing at
Hong Kong Polytechnic University in 2006. His
research interests include distributed computing
and network storage. He is a member of the
IEEE and the IEEE Computer Society.

2=
R) 3

oy’

-

ok

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on February 2, 2010 at 08:26 from IEEE Xplore. Restrictions apply.

