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Abstract—This paper focuses on multihop range-free localization in anisotropic wireless sensor networks. In anisotropic networks,

geometric distance between a pair of sensor nodes is not always proportional to their hop count distance, which undermines the

assumption of many existing range-free localization algorithms. To tolerate network anisotropy, we propose a pattern-driven

localization scheme, which is inspired by the observation that in an anisotropic network the hop count field propagated from an anchor

exhibits multiple patterns, under the interference of multiple anisotropic factors. Our localization scheme therefore for different patterns

adopts different anchor-sensor distance estimation algorithms. The average anchor-sensor distance estimation accuracy of our

scheme, as demonstrated by both theoretical analysis and extensive simulations, is improved to be better than 0:4r0:4r when the average

sensor density is above eight, and the sensor localization accuracy thus is approximately better than 0:5r0:5r. This localization accuracy

can satisfy the needs of many location-dependent protocols and applications, including geographical routing and tracking. Compared

with previous localization algorithms that declares to tolerate network anisotropy, our localization scheme excels in 1) higher accuracy

stemming from its ability to tolerate multiple anisotropic factors, including the existence of obstacles, sparse and nonuniform sensor

distribution, irregular radio propagation pattern, and anisotropic terrain condition, 2) localization accuracy guaranteed by theoretical

analysis, rather than merely by simulations, and 3) a distributed solution with less communication overhead and enhanced robustness

to different network topologies.

Index Terms—Wireless sensor networks, range-free localization, anisotropic networks.

Ç

1 INTRODUCTION

IN recent years, by the advances in MEMS and commu-
nication theory, wireless sensor networks (WSNs) have

revealed great potential to provide economical and practical
solutions for civilian and military applications, e.g., track-
ing, surveillance, and environmental monitoring. In many
of these applications, knowledge about sensors’ geometrical
positions is assumed to be an integral part of sensor
readings, and it is also critical for many network protocols,
e.g., topology control, clustering, and geographical routing.
It thus becomes one of the fundamental issues in WSNs to
acquire sensor position knowledge, called sensor localiza-
tion problem.

To address this localization problem, extensive research
has been conducted on multihop solutions for the following
reasons. It is a naive solution to have all the sensor nodes
equipped with GPS receivers to directly contact satellites,
because this “one-hop” approach is prohibited by the size,
cost, and power consumption constraints of sensor nodes. As
a compromise, only a small portion of nodes named anchors
have GPS receivers (or other localization equipments like

laser range finder) and can know their positions accordingly,
and these anchors can help to locate other “unknown”
sensors. The challenging part of this anchor-based approach
is that to reduce WSNs deployment cost the anchors can only
be sparsely distributed. Therefore, the anchors only one hop
away from a sensor may not provide enough anchor-sensor
distance estimates to localize this sensor. For this reason,
researchers actively seek for the multihop localization
solutions that can measure anchor-sensor distances span-
ning multiple hops.

Among various multihop solutions, people pay great
attention to the multihop range-free solutions [1], [2], [3],
[4], [5], [6] that utilize only connectivity information, i.e.,
who is within the radio range of whom. This is because
range-free solutions has no requirements for expensive
ranging devices and can satisfy the accuracy requirement of
many location-based applications [4]. Moreover, current
ranging techniques (e.g., TDoA, AoA, and RSSI) have their
inadequacies [7].

Although the previous multihop range-free solutions [1],
[2], [3], [4], [5] function well in isotropic networks (that
assume hop count distance between two nodes is propor-
tional to their geometric distance), their performance dete-
riorates sharply in anisotropic networks. Network anisotropy
stems from various factors, e.g., concave deployment region,
sparse and nonuniform sensor distribution, irregular radio
propagation pattern, and anisotropic deployment terrain
condition. To tolerate these anisotropic factors, several
methods [8], [9], [10], [11] have been proposed recently.
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These methods, however, have the inadequacy to focus on
only one anisotropic factor, like obstacle detour. They may
also have the inadequacy of nonscalability due to the error
accumulation along with the increase of network scale. Some
of these methods rely on centralized computation, which
consumes the microsensors’ precious energies to collect and
disseminate required information. Most of them neglect the
impact of last hop distance on the overall distance estimation.

We focus on multihop range-free localization in aniso-
tropic networks, and propose a distributed pattern-driven
scheme to produce accurate estimates of anchor-sensor
distances with the presence of multiple anisotropic factors.
This accurate distance estimation is the basis of accurate
sensor location estimation. The main idea of our pattern-
driven scheme is to exploit the observation that the hop
count field of an anchor (i.e., hop count distribution of
sensors with respect to that anchor) can exhibit multiple
patterns in an anisotropic network. One example of this
coexistence of multiple patterns can be found in Fig. 1. As
illustrated, region I is within a few hops from the anchor,
and the hop count field there approximately exhibits a
Concentric Ring (CR) pattern, in which sensors can approxi-
mately treat this anchor as an isotropic anchor. However,
region II is far away from the anchor, and the hop count
field there exhibits a Centrifugal Gradient (CG) pattern, in
which sensors can witness the anchor as an anisotropic
anchor. CR and CG patterns are different because CG
pattern permits the HopSize (i.e., average per-hop-distance)
to vary in an unpredictable manner due to the disturbance
of multiple anisotropic factors, e.g., nonuniform sensor
distribution, irregular radio propagation, and anisotropic
terrain condition. CR and CG patterns, however, have a
shared feature that a rough match is preserved between the
hop count field gradient (with the greatest rate of increase of
hop count) and the centrifugal direction (that departs from
the anchor). The worst case is that in region III, hop count
field exhibits Distorted Gradient (DG) pattern, in which the
line-of-sight rule is violated by obstacle detour and the field
gradient strongly deviates from the centrifugal direction.

To achieve accurate distance estimation in this anisotropic
sensor network, we assume each sensor has the ability to
classify heard anchors into three categories according to the
CR, CG, and DG patterns. In practice, we put into CR
category all the anchors within three (or four) hops. This
threshold is chosen based on our observations of the error
accumulation trend (with increased hop count) of the
anchor-sensor distance estimation by isotropic algorithms
(like Amorphous and DV-Hop) in rectangular anisotropic
networks. It is a difficult problem to differentiate between the

CG pattern (anisotropic but slightly detoured) and the DG
pattern (anisotropic and strongly detoured). In fact, it maybe
impossible in practice to accurately recognize the slightly
detoured anchors from strongly detoured (or even from
moderately detoured anchors), without the global knowl-
edge on network topology, e.g., network boundary and
obstacles shapes. A practical and efficient way is to select the
eight nearest anchors into the CG category, which thus may
contain detoured anchors. We choose this threshold of eight,
because from the localization perspective, eight anchors are
sufficient to mitigate bad anchor geometry and obtain
accurate location estimate. Those anchors that are not eight
nearest are put into the DG category.

The three categories of heard anchors corresponding to the
three patterns (namely, CR, CG, and DG) have different
dominating error sources in anchor-sensor distance estima-
tion. For the three different categories, we therefore propose
different anchor-sensor distance estimation algorithms.
1) For the CR pattern, the last hop distance is an important
factor interfering the distance estimation accuracy. To reduce
its impact, we propose an algorithm named CrMcs to achieve
higher accuracy than DV-Hop [2] and Amorphous [3]. 2) For
the CG pattern, varying HopSize becomes the dominating
factor and we propose the DiffTriangle to tolerate the
inaccurate HopSize estimates. The main idea of DiffTriangle
is to revise the anchor-sensor distance estimates with the
assistance from the nearest anchor to the sensor (namely
Reference Station), which exhibits the CR pattern. Because it is
inevitable for the CG category to contain detoured anchors,
we enhance the DiffTriangle by DiffTriangle� to tolerate
obstacle detour additionally. DiffTriangle� however requires
two reference stations exhibiting the CR pattern. As a
summary, for the CG category, when there are two reference
stations in the CR category, DiffTriangle� is adopted; when
only one is available, DiffTriangle is used as a backup; and
when there are none, CrMcs is the only choice left. 3) The
surplus anchors in the DG category vulnerable to obstacle
detour are dropped. Finally, when sufficient (more than six)
distance estimates are collected from anchors exhibiting the
CR or CG pattern, a sensor can deduce an estimate about its
own location using weighted MMSE multilateration [12]

Extensive theoretical analysis on the accuracy of our
pattern-driven scheme can be found in this paper. We show
that, for the CR pattern, CrMcs can effectively suppress
distance estimation error below 0:2r (r is the average radio
range of sensors) when network density is higher than
eight. Benefiting from these accurate estimates by CrMcs,
distance estimation accuracy of DiffTriangle is improved to
be better than 0:4r when DiffTriangle is applied to the CG
pattern. The average accuracy of DiffTriangle�, as shown by
experiments, is better than 0:5r when handling obstacle
detour. With these accurate anchor-sensor distance esti-
mates (even when network density is as sparse as eight), the
average localization accuracy approaches 0:4r according to
Cramér-Rao lower bound [13]. This localization accuracy
can satisfy the needs of many location-dependent applica-
tions, e.g., geographical routing and tracking [4].

Our pattern-driven localization scheme differs from
other anisotropy tolerating methods in several fundamental
aspects.
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Fig. 1. Coexistence of multiple patterns in hop count field.



. Higher Localization Accuracy:

- In the CR pattern, CrMcs minimizes the impact
of the last hop distance on distance estimation,
which is neglected by other anisotropy tolerat-
ing methods.

- In the CG pattern, DiffTriangle can effectively
tolerate the variation of HopSize disturbed by
multiple anisotropic factors and DiffTriangle�

can additionally tolerate obstacle detour. As a
comparison, most of the existing works can
tolerate only one anisotropic factor (obstacle
detour) and ideally assume circular radio
model, dense and uniform sensor distribution,
and uniform terrain condition.

- For the DG pattern, anchors in the DG category
are dropped. Therefore, our scheme can easily
integrate the state-of-the-art works in secured
localization, which can recognize outliers and
place them into the DG category to eliminate
their adverse impact.

. Less Communication Overhead: The communication
overhead of our method is OðMNÞ, while that of
PDM is OðM2NÞ, where M is the number of anchors
and N is the number of sensors.

. Reduced Computational Complexity: The arithmetic
operations needed by our scheme includes only
basic trigonometric functions, bisection root finding,
and MMSE multilateration. There is no need for
large matric inversion as in PDM and MDS-MAP.

. Enhanced Algorithm Robustness to Different Net-
work Topologies: Our scheme is a distributed solution
that functions well in all experimental deployment
regions, including rectangular, U-shaped, and
O-shaped regions. Performance of centralized algo-
rithms (like PDM) degrades dramatically in the
O-shaped regions (see Section 7.5).

The rest of the paper is organized as follows: In Section 2,
we propose a localization framework to give an overall
impression of our pattern-driven localization scheme.
Section 3 presents CrMcs for distance estimation in the
CR pattern to minimize the impact of the last hop distance.
Section 4 proposes DiffTriangle algorithm to tolerate the
varying HopSize in the CG pattern. Section 5 first quantifies
the impact of DG pattern on the accuracy of DiffTriangle
and then enhance DiffTriangle by DiffTriangle� to further
tolerate obstacle detour. Section 6 provides the algorithm
pseudocode to reproduce our simulation results. Section 7
presents experimental results, comparing our algorithm
with Amorphous and PDM. Finally, we analyze related
work in Section 8, and conclude our paper in Section 9.

2 PROPOSED LOCALIZATION FRAMEWORK

We present a pattern-driven localization framework, which
is deployed at each sensor to estimate its location. The design
of this framework is inspired by the fact that from the
perspective of an sensor, hop count fields of different
anchors may exhibit different patterns, disturbed by differ-
ent anisotropic factors. To classify heard anchors according
to the three patterns (CR—isotropic, CG—anisotropic but

slightly detoured, and DG—strongly detoured) and to
invoke suitable distance estimation algorithms for different
patterns, we present the localization framework in Fig. 2,
which depicts both the data flow and control flow.

From the perspective of control flow, our framework has
only one control thread, which consists of three consecutive
phases: 1) Anchor Classification Phase, 2) Distance Estima-
tion Phase, and 3) Location Estimation Phase. In phase 1,
we classify the anchors heard by a sensor into three
categories (CR, CG, or DG patterns). In phase 2, we
schedule a corresponding anchor-sensor distance estimator
for each anchor category, which prepares a sufficient
number of distance estimates for the next phase. In phase 3,
we deduce an estimate about the sensor’s location by
weighted multilateration.

From the perspective of data flow, the framework has
one output (the final location estimate) and two inputs
(Inputs I and II). First, to obtain the Input I (stored
temporally in the DG category), each anchor initiates
networkwide flooding and each sensor hearing the flooding
records the information about the anchor, such as its
identifier, location, and hop count. Second, each sensor
locally broadcasts its incomplete Input I (the hop counts to
all heard anchors) to its immediate neighborhood, since the
Input I additionally requires the knowledge on the number
of neighbors having smaller (equal, and larger) hop counts
than the sensor itself. Finally, each anchor propagates its
Input I to three (or four) hops neighborhood by a confined
flooding, which is recorded by nearby sensors as their Input
II and is needed by our DiffTriangle� algorithm. Therefore,
we regard our localization scheme as a distributed solution
with only one simple communication protocol—the con-
fined flooding, since the networkwide flooding and the
local broadcast are both special cases of confined flooding.

In phase 1, we classify the set of all heard anchors into
three subsets (namely, CR, CG, and DG) by a sequential
execution of two pattern recognizers. First, the CG
recognizer relocates undetoured anchors from the DG
category into the CG category, since the CG pattern in
contrast to the DG pattern has the slight detour assumption.
This paper configures the CG recognizer to trust the nearest
eight anchors, which reduces the chance to contain strongly
detoured anchors in the CG category. Second, the CR
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recognizer relocates anchors exhibiting the CR pattern from
the CG category into the CR category, since the CR pattern
additionally assumes network isotropy (with identical
HopSize) compared with the CG pattern. For CR recognizer,
we use an empirical rule to trust anchors within a few hops
(i.e., three or four hops adjustably).

In phase 2, we adopt different anchor-sensor distance
estimators for different anchor categories (CrMcs for the CR
pattern, DiffTriangle� and DiffTriangle for the CG pattern)
and drop the remaining anchors in the DG pattern. CrMcs
can solve the last hop distance estimation problem for
isotropic anchors and it is discussed in Section 3. Diff-
Triangle can tolerate varying HopSize and we present
DiffTriangle in Section 4. DiffTriangle� is an enhancement
to DiffTriangle to additionally tolerate obstacle detour and
we cover it in Section 5. In phase 3, we adopt the weighted
multilateration [12] as the location estimator, which is
described in Section 5.2.

An advantage of our framework is its flexibility, which
permits the “Stateless Activities” in Fig. 2 to be replaced by
other algorithms. One example is to replace CrMcs by MDS-
MAP [14], which however incurs higher communication
overhead. Another example is to use the GridVoting [15]
method as the CG recognizor, which can filter both obstacle
detour and malicious attacks. However, secured localiza-
tion is not the focus of this paper and we find, in practice,
that GridVoting can only detect strongly biased anchors but
not moderately detoured anchors. It maybe impossible to
completely rule out detoured anchors in the CG category,
and DiffTriangle� is still necessary even when the Grid-
Voting method is employed. As a summary, our framework
has the flexibility to accommodate different algorithm
combinations, which can facilitate future studies in sensor
network localization.

3 CR PATTERN AND PROPOSED CRMCS

This section presents the CrMcs algorithm to estimate the
multihop anchor-sensor distance for isotropic anchors
approximately exhibiting the Concentric Ring pattern. The
CR pattern applies in isotropic networks and isotropic
regions (like the region I in Fig. 1), in which the field
gradient roughly matches centrifugal direction and HopSize
is identical in all directions as shown in Fig. 3. We first

identify the last hop distance problem—an important factor
interfering the distance estimation in the CR pattern, and
then show the ineffectiveness of DV-Hop and Amorphous to
handle this problem. In order to minimize its impact, CrMcs
is proposed to reduce distance estimation error of the CR
pattern to below 0:2r (when network density is above eight).
We give out this accuracy bound by theoretical analysis and
this accuracy is crucial to guarantee satisfactory performance
of DiffTriangle, which will be discussed in Section 4. We
summarize the symbols in Table 1, which are used through-
out the paper.

3.1 CR Pattern and the Last Hop Distance

It is well known that in networks where sensors are uniformly
distributed, the hop count field of an anchor approximately
demonstrates the CR pattern, under the assumption that the
RF transmitters of wireless sensor nodes have a rotationally
symmetric range. We argue that when estimating anchor-
sensor distances using the CR pattern, another important
factor influencing estimation accuracy (besides the accuracy
in HopSize estimation) is the last hop distance.

Definition 1 (Last Hop Distance). When hjðiÞ ¼ 1, the last
hop distance of sensor i is djðiÞ, and when hjðiÞ > 1, the last
hop distance of sensor i is the shortest distance from the
contour ring with hop hjðiÞ � 1 to the sensor i.
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Symbols and Their Descriptions



If we cannot effectively estimate the last hop distance,
the average distance estimation error will exceed one
quarter of HopSize (� 1

4 � 0:8r ¼ 0:2r). This is because the
maximum estimation error is half of HopSize, since all
sensors in a contour ring (e.g., the fourth hop contour ring
in Fig. 3) have the same hop count. All the sensors in this
ring thus estimate the anchor-sensor distance as the mean of
the corresponding ring’s inner radius and outer radius.

Although this problem of last hop distance is important,
it is inappropriately handled by traditional distance estima-
tion algorithms, including DV-Hop [2] and Amorphous [3].
The DV-Hop, using the following equation, neglects this
problem.

d̂1jðiÞ ¼ hjðiÞ � dhop:

The Amorphous, though striving to mitigate the impact of
this problem using a method called “smoothing,” produces
biased distance estimates for the first two hops even when
HopSize is accurately known, according to the following
analysis. Amorphous adopts the smoothed hop count hjðiÞ,
rather than the raw hop count hjðiÞ, to derive distance
estimate d̂2jðiÞ.

d̂2jðiÞ ¼ hjðiÞ � dhop: ð1Þ

The smoothed hop count hjðiÞ is calculated by a local
averaging around sensor i’s immediate neighborhood.

hjðiÞ ¼
1

jNðiÞj
X
l2NðiÞ

hjðlÞ � 0:5: ð2Þ

We analyze the systematic error of Amorphous incurred by
the last hop distance in Appendix A and plot its result in
Fig. 4, which indicates Amorphous can be inaccurate in the
first two hops. A similar conclusion can be drawn from the
simulation results in Section 7.

3.2 Proposed CrMcs

We propose the CrMcs algorithm to achieve accurate anchor-
sensor distance estimation in the CR pattern. The main idea
underlying CrMcs is to minimize the impact of the last hop
distance by exploiting the uniform sensor distribution
around a sensor’s immediate neighborhood (i.e., essentially
Monte Carlo sampling). Therefore, from the percentage of

neighbors with no larger hop count than the sensor itself, we
can estimate the area of the gray region illustrated in Fig. 3.
With this area estimate, we can derive an anchor-sensor
distance estimate that includes the last hop distance.

The first step of CrMcs is to estimate the area of the
mentioned gray region, which is the intersected region of
anchor j’s hjðiÞ hop disk—dskjðhjðiÞÞ—and sensor i’s one
hop disk dskið1Þ. We represent its area by ajðiÞ and estimate
the area by the following equation:

ajðiÞ=�r2 � jNjðiÞj=jNðiÞj: ð3Þ

Its basic idea is the Monte Carlo sampling, treating each
node around sensor i’s neighborhood as an independent
sampling. In this way, the ratio of ajðiÞ to the area �r2 of
sensor i’s neighborhood dskið1Þ can be approximated to the
proportion of sensor i’s neighbors with hop counts equal to
or lower than the sensor i’s hop count hjðiÞ.

The second step of CrMcs is to estimate the radius of the
two intersecting disks—dskjðhjðiÞÞ and dskið1Þ by (4),
assuming the CR pattern.

rðhÞ � ðh � 1Þ � dhop þ r: ð4Þ

In this equation, the radius of dskjðhjðiÞÞ is equal to rðhjðiÞÞ
and radius of dskið1Þ is rð1Þ. In (4), we intentionally assign
the one hop disk’s radius rð1Þ as the sensors’ average radio
range r, which is determined when the sensors are
deployed. This assignment improves estimation accuracy
of rð1Þ, while it brings error to estimation of rðhÞ, when
h > 1. This error is negligible in simulation, since it is quite
difficult to estimate HopSize (or dhop) precisely in practice
due to the existence of radio irregularity (enlarged by the
long range link) and it is always underestimated by
Kleinrock’s equation [16].

The final step is to estimate the anchor-sensor distance
djðiÞ by (5), as the distance between centers of two disks
dskjðhjðiÞÞ and dskið1Þ.

d̂3jðiÞ ¼ A�1 ½rð1Þ; rðhjðiÞÞ; ajðiÞ�: ð5Þ

This equation assumes that we have the estimates about the
radius of the two disks and the area of their intersected
region in the previous two steps . The function A�1 is the
inverse function of A in (6), which is established by
applying bisection root finding algorithm to function A.

a1 ¼ A ðr1; r2; dÞ ¼ r1 �
�1 � sin�1

2
þ r2 �

�2 � sin�2

2
;

�1 ¼ 2 arccos
x1

r1
; x1 ¼

d

2
þ r

2
1 � r2

2

2d
;

�2 ¼ 2 arccos
x2

r2
; x2 ¼

d

2
þ r

2
2 � r2

1

2d
:

ð6Þ

A ðr1; r2; dÞ is a geometric function calculating the area of
the intersected region of two disks and taking three
parameters—the radius r1, r2 of the two intersecting disks
and the distance d between their centers. The symbols used
in (6) are illustrated by Fig. 5.

3.3 Error Characteristics of CrMcs

Sensor density is an important factor influencing the
accuracy of CrMcs, which directly decides the accuracy of
the intersected area estimation in (3). For this issue, we
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provide an analysis in Appendix B and plot the analysis
result in Fig. 6, showing that the accuracy of CrMcs is better
than 0:2r when sensor density >8. This analysis result is
consistent with the simulation result in Section 7. The
limitation of this analysis, however, is its assumption of
accurate HopSize (simplified to r) and it thus is only
valuable for low hop count cases, in which the impact of
inaccurate HopSize on the accuracy of (4) is minimized. For
large hop count cases, it is inevitable for the accuracy of
CrMcs (and Amorphous) to degrade with the increase of
hop count (namely error accumulation), since the inaccuracy
in HopSize get amplified by large hop count in (4). It is the
topic of the next section on how to tolerate this error
accumulation due to varied and inaccurate HopSize.
Additionally, the accuracy of CrMcs with the presence of
radio irregularity (by DOI model [4]) has been investigated
by simulations in Section 7.3.

4 CG PATTERN AND DIFFTRIANGLE

This section considers the distance estimation problem in
anisotropic networks with the presence of various aniso-
tropic factors apart from large obstacles. In this type of
networks and regions (like region II in Fig. 1), the hop count
fields exhibit the CG pattern. The CG pattern, compared
with the CR pattern,

. relaxes the assumption about identical HopSize to
permit it to vary in all directions,

. but it preserves the assumption about the rough
match between gradient and centrifugal direction
(i.e., the slight obstacle detour assumption).

Therefore, isotropic algorithms assuming the CR pattern
(like DV-Hop and CrMcs) encounter performance degra-
dation in the CG pattern. To tolerate the varying HopSize,
we propose DiffTriangle algorithm that can reduce the
distance estimation error below 0:4r (sensor density � 8).
We also provide theoretical analysis for this claimed
accuracy in this section.

4.1 CG Pattern with Slight Obstacle Detour

Effective localization remains a problem in sparse networks
where the sensor density falls in the range of 6 to 15. There
are two reasons for using this range. First, Nagpal et al.
suggest in [3] that 15 is a critical minimum sensor density for
Amorphous to obtain good accuracy. Second, Kleinrock and
Silvester prove in [16] that 6 is the optimum sensor density to
maintain the network connectivity. The localization problem
in sparse networks deserves investigation, because lower
sensor density implies lower deployment cost, smaller
possibility of traffic jam, and radio interference.

We argue that the underperformance of Amorphous in
sparse networks is caused by network anisotropy. To
visualize this anisotropy, we use convex hulls to contain
all sensors with the same hop count, which offer a good
approximation and illustration of contour curves in a hop
count field. As in Fig. 7a, when the sensor density is 30, a
tight match can be seen between the concentric rings and
the convex hulls, which are represented as the polygons in
Fig. 7. However, when the sensor density is as low as 8, the
convex hulls deviate from concentric rings, with HopSize
varying unpredictably in different directions. This deviation
explains why localization algorithms assuming network
isotropy suffer from severe performance degradation in
sparse networks.

A CG pattern can be extracted from the hop count fields
of sparse networks. In Fig. 7b, although the HopSize varies
when density is 8, the field gradient still roughly matches
the centrifugal direction, which is drawn as the rough
perpendicularity between centrifugal directions and con-
tour curves. This type of anisotropy is summarized as the
CG pattern that assumes varying HopSize and a rough
match between field gradient and centrifugal direction.

The existence of the CG pattern in a sparse network can be
explained as its nonuniform sensor distribution tendency,
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Fig. 5. The area of the intersected region of two disks.

(a) (b)

Fig. 7. Anisotropy caused by low sensor density. (a) Dense network with
degree = 30. (b) Sparse network with degree = 8.



which creates numerous small holes scattered over the whole
network, as illustrated in Fig. 8. These small holes distort the
shortest path between the anchor and a sensor, which thus
slightly deviates from the straight line connecting the two
sensor nodes. Therefore, in Fig. 7b, the HopSize varies
unpredictably in different directions, but the field gradient
is only slightly disturbed from its outward direction, due to
the small scale of these holes. This rough match between field
gradient and centrifugal direction (the slight detour assump-
tion) is a common trait observable in more generalized
network settings, additionally assuming the presence of
anisotropic terrains condition, nonuniform sensor distribu-
tion, irregular radio propagation, and inconsistent sensor
radio range.

4.2 Proposed DiffTriangle

To tolerate the unpredictable variation of HopSize in the
CG pattern and produce accurate estimates about anchor-
sensor distances, we propose DiffTriangle exploiting the
rough match between field gradient and centrifugal direc-
tion. The DiffTriangle gets its inspiration from the Voronoi
diagram with geometrically distributed anchors acting as
the sites of the Voronoi cells. Sensors within a Voronoi cell
adopts the dominating anchor as their Reference Station to
revise their distance estimates (to other distant anchors),
which deteriorate due to network anisotropy if applying
CrMcs or Amorphous.

We assume that the dominating reference station of a
Voronoi Cell approximately exhibits the CR pattern to the
sensors within the cell. This implies that these reference
stations should appear in normal sensors’ CR category and
thus the distance from sensors to their dominating reference
stations should be no more than three (or four) hops. This
assumption implicitly places a demand for anchor distribu-
tion density. As an approximate estimation, to guarantee the
availability of reference station in the CR category when the
sensor density is 10, the anchor percentage (¼ Anchor Number

Sensor Number )
should be roughly

One Anchor

ðSensor Density=�r2Þ � �ð3rÞ2
¼ 1

10

�r2

�ð3rÞ2
� 1:1%:

Therefore, in our simulations, a random distribution of
anchors with anchor percentage of 3-5 percent can guarantee
the availability of reference stations for a large majority of
sensors. In those “unavailable” rare cases, CrMcs is used as a
backup for DiffTriangle.

The DiffTriangle algorithm gets its abbreviated name
from Differential Triangle, since frequently the anchor, sensor,
and reference station (call it station for short) are not collinear

but are positioned as a triangle depicted by Fig. 9. In this
triangle, we solve the problem of how to revise the estimate
of anchor-sensor distance djðiÞ, benefiting from:

1. the precisely known djðkÞ from geometric coordi-
nates of anchor j and reference station k,

2. the accurate estimate d̂3kðiÞ by CrMcs of the station-
sensor distance dkðiÞ, since the nearby reference
station k exhibits the CR pattern to sensor i,

3. accurately estimated

prj
gdjðiÞ
���!sksi��!

from the proximity difference of reference station k

and sensor i in anchor j’s hop count field. Its
estimation suffers much less from varying HopSize

than estimation of djðiÞ, thanks to the geometric
closeness of reference station k to sensor i.

We adopt the following equations for DiffTriangle
Algorithm for CG pattern:

d̂4jðiÞjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
j ðkÞ � d̂2

3kðiÞ þ ^prj2

gdjðiÞ
���!sksi��!r

þ ^prj
gdjðiÞ
���!sksi��!;

^prj
gdjðiÞ
���!sksi��! ¼ ½hjðiÞ � hjðkÞ� � dhop:

8><
>:

ð7Þ

The d̂4jðiÞjk in (7) is our estimate of anchor-sensor distance
by DiffTriangle. The station-sensor distance estimate d̂3kðiÞ
required by (7) is obtained by applying CrMcs algorithm in
(5). The

^prj
gdjðiÞ
���!sksi��!

is the proximity difference of sensor i and station k. The
adopted proximity hjðiÞ and hjðkÞ is the smoothed hop
counts of sensor i and station k (see (2)).

Our derivation of the equations of DiffTriangle is
presented below. The anchor-sensor distance djðiÞ can be
calculated using the following trigonometric formula,
assuming the angle �jði; kÞ is known.

djðiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2
j ðkÞ � d2

kðiÞ sin2 �jði; kÞ
q

þ dkðiÞ cos�jði; kÞ: ð8Þ

The angle �jði; kÞ can be estimated from the projection

prj
sjsi
��!sksi��! of vector sksi

��! over vector sjsi
��!, where sksi

��! is the

vector pointing from station k to sensor i and sjsi
��! is the

centrifugal vector from anchor j to sensor i.

1598 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 9, NO. 11, NOVEMBER 2010

Fig. 8. Disturbance by small holes in sparse networks. Fig. 9. DiffTriangle algorithm in the CG pattern.



�jði; kÞ ¼ arccos
prj

sjsi
��!sksi��!
dkðiÞ

:

The critical prj
sjsi
��!sksi��! can be approximated to

prj
gdjðiÞ
���!sksi��!;

under the assumption that the centrifugal direction sjsi
��!

roughly matches the direction of gradient gdjðiÞ
���!

of hop

count field of anchor j seen by sensor i.

�jði; kÞ � arccos

prj
gdjðiÞ
���!sksi��!
dkðiÞ

: ð9Þ

We estimate the projection prj
gdjðiÞ
���!sksi��! in (7) by assuming

prj
gdjðiÞ
���!sksi��!

proportional to the proximity difference hjðiÞ � hjðkÞ of
sensor i and station k, since the isotropy can be well

preserved in the small region between sensor i and

station k. To achieve higher accuracy, (7) uses smoothed
hop count described in (2) for the proximities of sensor i

and station k to solve the last hop distance problem, because

smoothed hop count is accurate when hop count is larger
than two (see Fig. 4).

4.3 Error Characteristics of DiffTriangle

In this section, we demonstrate by analysis that DiffTriangle

can reduce the average distance estimation error to below

0:4r in CG pattern, when the sensor density is higher than 8.
The analysis is the theoretical foundation of the weighted

multilateration adopted by our localization scheme, which

configures the expected error of CrMcs as 0:2r and that of
DiffTriangle (or its enhancement DiffTriangle�) as 0:4r.

We linearize the impact of several factors on distance

estimation error �djðiÞ by applying the Taylor expansion on

(8): 1) station-sensor distance estimation error �dkðiÞ, and
2) angle estimation error ��jði; kÞ, which leads to the

establishment of the following equation:

�djðiÞ �
�

cos�jði; kÞ �
dkðiÞ sin2 �jði; kÞffiffiffi

�
p

�
��dkðiÞ

þ
�

sin�jði; kÞ þ
dkðiÞ sin 2�jði; kÞ

2
ffiffiffi
�
p

�
dkðiÞ ���jði; kÞ;

where � ¼ d2
j ðkÞ � d2

kðiÞ sin2 �jði; kÞ:

To simplify our analysis, the two items in the form of dkðiÞ...ffiffi
�
p

are approximated to 0, leading to the simplified representa-
tion of �djðiÞ in (10).

�djðiÞ � cos�jði; kÞ�dkðiÞ þ sin�jði; kÞdkðiÞ��jði; kÞ: ð10Þ

This approximation is reasonable because station-sensor

distance dkðiÞ is much smaller than the anchor-station
distance djðkÞ. The required ��jði; kÞ in (10) can be derived

by applying Taylor Expansion to (9).

��jði; kÞ ¼
cos�jði; kÞ �dkðiÞ � �prj

sjsi
��!sksi��!

dkðiÞ sin�jði; kÞ
:

Therefore, (10) can be converted to a more simplified form
in (11).

�djðiÞ � 2 cos�jði; kÞ �dkðiÞ � �prjsjsi
��!sksi��!: ð11Þ

This equation indicates that distance estimation error �djðiÞ
of DiffTriangle is influenced by two factors: 1) estimation
error �dkðiÞ of the station-sensor distance, and 2) estimation
error

�prjsjsi
��!sksi��!

of the station-sensor proximity difference. The first factor
�dkðiÞ < 0:2r, since the estimation of dkðiÞ is achieved using
CrMcs, whose accuracy has been analyzed in the previous
section. The second factor

�prjsjsi
��!sksi��! < 0:2r;

since estimation algorithm of

prjsjsi
��!sksi��!

by (7) minimizes the impact of last hop distance, which is
similar to CrMcs. Therefore, according to (11), average
distance estimation error �djðiÞ of DiffTriangle in convex
anisotropic networks is smaller than ½1þ 2 cos�jði; kÞ� �
0:2r � 0:4r, which is consistent with the simulation results
in Section 7.

5 DG PATTERN AND DIFFTRIANGLE*

This section focuses on the distance estimation problem in
anisotropic networks additionally assuming the presence of
large obstacles. These obstacles can distort field gradients to
strongly deviate from the centrifugal directions (see region
III in Fig. 1, and Fig. 10). This strong deviation between
gradient and centrifugal direction undermines the slight
detour assumption of DiffTriangle and deteriorates its
accuracy. This section quantifies this impact of the DG
pattern on DiffTriangle, and based on this analysis, we
propose DiffTriangle�—an enhancement to DiffTriangle,
which can tolerate both obstacle detour and the interference
of multiple anisotropic factors.

Our DiffTriangle� has the following advantages com-
pared with other algorithms tolerating detoured anchors.
Different from RenderedPath [9] assuming a constant
number of anchors, DiffTriangle� can provide higher
accuracy, due to its ability (inherited from DiffTriangle) to
exploit increased anchor density and tolerate multiple
anisotropic factors. PDM [10] is also an algorithm to tolerate
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Fig. 10. Deviation of gradient and centrifugal direction.



both multiple anisotropic factors and obstacle detour.
Compared with PDM, DiffTriangle� is a distributed solution
with less communication overhead and is robust in all
experimental (i.e., rectangular, U-shaped, and O-shaped)
networks. PDM, however, degrades severely in the
O-shaped deployment fields (see Section 7.5). In contrast
to GridVoting [15], DiffTriangle� has higher accuracy,
because although GridVoting proposes secured multilatera-
tion to drop the lying anchors due to obstacle detour,
GridVoting cannot effectively filter moderately detoured
anchors, which deteriorates its localization accuracy.

5.1 DG Pattern’s Impact on Accuracy of DiffTriangle

We analyze the impact of the DG pattern on distance
estimation accuracy of DiffTriangle. We show that the
accuracy of DiffTriangle can degrade to 0:8r in anisotropic
concave networks. This error is not acceptable to many
location-dependent applications, since 0:4r is the tolerable
bound of localization error as argued by [4]. This fact
imposes a requirement for more effective anchor-sensor
distance estimation algorithms to handle obstacle detour,
which is the topic of the next section.

The shortest path between two sensor nodes can strongly
deviate from the straight line connecting them, if distorted by
obstacles, as illustrated by the exemplified S-shaped network
in Fig. 10. This deviation causes a mismatch between field
gradient and centrifugal direction, which we summarize as
the DG pattern, which undermines the assumption of
DiffTriangle and degrades its accuracy. We quantify the
degree of obstacle detour by the deviation angle �jðiÞ.

�jðiÞ : the deviation angle between gradient direction

gdjðiÞ
���!

and centrifugal direction sjsi
��!:

Based on this definition, we can quantify the impact of
obstacle detour on DiffTriangle’s accuracy as

�sin�jði; kÞ � dkðiÞ � �jðiÞ: ð12Þ

The above quantification is based on the ambiguous
DiffTriangle in Fig. 11, which clearly shows the deviation
angle �jðiÞ. Due to the existence of nonzero �jðiÞ, sensor i
cannot tell whether its reference station and the anchor lie on
the same side of the gradient gdjðiÞ

���!
or on opposite sides. This

ambiguity is represented in Fig. 11 as the two cases, reference
stationsk andk0. Caused by this ambiguity of stationskandk0,
the �jði; kÞ required by DiffTriangle in its Fig. 8 has
ambiguous values as represented by �jði; kÞ and �jði; k0Þ in
Fig. 11. Therefore, (9) for DiffTriangle should be modified to
the following equation for ambiguous DiffTriangle.

�jði; kÞ; �jði; k0Þ � arccos

�
prj

gdjðiÞ
���!sksi��! = dkðiÞ

�
� �jðiÞ:

Therefore, the impact of the ambiguous deviation angle
��jðiÞ on accuracy of DiffTriangle can be quantified as
� sin�jði; kÞ � dkðiÞ � �jðiÞ, by assigning ��jðiÞ to ��jði; kÞ
in (10).

Our conclusion is that the accuracy of DiffTriangle in the
DG pattern can degrade to 0:4rþ 0:4r ¼ 0:8r, since the
accuracy of DiffTriangle in the CG pattern is roughly 0:4r and
the additional impact of obstacle detour on the accuracy of
DiffTriangle is �0:4r. This impact �0:4r of obstacle detour is
estimated by (12) as � 1

2 � 1:6r � �6 � �0:4r, since in typical
concave anisotropic networks, the average station-sensor
distance dkðiÞ is roughly 2 hops � 1:6r and the average
deviation angle �jðiÞ is �

6 (see Fig. 10). Moreover, the impact
�0:4r of obstacle detour indicates that distance estimates by
DiffTriangle maybe either enlarged or diminished.

5.2 Proposed DiffTriangle* and wMultilateration(8)

To tolerate the gradient distortion (or obstacle detour), we
present our solution comprising of two parts: wMultila-
teration(n) and DiffTriangle�. wMultilateration(8) is a
weighted multilateration [12] method using only the
nearest eight anchors.

. wMultilateration(8) deploys the Nearest(8) filter at
the CG recognizer to reduce the chance to contain
detoured anchors in the CG category, assuming the
nearest eight anchors are less vulnerable to obstacle
detour than farther anchors. We choose the thresh-
old eight since eight is beneficial to mitigate the bad
geometry effect of anchors [4].

. wMultilateration(8) uses weighted multilateration
[12] to prefer nearby anchors, assuming the expected
error of CR pattern is 0:2r and that of the CG pattern
is 0:4r.

However, there is a non-negligible chance for the
CG category to contain detoured anchors, which degrades
the performance of DiffTriangle and deteriorates the
localization accuracy.

We therefore propose DiffTriangle�, an enhancement to
DiffTriangle algorithm with no additional communication
cost and able to generate accurate distance estimates with
the presence of gradient distortion (call it “recover the
distorted anchors” for short). Therefore, our framework in
Fig. 2 adopts DiffTriangle� as a better distance estimator for
the CG pattern than DiffTriangle, since it is inevitable for
the CG category to contain detoured anchors. Although
DiffTriangle� has higher accuracy than DiffTriangle, it needs
two reference stations from the CR category. Hence, when
there is only one anchor in the CR category, DiffTriangle is a
good backup for DiffTriangle�, and when there is none,
CrMcs is the last choice.

We present the intuition of DiffTriangle� as follows:
DiffTriangle� assumes there are two reference stations for
sensor i: Station k and altStation k� with dkðiÞ < dk� ðiÞ. Its
main idea is that if sensor i and station k both use the
DiffTriangle algorithm and altStation k� (as the reference
station required by DiffTriangle) to estimate their distances
to anchor j, then the two distance estimates d̂4jðiÞjk� and
d̂4jðkÞjk� by DiffTriangle may encounter similar distortion
effects and thus have similar estimation errors. Because the
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Fig. 11. Ambiguous DiffTriangle in the DG pattern.



error in d̂4jðkÞjk� is known from the geometric location of
station k, it is possible for DiffTriangle� to recover the error
in d̂4jðiÞjk� due to obstacle detour by knowing the error in
d̂4jðkÞjk� . As a summary, DiffTriangle� is a revision to
DiffTriangle (and thus a second order revision to CrMcs),
exploiting the geometric closeness between sensor j and
station k and recovering the bias in DiffTriangle’s distance
estimation due to obstacle detour.

We present the equation of DiffTriangle� as follows:

d̂5jðiÞjkk� ¼ d̂4jðiÞjk� � �d̂4jðiÞjk�

¼ d̂4jðiÞjk� � �d̂4jðkÞjk� �
d̂3k� ðiÞ
d̂3k� ðkÞ

:
ð13Þ

In the above equation, the sensor i first obtains an

unrevised anchor-sensor distance estimate d̂4jðiÞjk� by

DiffTriangle algorithm (with altStation k� as the required

reference station). Then, we revise the d̂4jðiÞjk� to d̂5jðiÞjkk� by

the estimated error �d̂4jðiÞjk� in d̂4jðiÞjk� . The estimated

error �d̂4jðiÞjk� is a linear transformation from the estimated

error �d̂4jðkÞjk� in the anchor-station distance estimation.

The above correction is possible, since the station k and the

sensor i are geometrically close to each other and the

anchor j’s hop field near them thus probably experiences

similar distortion with similar deviation angle �jðiÞ � �jðkÞ.
The aim in (13) of multiplying the revision �d4jðkÞ by the

ratio d̂3k� ðiÞ
d̂3k� ðkÞ

is to remove the impact of sensor-altStation

distance dk� ðiÞ, since our analysis indicates that dk� ðiÞ
linearly interferes the accuracy of DiffTriangle.

We present the analysis on error characteristics of
DiffTriangle, showing that dk� ðiÞ linearly interferes the
accuracy of DiffTriangle. According to (10), if sensor i
applies DiffTriangle and uses altStation k� as the reference
station, the distance estimation error of DiffTriangle can be
estimated by the following equation:

�d̂4jðiÞjk� � cos�jði; k�Þ �dk� ðiÞ
þ sin�jði; k�Þ dk� ðiÞ ��jði; k�Þ:

From the above equation, we know the accuracy of
DiffTriangle is mainly affected by two factors: the altSta-
tion-sensor distance dk� ðiÞ and the deviation angle �jðiÞ
from obstacle detour. According to our analysis in the
previous section, the deviation angle �jðiÞ directly interferes
our estimation of angle �jði; k�Þ, whose impact over �d4jðiÞ
is � sin�jði; k�Þ � dk� ðiÞ � �jðiÞ. The aim of DiffTriangle� is to
recover this impact from obstacle detour. The other factor
affecting accuracy of DiffTriangle is dk� ðiÞ, because 1) there
exists a tight bond (linear approximately) between dk� ðiÞ
and the altStation-sensor distance estimation accuracy
�dk� ðiÞ due to the existence of error accumulation if
applying the isotropic CrMcs method, and 2) dk� ðiÞ linearly
amplifies the error ��jði; k�Þ in estimation of angle �jði; k�Þ.

The required error �d̂4jðkÞjk� (or correction) in (13) is
provided by station k as follows:

�d̂4jðkÞjk� ¼ d̂4jðkÞjk� � djðkÞ:

In this equation, the station k derives an anchor-station
distance estimate d̂4jðkÞjk� , by pretending as a normal sensor
and applying the DiffTriangle algorithm with altStation k�

as the required reference station. The error in this estimate
d̂4jðkÞjk� can be known, since the anchor-station distance
djðkÞ can be known from their positions.

An implementation tip of DiffTriangle� for reduced
communication overhead is that the required correction
�̂d4jðkÞ in (13) provided by the station k can be calculated
locally by sensor i, since the station k has already transmitted
its Input I to sensor i and the Input II of the station k (that
contains the Input I of altStation k�) is the same with Input II of
sensor i (see Fig. 2). Another implementation tip of
DiffTriangle� for an improved accuracy is to well handle the
case that the station k and altStation k� are roughly of the
equal distance to the sensor i. To well handle this, sensor i can
make anchors k and k� take turns to be the station and the
altStation. Then, sensor i by applying (13) can obtain two
revised distance estimates to anchor j: d̂5jðiÞjkk� and d̂5jðiÞjk

�

k .
The final estimate d̂05jðiÞ is the weighted average.

d̂05jðiÞj
k
k�¼

1

d̂3kðiÞ þ d̂3k� ðiÞ
d̂3k� d̂5jðiÞjkk� þ d̂3k d̂5jðiÞjk

�

k

h i
: ð14Þ

6 PATTERN-DRIVEN LOCALIZATION SCHEME

We present the pseudocode of our pattern-driven localiza-
tion algorithm (Algorithm 1), which corresponds to the
framework depicted in Fig. 2.
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The pseudocode in Algorithm 1 integrates the three
algorithms proposed, i.e., CrMcs, DiffTriangle, and
DiffTriangle�.

. CrMcs at Line 1 can mitigate the impact of last hop
distance for the isotropic anchors in the CR category.

. As the first order revision to CrMcs, DiffTriangle at
Line 10 (requiring one reference station) can tolerate
the anisotropic anchors in the CG category.

. As the second order revision to CrMcs, DiffTriangle�

at Line 8 (requiring two reference stations) can tolerate
strongly detoured anchors in the CG category.

An implementation tip for the weighted multilateration
[12] at Line 12 is that it is necessary to use multiple start
points to perform the multilateration and choose the best
solution (with the smallest weighted average residue) as the
final location estimate, due to its non-negligible possibility
of trap in local minima. One rule of thumb for the reference
station filtering (and propagation) at Line 6 is that 1) when
the anchors are densely distributed, we only need reference
stations within three hops, and 2) when the anchors are
sparsely distributed, the threshold can be relaxed to be four
hops. For used annotations, please check Fig. 2 and Table 1.

7 SIMULATION RESULTS

To verify the effectiveness of our pattern-driven localization
scheme in tolerating multiple network anisotropic factors,
several experiments have been designed and conducted in
this section. In these experiments, the accuracy of our
scheme has been compared with that of Amorphous [3] and
PDM [10] in various network configurations. We choose
Amorphous and PDM for comparisons, since 1) Amor-
phous is a typical isotropic localization algorithm which can
be used by an anisotropy-tolerating algorithm to show its
power, and 2) PDM is a state-of-the-art algorithm who also
declares to handle network anisotropy. We do not compare
our algorithm with iMultihop [11], REP [9], or MDS-
MAP(P) [8], since they are not the algorithms declared to
tolerate multiple anisotropic factors. Our conclusions are:
1) PDM and our scheme have higher distance estimation
accuracy and localization accuracy (by tolerating multiple
anisotropic factors) than Amorphous, 2) our scheme has
lower communication cost than PDM and is more accurate
in dense networks, and 3) our scheme is robust in
rectangular, O-shaped, and U-shaped networks, but PDM
degrades severely in O-shaped networks.

7.1 Evaluation Metrics and Controlled Parameters

We use the metrics below to evaluate the three algorithms
(Amorphous, PDM, and our scheme) in experiments.

. Distance estimation error �h for h-hop paths:

�h ¼
X

d̂jðiÞ2Dh

jd̂jðiÞ � djðiÞj
jDhj

;where

Dh ¼ fdistance estimates of all paths with lengths

of hg:

�h is useful to observe the accumulation of distance
estimation error with the increase of hop count.

. Overall average distance estimation error �:

� ¼
X

d̂jðiÞ2[Dh

jd̂jðiÞ � djðiÞj
j [ Dhj

;

where [Dh is the set of distance estimates of paths
with any hops. According to the analysis of multi-
lateration in [13] based on Cramér-Rao bound,
localization error should approach average distance
error �, which we will verify in our experiments.

. Average localization error ": " is the arithmetic
mean of the localization error of all sensors, with
" ¼

P
"i=N , where N is the total number of sensors

and "i is the localization error of sensor i with
"i ¼ jp̂i � pij, which is the geometric distance between
the estimated position p̂i and the true position pi.

We control the following system parameters and
investigate their impact on the above evaluation metrics.

. Sensor Density (SD): The average number of sensors

per sensor radio area. SD ¼ jNðiÞj. (See Table 1).
. Degree of Radio Irregularity (DOI): With the

presence of DOI, the possibility of two nodes with
distance d to establish a link is P ðdÞ as follows:

P ðdÞ ¼

1;
d

r
< 1 � DOI;

1

2DOI

d

r
� 1

� �
þ 1

2
; 1�DOI 	 d

r
	 1þDOI;

0;
d

r
> 1þDOI:

8>>>>><
>>>>>:

. Shape of Deployment Region (SDR): The rectangu-
lar, U-shaped, and O-shaped regions have been
studied.

. Anchor Cell Radius (ACR): The average radius of

the Voronoi cell dominated by an anchor. ACR

(¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Area of deployment region

��Anchor Number

q
) represents the average dis-

tance of a sensor to its nearest reference station.

7.2 Distance Estimation Error versus Sensor
Density

This experiment varies the sensor density to study its
impact on the accuracy of distance estimation. To isolate the
impact of sensor density, we intentionally fix the DOI to 0,
the ACR to 1:5r, and the SDR to rectangular regions
(10r
 10r). The simulation results are plotted in Fig. 12.
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Fig. 12. Distance estimation error varying SD; DOI ¼ 0, Anchor
Num ¼ 6, SDR ¼ rectangle 10r
10r, ACR ¼ 1:5r. (a) Amorphous and
our scheme. (b) PDM and our scheme.



We show the advantages of our scheme over Amorphous
in Fig. 12a. 1) When SD is as low as 8, Amorphous encounters
severe error accumulation as the hop count grows, due to the
anisotropy from low sensor density (Section 4.1). However,
Amorphous’s accuracy is relatively satisfactory in the first
three (or four) hops. That is why our scheme approximately
treats the first few hops as isotropic regions, where the impact
of varying HopSize is negligible and the CR pattern approxi-
mately applies. Compared with Amorphous, our scheme can
suppress the error accumulation and keep the distance
estimation error constantly below 0:4r, which is consistent
with our analysis of DiffTriangle’s accuracy in Section 4.3.
2) Even in the approximately isotropic region within four
hops, our scheme constantly outperforms Amorphous,
because CrMcs is a better method to solve the last hop
distance problem than Amorphous smoothing.

We compare our scheme with PDM in Fig. 12b. 1) In
dense networks (SD� 15), the accuracy of PDM is still above
0:2r, since it neglects the last hop distance problem. In
contrast, the accuracy of our scheme can be improved to
0:15r, when sensor density is 15 and in the first four hops.
However, our scheme is only slightly better than PDM when
sensor density is 15 and beyond four hops, since the
anisotropy (inaccurate HopSize) becomes the dominating
factor rather the last hop distance. 2) In sparse networks
(SD 	 10), PDM has non-negligible possibility for the failure
of its matrix inverse operation and may have to apply the
pseudoinverse multiple times. Moreover, sparse networks
have higher possibility to be separated and the branch
separated from base station may not be localized by PDM.
Our scheme, a distributed algorithm, has no such problem.

7.3 Distance Estimation Error Varying DOI Ratio

This experiment investigates the impact of high DOI ratio,
such as DOI ¼ 0:5, on distance estimation accuracy. To
highlight its impact, we minimize the impact of other
anisotropic factors by configuring SD as high as 15 and SDR
as rectangle regions. The experimental results are depicted in
Fig. 13.

In Fig. 13a, the accuracy of Amorphous degrades
severely when DOI ¼ 0:5, since the Kleinrock’s equation
that Amorphous uses is inaccurate in estimating HopSize,
assuming a perfect circular communication range. As a
comparison, the performance of our scheme however
remains stable, when DOI ¼ 0:5, although our scheme also
uses the Kleinrock’s equation. This is because the estimated
HopSize is only used by DiffTriangle to estimate the short
sensor-station distance and the projection of this distance on

the field gradient. As a summary, our DiffTriangle and
DiffTriangle� method is insensitive to the error in HopSize
estimation, which gives our scheme the freedom to choose
any appropriate HopSize estimation algorithm, either online
or offline. In Fig. 13b, PDM is also robust against radio
irregularity. The accuracy of PDM is slightly lower than our
scheme due to the non-negligible last hop distance problem
in dense networks.

7.4 Localization Error when Varying ACR

This experiment explores the impact of anchor density
(quantified by ACR) over the accuracy of distance estima-
tion and localization. The experiment results are illustrated
by Fig. 14, in which we adopt the same localization
algorithms wMultilateration(8) for Amorphous, PDM and
our scheme to maintain a fair comparison.

In Fig. 14a, the distance estimation accuracy of Amor-
phous has no change when ACR decreases, since Amor-
phous has no mechanism exploiting the increased anchor
density and optimizing its distance estimation accuracy. In
contrast, our scheme and PDM have much smaller distance
estimation error below 0:4r. Although the distance estima-
tion accuracy of Amorphous does not improve with reduced
ACR, its localization accuracy constantly improves, if
Amorphous adopts wMultilateration(8) for localization.
However, Amorphous’s localization accuracy deterioration
speed (when ACR grows) is much faster than our scheme
and PDM. Moreover, for PDM and our scheme, we can find a
tight correspondence between average distance estimation
error and average localization error, which is consistent with
the theoretical analysis in [13] based on Cramér-Rao bound.

The underperformance of Amorphous is because
although wMultilateration(8) uses the nearest eight anchors
and the weighted multilateration to prefer nearby anchors,
it can be quite difficult to precisely capture the error
accumulation trend of Amorphous’s distance estimation at
the location estimator layer. As a comparison, PDM and our
scheme choose to suppress the error accumulation mainly
at the distance estimator layer by exploiting the dense
anchor distribution. For this reason, the localization
accuracy of Amorphous (even with wMultilateration(8))
can be above 0:7r, while that of PDM and our scheme stay
below 0:5r when ACR is below 2. This performance
improvement is important, since the work in [4] has stated
that the performance of several location-dependent proto-
cols (like geometric routing) degrades quickly when the
localization accuracy is above 0:4r. Moreover, when anchors
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Fig. 13. Distance estimation error varying DOI ratio; SD ¼ 15, SDR ¼
rectangle 10r
 10r, ACR ¼ 1:5r. (a) Amorphous and our scheme.
(b) PDM and our scheme.

Fig. 14. Distance estimation error and localization error varying ACR;

SD ¼ 8, DOI ¼ 0:25, SDR ¼ rectangle, Sensor Number � 250, Anchor

Percentage (AP) ¼ Anchor Number ðANÞ
Sensor Number . (a) Amorphous and our scheme.

(b) PDM and our scheme.



are densely distributed with ACR ¼ 1:5r, the anchor
percentage is merely 5.5 percent, which does not seem to
be an unbearable huge investment. The optimized trade-off
between anchor percentage and localization accuracy may
only be found in specific applications.

7.5 Localization Error when Varying SDR

In this section, we compare the localization accuracy of
three algorithms (i.e., Amorphous, PDM, and our scheme)
in anisotropic networks with both obstacle detour and the
presence of multiple anisotropic factors (radio irregularity
and low sensor density). This experiment shows that 1) in
the U-shaped regions like Fig. 15, PDM and our scheme can
improve the localization accuracy, compared with Amor-
phous, 2) in the O-shaped regions like Fig. 16, PDM
degrades dramatically but our algorithm still functions
well. In Figs. 15 and 16, we depict the network topologies as
graphs with triangular nodes for anchors, circular nodes for
sensors, and links for radio connections. We also label for
each node its localization error by color.

In Fig. 15, we compare the localization accuracy of
Amorphous, PDM, and our scheme in the U-shaped region
(for fairness, all of them use wMultilateration(8) for location
estimation). As illustrated, Amorphous suffers from network
anisotropy and obstacle detour, with localization accuracy
above 0:7r. If instead applying PDM for anchor-sensor
distance estimation in Fig. 15b, the localization accuracy

can be improved to around 0:5r. When we use our scheme
(including CrMcs and DiffTriangle�) to estimate the distances
in Fig. 15c, we can achieve similar localization accuracy with
PDM. Our scheme, however, has two advantages over PDM.

1. To achieve this comparable accuracy with PDM, our
scheme has simpler communication operation (i.e.,
the confined flooding) and less communication
overhead.

. The overall communication overhead of PDM is
OðM2NÞ, where M is the number of anchors and
N is the number of sensors. PDM first needs the
M times flooding initiated by M anchors to
make the sensors know their hop counts, whose
overhead is OðMNÞ. PDM then needs to collect
the hop counts between all pair of anchors to the
base station (i.e., M unicasts to the base station),
and disseminate the calculated PDM matrix to
the entire network (i.e., a flooding of a M 
M
matrix), whose communication cost is OðM2NÞ.

. The overall communication overhead of our
algorithm is OðMNÞ. 1) Besides the M times
flooding initiated by M anchors, our algorithm
(precisely DiffTriangle and DiffTriangle�) re-
quires each anchor to propagate its hop counts
(to M anchors) to three or four hops’ neighbor-
hood by a confined flooding. This is equivalent to
1-2 times flooding of anM-sized vector because a
confined flooding may partly overlap with
another confined flooding. This has the overhead
of OðMNÞ. 2) Another kind of communication
needed by our algorithm (precisely CrMcs) is to
make every node aware of the number of
neighbors with equal and larger hop counts. This
needs N times local broadcast of M-sized vector
(see paragraph 3 of Section 2), whose overhead is
OðMNÞ.

2. Our scheme has specially optimized localization
accuracy near each anchor (see Fig. 15c), since sensors
use their nearest reference stations to optimize
distance estimates. The shorter the distance to
reference station, the better the localization accuracy.
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Fig. 15. Comparison in localization accuracy of Amorphous, PDM, and our scheme; SD ¼ 8, DOI ¼ 0:3, ACR ¼ 1:6r, r ¼ 10 ft. (a) Amorphous;
AvgLocError ¼ 0:72r. (b) PDM; AvgLocError ¼ 0:52r. (c) Our scheme; AvgLocError ¼ 0:46r.

Fig. 16. Localization accuracy of PDM and our scheme in O-shaped
r e g i o n ; SD ¼ 8, DOI ¼ 0:3, ACR ¼ 1:6r, r ¼ 10ft. ( a ) P D M ;
AvgLocError ¼ 0:87r. (b) Our scheme; AvgLocError ¼ 0:45r.



Here, comes an interesting feature of our scheme in
contrast to PDM: PDM degrades in the O-shaped region,
but our scheme still functions well as shown by Fig. 16.
According to the simulation in Fig. 16a, the localization
accuracy of PDM degrades quickly in the O-shaped region.
This degradation is probably because the PDM tries to find
an optimum linear transformation between two high-
dimensional spaces. (One space is the proximity distances
to all anchors and the other is the euclidean distances to all
anchors.) This bidirectional linear transformation provides
a good approximation in the rectangular, U-shaped, and
S-shaped regions, but it is inaccurate in the O-shaped
regions. Our localization scheme has no such problem and
it still renders satisfying performance in the O-shaped
region as in Fig. 16b.

8 RELATED WORK

Our survey of related work is focused on the range-free
localization, which is a much cheaper option than range-
based and anchor-free localization [17]. This is because the
range-free option leverages the radio transmitter already
deployed on each sensor and thus eliminates the need for
extra per-node devices or additional infrastructure. How-
ever, it is more difficult for the range-free localization to
achieve high localization accuracy, which is desirable for
location-dependent protocols and applications [4]. For a
range-free solution, accuracy is the most critical factor in
deciding its applicability.

A common feature of pioneering range-free solutions
(e.g., DV-Hop [2], Amorphous [3], and MDS-MAP [1]) is the
assumption of network isotropy. Hence, their performance
degrades severely in testbeds, where anisotropic factors
exist (e.g., concave deployment region, sparse and nonuni-
form sensor distribution, anisotropic terrain condition, and
irregular radio pattern). This underperformance has led to
extensive research on anisotropy tolerating algorithms.
Most of these studies are based on two commonly seen
(and also overlapping) assumptions: a fixed number of
anchors and the presence of one anisotropic factor (i.e.,
obstacle detour).

A fixed number of anchors is assumed by MDS-MAP(P)
[8] and REP [9]. The algorithms with this assumption share
two drawbacks: 1) lack of mechanisms to fully exploit
increased anchor density and 2) potential accumulation of
error, when the network scale is large. As one example,
MDS-MAP(P), following the canonical “divide and con-
quer” paradigm, splits the network into small overlapping
subregions. For each subregion, which is considered to be
locally isotropic, MDS-MAP is applied to compute a local
map. By merging these local maps, a global map is formed
by a coordinate registration procedure. However, this
recursive merge operation is sensitive to the noise in local
map construction and suffers from error propagation after
several iterations [18], especially in large-scale networks.

The presence of only one anisotropic factor (i.e., obstacle
detour) is assumed by iMultihop [11] and REP [9]. However,
the performance of these algorithms may degrade in
practice, due to the inevitable existence of multiple aniso-
tropic factors in real deployment of WSNs. The iMultihop

[11] contributes an impressive improvement to the multi-
lateration component of DV-Hop. It is based on the
observation that the shortest path from an anchor to a sensor
will deviate far away from straight lines when distorted by
obstacles, and the distorted distance estimate is always larger
than its real value. Therefore, a set of upper bound quadratic
inequality constraints can be added to the MMSE objective
function of traditional multilateration. However, this as-
sumption of iMultihop that distance estimates are enlarged
by obstacle detour may not hold for networks with multiple
anisotropic factors. As a summary, the assumption of only
one anisotropic factor may weaken the soundness of
algorithms designed to tolerate anisotropy.

The problem of range-free localization tolerating net-
work anisotropy can be investigated from another perspec-
tive by assuming a varied number of anchors proportional
to network scale and the presence of multiple anisotropic
factors, rather than a fixed number of anchors and the
presence of only one anisotropic factor. The PDM [10] and
our scheme both fall into this category. These two solutions
are compared as follows: 1) Our scheme is a distributed
solution with less communication overhead. The commu-
nication cost of our scheme is OðMNÞ, while that of PDM (a
centralized algorithm) is OðM2NÞ, where M is the number
of anchors and N is the number of sensors—Section 7.5.
2) Our scheme has consistent performance in various
shapes (e.g., rectangular, O-, and U shapes) of sensor
deployment fields, but PDM degrades severely in the
O-shaped region. 3) Our scheme has higher accuracy than
PDM, when sensors are densely distributed, thanks to the
ability of CrMcs to handle the last hop distance problem.

9 CONCLUSION

For accurate localization in networks with multiple aniso-
tropic factors, we propose a pattern-driven localization
scheme, applying different distance estimation algorithms
for anchors exhibiting different patterns, i.e., the CR, CG,
and DG patterns. For the CR pattern, CrMcs is adopted to
minimize the impact of last hop distance. For the CG
pattern, DiffTriangle is used to tolerate varying HopSize and
exploiting the rough match between field gradient and
centrifugal direction. DiffTriangle� provides an enhance-
ment to DiffTriangle to additionally tolerate obstacle
detour. For the DG pattern, where the line-of-sight rule no
longer holds, the anchors are dropped. Both theoretical
analysis and experimental results support the effectiveness
of our localization scheme in tolerating multiple network
anisotropic factors.

APPENDIX A

SYSTEMATICAL ERROR OF AMORPHOUS

We analyze the systematical error of Amorphous incurred
by the last hop distance, which has been plotted in Fig. 4. To
eliminate the impact of inaccurate HopSize and isolate the
impact of last hop distance on distance estimation of
Amorphous, HopSize is fixed to be r.

The systematic error E2 of Amorphous to estimate last

hop distance is the difference between expected estimate
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d̂2jðiÞ produced by (2) and the real distance value djðiÞ. Our

analysis is all about how to establish the functional relation

from djðiÞ to E2.

E2 ¼ d̂2jðiÞ � djðiÞ: ð15Þ

The expected estimate d̂2jðiÞ can be calculated by (16), since

there are only three possible values for the hop count hjðtÞ
of sensor t, which neighbors sensor i. These three possible

values are hjðiÞ � 1, hjðiÞ, and hjðiÞ þ 1. Moreover, the

expected percentage of neighbors of sensor i to have hop

count hjðiÞ � 1, hjðiÞ, or hjðiÞ þ 1 is equal to the probability,

that the hop count hjðtÞ is hjðiÞ � 1, hjðiÞ, or hjðiÞ þ 1.

d̂2jðiÞ ¼ P ½hjðtÞ < hjðiÞ� ðhjðiÞ � 1Þ þ P ½hjðtÞ ¼ hjðiÞ�
�hjðiÞ þ P ½hjðtÞ > hjðiÞ� ðhjðiÞ þ 1Þ � 0:5 with t 2 NðiÞ:

ð16Þ

The probability P ½hjðtÞ < hjðiÞ� required by (16) is equal to

the division of the area A ðr; ðhjðiÞ � 1Þr; djðiÞÞ of the

intersected region of two disks, by the area � r2 of sensor i’s

entire neighbor. The intersecting two disks are sensor i’s

one hop disk with radius r and anchor j’s hjðiÞ � 1 hop

disk, whose radius is approximated to ðhjðiÞ � 1Þr. The area

of the intersecting region can be calculated, when the

distance djðiÞ between the centers of the two disks is known

additionally.

P ½hjðtÞ < hjðiÞ� ¼
A ½r; ðhjðiÞ � 1Þ r; djðiÞ�

� r2
: ð17Þ

The probability P ½hjðtÞ 	 hjðiÞ� is calculated in a similar

way with P ½hjðtÞ < hjðiÞ�.

P ½hjðtÞ 	 hjðiÞ� ¼
A ½r; hjðiÞ r; djðiÞ�

� r2
: ð18Þ

The other two probabi l i t ies P ½hjðtÞ ¼ hjðiÞ� and

P ½hjðtÞ > hjðiÞ� in (16) can be calculated as follows:

P ½hjðtÞ ¼ hjðiÞ� ¼ P ½hjðtÞ 	 hjðiÞ� � P ½hjðtÞ < hjðiÞ�;
P ½hjðtÞ > hjðiÞ� ¼ 1 � P ½hjðtÞ 	 hjðiÞ�:

The above equations help establish a functional relation

from djðiÞ to E2, with hjðiÞ ¼ ddjðiÞr e. This functional relation

has been plotted in Fig. 4 and indicates the underperfor-

mance of Amorphous in one or two hops. This is consistent

with the simulation results in Section 7.2.

APPENDIX B

ERROR CHARACTERISTICS OF CRMCS

We show by analysis that the proposed CrMcs can reduce

distance estimation error to below 0:2r (sensor density > 8),

if applied to the CR pattern. The analysis result (i.e., the

relation between the error of CrMcs Dev ½d̂3jðiÞ� and the

sensor density jNðiÞj) is plotted in Fig. 6. The accuracy of

CrMcs mainly depends on two factors:

1. the accuracy of the intersected area ajðiÞ by (3), and
2. the accuracy of the radius of dskjðiÞ by (4).

Generally speaking, in dense networks and isotropic

networks with accurate HopSize estimates, factor 1 dom-

inates, which is directly connected with the last hop

distance. However, in sparse networks and anisotropic

networks, where the estimation of HopSize is inaccurate,

factor 2 prevails to have a greater impact. This is why we

recommend CrMcs for the CR pattern.
We focus on the impact of factor 1 (i.e., the last hop

distance) in the low hop count cases. Driven by this intention,

we fix the HopSize to r to eliminate the impact of inaccurate

HopSize and isolate the impact of the last hop distance. We

then simplify the expression of d̂3jðiÞ as

d̂3jðiÞ ¼ A�1 r; hjðiÞ � r; � r2 � jNjðiÞj
jNðiÞj

� �
; ð19Þ

with rð1Þ fixed to r and rðhjðiÞÞ fixed to hjðiÞ � r. In this

equation, the only randomized variable that determines

d̂3jðiÞ is
jNjðiÞj
jNðiÞj , which is essentially a Binomial trial testing the

percentage of neighbor owning hop count no larger than

hjðiÞ. Hence, the accuracy of CrMcs can be estimated as the

average absolute deviation of d̂3jðiÞ:

Dev ½d̂3jðiÞ� ¼
X

jNjðiÞj 2 ½0; jNðiÞj�
C
jNjðiÞj
jNðiÞj � jd̂3jðiÞ � djðiÞj�

eP jNjðiÞj � ð1� eP ÞjNðiÞ � NjðiÞj; where eP ¼ A½r; hjðiÞ � r; djðiÞ�
� r2

:
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