
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Achieving optimal data storage position in wireless sensor networks

Zhaochun Yu a,b,c, Bin Xiao b,*, Shuigeng Zhou a

a Department of Computer Science and Engineering, Fudan University, China
b Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
c Data Center (Shanghai), Industrial and Commercial Bank of China, China

a r t i c l e i n f o

Article history:
Received 27 April 2008
Received in revised form 20 May 2009
Accepted 5 August 2009
Available online 15 August 2009

Keywords:
Wireless sensor networks
Optimal data storage
Data rate
Geographical location

a b s t r a c t

Data storage in wireless sensor networks (WSNs) involves producers (such as sensor nodes) storing in
storage positions a large amount of data which they have collected and consumers (e.g., base stations,
users, and sensor nodes) then retrieving that data. When addressing this issue, previous work failed to
utilize data rates and locations of multiple producers and consumers to determine optimal data storage
positions to be communication cost-effective in a mesh network topology. In this paper, we first formal-
ize the data storage problem into a one-to-one (one producer and one consumer) model and a many-to-
many (m producers and n consumers) model with the goal of minimizing the total energy cost. Based on
above models, we propose optimal data storage (ODS) algorithms that can produce global optimal data
storage position in linear, grid, and mesh network topologies. To reduce the computation of ODS in the
mesh network topology, we present a near-optimal data storage (NDS) algorithm, which is an approxi-
mation algorithm and can obtain a local optimal position. Both ODS and NDS are locality-aware and
are able to adjust the storage position adaptively to minimize energy consumption. Simulation results
show that NDS not only provides substantial cost benefit over centralized data storage (CDS) and geo-
graphic hash table (GHT), but performs as well as ODS in over 75% cases.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Data storage in wireless sensor networks (WSNs) [3,14] in-
volves producers (such as sensor nodes) storing in storage posi-
tions a large amount of data which they have collected and
consumers (e.g., base stations, users, and sensor nodes) then
retrieving that data. The data storage strategy, including the deci-
sion as to where to place storage positions for producers and the
provision of responses to consumers’ queries, is critical in WSNs.
A poorly designed data storage strategy will increase communica-
tion overheads, dissipate valuable energy and reduce the lifespan
of battery-powered sensor networks. In contrast, a good storage
strategy can tremendously reduce the energy consumption for data
storage and retrieval, minimize query processing delays and pro-
long the lifespan of a sensor network. Further, more desirable are
strategies that can place data adaptively so as to minimize the
costs of storage and query.

Two main factors that impact data storage-related communica-
tion cost are the data rates of producers and consumers and their
path distances to the storage node. The data rate of producers de-
notes the data producing rate from producers. The data rate of con-

sumers denotes the data querying rate from consumers. The data
rate usually does not change in a fixed application-specific time
interval. For example, where there is only one producer and one
consumer, data would be stored closer to the consumer rather than
the producer when the query rate is higher than the data produc-
ing rate, and vise versa. In a real sensor network, the closer the
storage node is to the producers and consumers, that is, the shorter
the hop distance, the cheaper it is to store and query a fixed quan-
tity of data. An effective way to do this is to place data adaptively
according to network state (e.g., locations of nodes requesting data
and their data rates) so that the communication cost is minimal
once the data storage position is placed.

Although these two factors had been investigated, previous
work mainly addressed the storage problem by treating the sensor
network as a tree structure, in which the base station [10,15,19] is
normally treated as the storage node or the only consumer. In the
tree structure, the data rates of producers and the query rate of the
base station are known or at least predictable and communication
cost can be optimized as data storage placement is simply a re-
sponse to data volumes. In a mesh network topology, however,
there are potentially multiple producers and consumers all seeking
to exploit one event simultaneously. In this scenario, some work
has focused on the geographical locations [18] of producers and
consumers but given no attention to the issue of the data rates
[5,8,13]. Once the network topology is fixed, the storage node

0140-3664/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.comcom.2009.08.005

* Corresponding author. Tel.: +852 27667270.
E-mail addresses: zcyu@fudan.edu.cn (Z. Yu), csbxiao@comp.polyu.edu.hk (B. Xiao),

sgzhou@fudan.edu.cn (S. Zhou).

Computer Communications 33 (2010) 92–102

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/ locate/comcom

Author's personal copy

position is fixed too, which does not apply adaptive storage princi-
ple to reduce energy consumption in sensor networks. The draw-
back is that the storage node positions may not be location-
aware nor adaptive to network state.

Rather than determining n storage locations1 for an event, we
focus on the single-node storage problem in a wireless sensor net-
work with a mesh topology, where information collected from all
producers is sent to a storage node and all consumers retrieve infor-
mation from there. Similar to previous centralized data storage ap-
proaches like [10,13,19], the single location can be event-oriented,
i.e., one storage node to store data related to a particular event. Data
load is generally asymmetric in a mesh network topology, e.g., for
the security purpose [20]. Such an unbalanced data volume causes
an uneven energy consumption distribution among different sensor
nodes. Since traffic load and energy consumption of each node are
location-dependent and rate-dependent, the network lifetime can
be shortened by nodes with greater energy consumption. Therefore,
storage node placement scheme can have considerable impact on
the network lifetime.

In this paper, we propose an optimal data storage (ODS) strat-
egy in a wireless sensor network that allows the storage location
to adaptively change, in response to both the geographical loca-
tions of producers and consumers and the data rates at which data
are being exchanged. This strategy minimizes the energy con-
sumption of the total network, and decreases the delay for message
exchange between producers (or consumers) and the storage node.
That is, storage position varies adaptively in response to data rates
of nodes and their geographical locations. Specifically, we design
and implement our adaptive data storage strategy to determine
the total communication cost in the one-to-one (one producer
and one consumer) and many-to-many (m producers and n con-
sumers) models.

In the one-to-one model, ODS algorithm can generate an opti-
mal storage location with minimum global communication cost.
In the many-to-many model, multiple producer and consumer
nodes can distribute in linear, grid, or mesh network topologies.
Given each distribution, we propose distinct ODS algorithms to lo-
cate the globally optimum storage position. We show that to deter-
mine the optimal storage position, the ODS algorithm complexity
is O(1) in the one-to-one model, Oðmþ nÞ in the linear and grid
topologies for m producers and n consumers. In other words, to
get an optimal data storage location for sensors regularly distrib-
uted, ODS only requires constant computation time when mþ n
is much smaller than N, the total number of nodes in a sensor net-
work. In the mesh network topology, ODS becomes a greedy algo-
rithm and its time complexity is OðN � ðmþ nÞÞ. To reduce its
computational overheads, we aim to get an approximation solution
from the geometry theory and propose NDS, a near-optimal data
storage strategy, an alternative to ODS. NDS reduces the computa-
tion complexity to be a fraction pR2=S of ODS where R is the sensor
transmission range and S is the sensor distribution area.

We conduct extensive simulations to show that, compared to
centralized data storage (CDS) [10,19] and geographic hash table
(GHT) [13], ODS can greatly reduce the energy consumption as well
as minimize delays in the data exchange process. NDS is also very
efficient to generate the optimal storage position as ODS in more
than 75% simulation cases.

The rest of this paper is organized as follows. Section 2 dis-
cusses related work. In Section 3, we describe terminology and
assumptions to formulate the data storage problem to save the
communication energy cost. In Section 4, we implement ODS in
the one-to-one model and show its performance evaluation. Sec-

tion 5 presents the ODS and NDS algorithms in the many-to-many
model and Section 6 illustrates simulation results. Section 7 offers
our conclusion.

2. Related work

Data storage in wireless sensor networks are addressed in either
tree structure or mesh network topologies. Tree structures feature
only one consumer (usually the base station at the root) and multi-
ple producers and do not take geographical location information
into account when determining data storage placement. In con-
trast, a mesh network involves multiple producers and consumers
yet the dominant approach in the design of data storage to mini-
mize communication overhead has been given to emphasize geo-
graphical locations with little attention to the data rates.

The tree structure offers a range of data storage strategies. Data
can be stored and processed in a centralized server or in a distrib-
uted manner. In centralized data storage (CDS) approaches such as
COUGAR [19] and TinyDB [10], all sensor nodes feed their data to
the base station at the root of the tree. Scoop [4] does collect sta-
tistics about data, queries, and network conditions and uses them
to dynamically change an in-network storage policy. However, it
collects these statistics only periodically and uses a greedy algo-
rithm to compute the optimal storage position. Such a try-and-test
greedy algorithm is tremendously complex, making it infeasible
for a large-scale sensor network. Sheng et al. [15] utilized data
rates, query rates, and compression ratio to determine storage
placement and introduced storage nodes to alleviate the heavy
load of transmitting all data to a central place (the base station).
They proposed the optimal placement of multiple storage nodes
but it can be only applied in a tree topology. The local data storage
(LDS) in the tree structure requires that sensor nodes store data lo-
cally in their own memory. Queries are flooded to all nodes in the
network (or at least to all nodes that could possibly hold the rele-
vant data) and nodes holding the appropriate data then reply.
Apart from flooding, queries can also be disseminated by direct
diffusion [7], in which query costs are reduced by using in-net-
work aggregation.

In the mesh network topology, the typically proposed brokerage
rules are data centric storage (DCS) [16] and geographic hash table
(GHT) [13]. Both methods combine the idea of a distributed hash ta-
ble (DHT) in peer-to-peer system with that of geographic naming
and routing. They use geographical locations as reservoirs where
data are hashed to and retrieved from. DIM [8] presents a distrib-
uted index for multi-dimensional data that uses special locality-
preserving hash mapping. The hash mapping hashes nearby sensor
data to the same node, and uses k-d tree to support range queries.
DIFS [5] relies on geographic hash and quad tree structure for effi-
cient index construction and range searches. DIMENSIONS [3] uses
data compression and data aging to reduce redundancy caused by
spatial and temporal correlation. The indexing approaches could
be expensive for data storage because data can be sent far across
the network and index itself can be difficult and complex to
maintain.

Special path routing approaches provide a kind of information
brokerage in which the producers store data not at a single node
or its nearby neighbors but at nodes that follow a one-dimensional
curve. The consumers travel along a set of nodes that follow an-
other one-dimensional curve. When the two curves intersect, a
consumer acquires the appropriate data. Each of these curves is
drawn from a function of, respectively, the locations of producers
and consumers, and not related to the type of data that is stored
or queried. Examples include double ruling [14], landmark [2],
and combs-needles-haystacks [9]. The common feature is that they
take geographical locations into consideration but without data
rates.

1 As denoted in [12], it is an NP-hard problem for the file multiple copies allocation
in computer networks. Thus, in this paper, we limit our discussion for optimal but
efficient storage location in a single node in wireless sensor networks.

Z. Yu et al. / Computer Communications 33 (2010) 92–102 93

Author's personal copy

3. Problem formulation

In this section, we formulate the adaptive data storage problem
by explaining the data storage process and involved communica-
tion overheads. We give terminology and assumptions to model
the cost of data storage. Then, we define the optimal data storage
strategy as to find the storage node position with the minimum
cost.

3.1. Terminology and assumptions

Data storage strategies determine communication overheads
because they specify how data are stored as well as how queries
are routed to acquire the stored data. Nodes in a sensor network
can exchange data, a process containing three phases:

1. Producers collect sensed data and, according to a predefined
strategy, store them on a storage node in network.

2. Consumers send query requests to a relevant node. These query
requests travel along routes defined by a routing rule.

3. Storage node which holds the appropriate data preprocesses the
raw data and feedbacks it to consumers.

Fig. 1 illustrates such a scenario in which producers detect
events and store critical data into a storage node. Consumers then
issue queries to the storage node for acquiring relevant
information.

We refer to the communication overheads in each of these three
phases as, respectively, storage cost or CStorage, diffusion cost or
CDiffusion, and reply cost or CReply. For simplicity of presentation, we
sum the latter two and refer to them as query cost or CQuery, i.e.,
CQuery ¼ CDiffusion þ CReply. The communication overheads are not only
proportional to the number and size of data messages, as deter-
mined by the data rates, but also related to the transmission routes
as determined by the locations of producers and consumers. In for-
mulating the data storage problem, we have the following
assumptions:

� All nodes except the base station are equivalent. The radio trans-
mission range is R for all nodes. There are N nodes in the net-
work and they are labeled 1;2; . . . ; i; . . . ;N. Let i be a node in
the network, and its location is given as ðxi; yiÞ.

� The base station has the topology information of the network by
monitoring and collecting the network statistics and can pro-
ceed with complicated calculation. It can compute the optimal
storage position as requested in the many-to-many model.

� A communication edge eij exists between any pair of nodes i and
j that are within radio range. To transmit s data units along the
edge, the energy cost of the sender and receiver is
rtr þ dtrs and rre þ dres, respectively [17], where rtr and rre are
startup energy costs for transmitting and receiving a data
packet, respectively, dtr and dre are energy cost for transmitting
and receiving a data unit (byte), respectively. Compared with
the energy cost for data transmission, the computation energy
cost can be ignored. In this paper, we only take the energy cost
in data transmission into consideration.

� An event occurs randomly at any place at any time. A node i
sends event data to or collects data from a storage node k at
the fixed rate RðiÞ in a unit time interval.

� In a general case, there are m producers and n consumers linked to
an event in the network simultaneously ð1 6 m;n
6 N and mþ n < NÞ, and the storage node is node k. Let m pro-
ducers be p1; p2; . . . ; pm and n consumers be c1; c2; . . . ; cn.
CStorageði; kÞ denotes the storage cost when producer i sends event
data to node k, and CQueryðj; kÞ denotes the query cost when con-
sumer j diffuses a query request to node k and acquires the rele-
vant data. We study all the cost for data exchange in a unit time
interval.

3.2. Energy cost formulation

We aim to determine the most energy-efficient storage position,
that is, the position where the energy consumption associated with
data storage, query diffusion and result reply is minimal. We devel-
op a mathematical model to quantify, from all possible storage
positions, the cost of storage and query and point out the minimal
energy cost minfCStorage þ CQueryg in the optimal storage strategy.

The storage cost CStorageðkÞ in a unit time interval is the sum of all
costs of sending data to node k for storage from all producers.
Whereas, the query cost CQueryðkÞ is the sum of all costs of querying
and acquiring the relevant data from all consumers.

CStorageðkÞ ¼
Xpm

i¼p1

CStorageði; kÞ ð1Þ

CQueryðkÞ ¼
Xcn

j¼c1

CQueryðj; kÞ ð2Þ

The storage and query costs are only relevant to the data rate
and hop distance in the data transmission path. The data rate is
critical to energy consumption of data storage and access, the
smaller the data rate is, the less it is to store and query a fixed
quantity of data. To the storage node k, we have

CStorageði; kÞ ¼ RðiÞ � hði; kÞ ð3Þ
CQueryðj; kÞ ¼ RðjÞ � hðj; kÞ ð4Þ

where hði; kÞ and hðj; kÞ are the hop counts between the pair nodes
ði; kÞ and ðj; kÞ, respectively.

The total cost CTotalðkÞ is the sum of CStorageðkÞ and CQueryðkÞ
which is associated with producers storing the data at node k
and consumers retrieving the appropriate data from there:

CTotalðkÞ ¼
Xpm

i¼p1

RðiÞ�hði; kÞ þ
Xcn

j¼c1

RðjÞ � hðj; kÞ ð5Þ

Finding the optimal storage node, i.e., to get the minimal
CTotalðkÞ in Eq. (5), is a challenging problem because many factors
can impact the storage position selection, e.g., data rates, multi-

P

P

P

P

C

C

Storage Query Reply

Storage Node

P

P

Producer
C

Consumer

C

Fig. 1. An example of data storage in wireless sensor networks.

94 Z. Yu et al. / Computer Communications 33 (2010) 92–102

Author's personal copy

ple paths between two arbitrary nodes in the network, and the
network topology. Although there may be multiple paths
between two nodes, data are transferred along a fixed path for
a certain application-specific time duration if the network does
not change dramatically because the path between any two
nodes is determined by the application’s routing protocol.

The optimal storage position can be determined in the one-to-
one model, or many-to-many model in a sensor network depend-
ing on the number of producers and consumers. In the one-to-one
model, there is only one producer and one consumer. However,
the many-to-many model allows the existence of multiple pro-
ducers and multiple consumers. The optimal data storage position
can be analyzed in linear, gird, and mesh network topology. No-
tice that the communication overhead is proportional to the mes-
sage size and the distance between producer and consumer, and
the distance refers not to the real distance but to hop counts in
wireless sensor networks.

4. Optimal data storage and performance evaluation in one-to-
one model

4.1. ODS algorithm

In this section, we propose the optimal data storage (ODS) algo-
rithm in the one-to-one model (Fig. 2) to determine the optimal
storage node k. There is only one producer i and one consumer j
to broker information in the network. Because the network is con-
nected, there must exist a shortest path P that connects producer
and consumer through the storage node k. The path length is mea-
sured by the hop count between node i and j.

We assume the length of P is L and the distance between pro-
ducer i and node k is a variable x. Therefore, the distance between
consumer j and node k is L � x. According to Eq. (5), the total en-
ergy consumption choosing k as the storage node is

CTotalðkÞ ¼ RðiÞ � hði; kÞ þ RðjÞ � hðj; kÞ ¼ RðiÞ � xþ RðjÞ � ðL� xÞ
¼ RðjÞ � Lþ ðRðiÞ � RðjÞÞ � x ð6Þ

From Eq. (6), an optimal storage location must minimize CTotalðkÞ
and thus we have Theorem 4.1.

Theorem 4.1. Given a wireless sensor network with only one
producer i and one consumer j, the optimal data storage position is
at the consumer j when RðiÞ < RðjÞ, at the producer i when RðiÞ > RðjÞ,
and at any node along the shortest path between the producer i and
consumer j (inclusive) when RðiÞ ¼ RðjÞ.

From Theorem 4.1, we show Algorithm 1, ODS, given in
pseudo-code below, which outputs the optimal data storage node
in the one-to-one model. First, ODS compares the data rate via
the input parameters. Then it directly outputs the optimal
storage node according to Theorem 4.1 (Lines 1–7). Because
ODS does not need to try and test each node in the network to
output the optimal storage position, the algorithm complexity
is O(1).

Algorithm 1 ODS: The optimal data storage in one-to-one model

Input: Producer: node i and its data rate RðiÞ;
Consumer: node j and its data rate RðjÞ.
Output: The optimal storage node on the shortest path between i and j.
1: if RðiÞ > RðjÞ then
2: Return the producer i;
3: else if RðiÞ < RðjÞ then
4: Return the consumer j;
5: else
6: Return any node along the shortest path between i and j;
7: end if

4.2. Performance evaluation

We compare the performance of ODS with three alternative
data storage strategies, Oracle, CDS, and GHT. Table 1 lists their
underlying strategies in the one-to-one model. Oracle uses a try-
and-test strategy that can determine the optimal storage node, that
is, the node having the lowest communication energy cost accord-
ing to Eq. (5). CDS [10,19] is a centralized strategy. It selects the
center node in the network area as the base station which produc-
ers deliver data to and consumers query data from. GHT is an
implementation of [13], in which the MD5 hash function is applied
as a geographic hash function where the locations and data rates of
producers and consumers are used as the input of the function. A
128-bit message digest is the output. We convert the digest into
a long integer and get the data storage position in response to
the length and width of the network area.

Our simulator set the radio range of a node to 50 m and the net-
work area is limited to an area of 400 m � 400 m where 400 nodes
are deployed randomly. The base station is placed at its center. We
use a generic MAC-layer scheduling protocol that schedules trans-
missions to avoid collisions. In simulations, one node is randomly
selected as the producer i and the other as the consumer j. Table
2 lists the simulation parameters described in Section 3.1.

Fig. 3 shows the energy consumption at different data rate of
RðiÞ when R(j) = 60 Bytes/s. We observe that ODS and Oracle have
equivalent energy consumption, indicating that in the one-to-one
model ODS is able to efficiently determine the optimal data storage
node. Specifically, both of them have constant energy consumption
when RðiÞ is increased to 60 Bytes/s. This is because we select the
consumer as the storage node when RðiÞ 6 RðjÞ whereas the pro-
ducer is the storage node when RðiÞ > RðjÞ in ODS. From Fig. 3,

Fig. 2. The one-to-one model.

Table 1
The strategies tested in our simulation.

Strategy Description

CDS Send data to and get data from the base station
GHT Use hash mapping (MD5 hash function)
ODS Optimal data storage
Oracle Try and test all nodes (benchmark)

Table 2
The simulation parameters.

Parameter Value

Network area length 400 m
Network area width 400 m
Radio transmission range (R) 50 m
Data package size (s) 40 byte
Transmitting cost per-message ðrtrÞ 0.645 mJ
Transmitting cost per-byte ðdtrÞ 0.0144 mJ/byte
Receiving cost per-message ðrreÞ 0.387 mJ
Receiving cost per-byte ðdreÞ 0.00864 mJ/byte

Z. Yu et al. / Computer Communications 33 (2010) 92–102 95

Author's personal copy

we can see that the higher the data rate is, the more energy con-
sumption of GHT and CDS is, while ODS and Oracle can achieve
the minimum, constant energy consumption.

Fig. 4 shows the energy consumption of different network size
when RðiÞ ¼ RðjÞ ¼ 60 Bytes=s. Because we randomly select the
producer and consumer, the energy consumption varies in each
simulation. Both ODS and Oracle can obtain the same minimum
energy consumption regardless of the number of nodes and the
savings over GHT and CDS are significant. Notice that GHT is supe-
rior to CDS on average, this is because the storage node in CDS is
fixed at the base station whereas in GHT it changes dynamically
according to the hash function. We also tested the average delay
of different strategies, represented by the total number of routing
hops from producer i to consumer j. Fig. 5 shows the average delay
when the number of nodes increased from 200 to 1000. The results
display that ODS and Oracle have equal effect to minimize the
number of hops of message transmission.

Fig. 6 shows the run time comparison between ODS and Oracle
in the same environment. Given the locations of producer and con-
sumer, Oracle verifies every node in a sensor network as the stor-
age position and then select the one with the minimum energy
cost. However, ODS has the run time complexity to be O(1). No
matter how many nodes distributed in a sensor network, the calcu-

lation time of the optimal storage node in ODS remains to be con-
stant at a very low cost.

5. Optimal data storage in many-to-many model

In this section, we analyze the cost of data storage and query
processing in a many-to-many (many producers to many consum-
ers) model for linear, grid and mesh network topologies. Given m
producers and n consumers, we first propose ODS algorithms to
be applied in the linear, grid and mesh network topologies. To effi-
ciently obtain a storage location, we then propose a near-optimal
data storage (NDS) algorithm in the mesh network topology. Eq.
(5) implies that, for a producer or a consumer, its contribution to
the total cost only relates to its data rate and hop count to the stor-
age node. Thus, in this section, we do not differentiate producers
from consumers.

5.1. ODS in a linear network topology

We first analyze the total cost of implementing optimal data
storage in a linear sensor network that consists of a set of sensor
nodes placed along a long and narrow area. Each producer collects

Fig. 3. Energy consumption when increasing the date rate of RðiÞ.

Fig. 4. Energy consumption in increased network size.

Fig. 5. Average delay in increased network size.

Fig. 6. Run time to determine the optimal storage location.

96 Z. Yu et al. / Computer Communications 33 (2010) 92–102

Author's personal copy

the sampled data within its sensing range and relays data towards
a storage node. Each consumer acquires the appropriate data from
that storage node. For simplicity, each node relays data for nodes
further away, i.e., node i also relays the data collected by nodes 1
to i� 1 to the storage node, and does not proceed with data aggre-
gation. Typical applications include traffic monitoring and border
control.

Because all sensor nodes locate in a line, we use their coordi-
nates to calculate the hop distance. Let xi; xj; and xk be the coordi-
nate of producer i, consumer j, and storage node k, respectively.
Thus, hði; kÞ and hðj; kÞ can be calculated as follows:

hði; kÞ ¼ jxi � xkj; hðj; kÞ ¼ jxj � xkj ð7Þ

Now we give the optimal storage position in a linear network
with multiple producers and multiple consumers. We scan the
linear network from two ends toward the midst simultaneously.
A node with 0 data rate does not contribute any storage cost.
Thus, when we reach a node whose data rate is zero, we simply
skip it and move ahead. Since producers and consumers are trea-
ted equally and only their data processing rates count for the
total storage cost, we should select the final storage position in
the middle of the sensor distribution line to get balanced data
rates at both sides. Algorithm 2 shows the pseudo-code of the
optimal data storage strategy in a linear network topology. To
reach a balanced position in the middle, the data rates at the left
will be accumulated as

P
Left and the right as

P
Right.

P
Left will

be increased when it is smaller than or equal to
P

Right, and vice
versa.

P
Left (

P
Right) gets an increased value at a node whose

data rate is not zero. Whenever
P

Left and
P

Right arrive at posi-
tions with no data rates in-between, they are standing at node
‘‘i” and ‘‘j” for us to apply Theorem 4.1 to output the optimal
data storage node. Because we scan the linear network once
and only count producers and consumers, the complexity of this
algorithm is Oðmþ nÞ where m is the number of producers and n
for consumers.

Algorithm 2 ODS-Linear: data storage in linear topology

Input: N: The total number of nodes in a linear topology;
m: Producers p1; . . . ;pm , their positions are Lðp1Þ; . . . ; LðpmÞ and their

data producing rates are Rðp1Þ; . . . ;RðpmÞ;
n: Consumers c1; . . . ; cn , their positions are Lðc1Þ; . . . ; LðcnÞ and their

data querying rates are Rðc1Þ; . . . ;RðcnÞ.
Output: The optimal storage node.
1: i ¼ 1; j ¼ N;

P
Left ¼

P
Right ¼ 0;

2: while i < j do
3: if all nodes between i and j are with data rate 0 then
4: Break;
5: end if
6: if

P
Left 6

P
Right then

7: if RðiÞ ¼ 0 then
8: i ¼ iþ 1; Continue;
9: else
10:

P
Leftþ ¼ RðiÞ;

11: i ¼ iþ 1;
12: end if
13: else f

P
Left >

P
Rightg

14: if RðjÞ ¼ 0 then
15: j ¼ j� 1; Continue;
16: else
17:

P
Rightþ ¼ RðjÞ;

18: j ¼ j� 1;
19: end if
20: end if
21: end while
22: Apply Algorithm 1 to determine the storage node where i and j

are positions of producer and consumer, and
P

Left;
P

Right are
their data rates, respectively.

Theorem 5.1. Algorithm 2 outputs the optimal data storage position
in a linear network topology.

Proof. In Algorithm 2, while loop will be broken when Fig. 7 is met.
i and j are two nodes with non-zero data rates. Between nodes i
and j, all nodes are with the data rate 0. As the input to Algorithm
1, i can represent a producer with the sum data rate

P
Left and j

can represent a consumer with the sum data rate
P

Right. Accord-
ing to Algorithm 1, when

P
Left >

P
Right, the optimal storage

node is at node i; when
P

Left <
P

Right, the optimal storage node
is at node j; when

P
Left ¼

P
Right, any node in-between nodes i

and j can be the optimal storage node. Here we only prove the
case when

P
Left >

P
Right while other cases can be proved

similarly.
When the storage position is at node i, assume the total cost is

CTotalðiÞ. Given that
P

Left >
P

Right, according to Algorithm 2, we
have

P
Left � RðiÞ 6

P
Right. Given a storage node to the left of i

with a hop count d (d > 0), the new total cost becomes

CTotalðleftdÞP CTotalðiÞ �
X

Left � RðiÞ
� �

� dþ ðRðiÞ þ
X

RightÞ � d

¼ CTotalðiÞ þ
X

Right þ RðiÞ �
X

Left
� �

� dþ RðiÞ � d P CTotalðiÞ

þ RðiÞ � d > CTotalðiÞ ð8Þ

Eq. (8) can be true when all nodes are with 0 data rate who are
within d hop counts to the left of node i. Similarly, we can show that
the storage node to the right of node i with a hop count d (d > 0) will
also result in the total cost increase. h

5.2. ODS in a grid network topology

In this section, we propose the ODS for sensor nodes distributed
in a grid network topology. Fig. 8 shows a lattice area withffiffiffiffi

N
p
�
ffiffiffiffi
N
p

regular grid comprising N nodes. Each node has four
neighbors adjacent to it. Such sensor network topology can be ob-
tained by nodes manually distributed.

The position of a node i in the grid has the coordinates ðxi; yiÞ.
Assume the coordinates of storage node k is ðxk; ykÞ in the grid
topology, Thus, hði; kÞ can be calculated as follows:

hði; kÞ ¼ jxi � xkj þ jyi � ykj ð9Þ

ODS should select a storage position adaptive to the positions of
the producers and consumers and their data rates. Once the stor-
age position is determined, we can easily calculate the hop dis-
tance according to Eq. (9). A greedy algorithm that tests every
grid position can generate the optimal position by comparisons.
However, it is inefficient with complexity OðN � ðmþ nÞÞ. The grid
topology has sensor nodes regularly distributed in a two-dimen-
sional area. Thus, one approach is to decompose two-dimensional
gird topology into two one-dimensional linear topologies. The opti-
mal storage positions should exist in nodes whose storage coordi-
nates are optimal in each dimension.

Algorithm 3 shows the ODS strategy in the grid network topol-
ogy. To get the optimal storage position in each dimension, we pro-
ject the data rates in the grid to x-axis and y-axis. For a node i, we
project its data rate RðiÞ to its x-coordinate and y-coordinate on x-
axis and y-axis, respectively. The data rate can be accumulated on a

Fig. 7. Assume the optimal storage node at d hops to the left of
P

Left.

Z. Yu et al. / Computer Communications 33 (2010) 92–102 97

Author's personal copy

coordinate, i.e., RxðxiÞþ ¼ RðiÞ; RyðyiÞþ ¼ RðiÞ. For example, there
are two nodes whose x-coordinate is 4 in Fig 8. Thus, the data rate
of the position where x-coordinate is 4 is 10 = 2 + 8 on the x-axis.
After projecting data rates of producers and consumers to x-axis
and y-axis, we can apply Algorithm 2 to obtain optimal storage
positions in each dimension. In each dimension, there could be
many such positions. Suppose we store them in arrays X and Y,
respectively. Algorithm 3 will return a node whose first coordinate
from X and second coordinate from Y. Theorem 5.2 shows the cor-
rectness of Algorithm 3 to return the optimal data storage position.
In each dimension, there will be at most mþ n coordinates with
data rates if there are m producers and n consumers in the net-
work. Hence, the computation complexity in x-axis and y-axis is
Oðmþ nÞ. The complexity of Algorithm 3 is 2 � Oðmþ nÞ for the
computation at Lines 11 and 12.

Algorithm 3 ODS-Grid: data storage in grid topology

Input: N: The total number of nodes in a grid topology;
m: Producers p1; . . . ;pm , their positions are Gðxp1

; yp1
Þ; . . . ;Gðxpm

; ypm
Þ

and their data producing rates are Rðp1Þ; . . . ;RðpmÞ, respectively;
n: Consumers c1; . . . ; cn , their positions are Gðxc1 ; yc1

Þ; . . . ;Gðxcn ; ycn
Þ

and their data querying rates are Rðc1Þ; . . . ;RðcnÞ, respectively.
Output: The optimal storage node.
1: Reset RxðiÞ ¼ 0; i ¼ 0; . . . ;

ffiffiffiffi
N
p

where i represents a node in the x-
axis;

2: Reset RyðjÞ ¼ 0; j ¼ 0; . . . ;
ffiffiffiffi
N
p

where j represents a node in the y-
axis;

3: for i ¼ p1 to pm do
4: RxðxiÞþ ¼ RðiÞ;
5: RyðyiÞþ ¼ RðiÞ;
6: end for
7: for j ¼ c1 to cn

8: RxðxjÞþ ¼ RðjÞ;
9: RyðyjÞþ ¼ RðjÞ;
10: end for
11: Apply Algorithm 2 to obtain optimal storage positions on the

projected x-axis and store them in an array X;
12: Apply Algorithm 2 to obtain optimal storage positions on the

projected y-axis and store them in an array Y;
13: Return a node whose x-coordinate in X and y-coordinate in Y.

Theorem 5.2. Algorithm 3 outputs the optimal data storage positions
in a grid network topology.

Proof. Because the two dimensional grid topology can be decom-
posed into x-axis and y-axis, the optimal storage position must
achieve the minimal cost in each axis. Algorithm 3 can obtain such
optimal positions in both axes by applying Algorithm 2 twice,
which ensures the optimal data storage positions in each
dimension. h

We give an example to illustrate Algorithm 3. The data rates in
Fig. 8 can be projected to x-axis and y-axis, respectively, as shown
in Fig. 9. We scan the projected x-axis and get the optimal positions
x ¼ 3 and x ¼ 4. Similarly, we get the optimal storage positions
y ¼ 2 on the y-axis. Thus, the possible optimal positions will be
Aðx ¼ 3; y ¼ 2Þ and Bðx ¼ 4; y ¼ 2Þ. In order to verify its correct-
ness, we calculate the cost of different nodes as follows:
CTotalðAÞ¼3�3þ2�2þ8�2þ1�3¼32, CTotalðBÞ¼32, CTotalðCÞ¼34,
CTotalðDÞ¼34. The results show that nodes A and B are both optimal
storage nodes.

5.3. ODS in a mesh network topology

In this section, we present ODS in a mesh network topology.
Sensor nodes can form a mesh topology where nodes are con-
nected in a random distribution in an area. We abstract the nodes
as the vertex set V and the links as edge set E. Thus the wireless
sensor network constructs a connected graph G ¼ ðV ; EÞ in which
each edge ðu; vÞ in E has a cost cðu; vÞ, which denotes the cost of
storage or query. Based on Theorem 4.1, the most energy efficient
path between pairwise nodes is the shortest path. If we further re-
gard the product of the packet size and data rate as the cost of the
edge, the problem becomes how to determine a storage node k
such that the sum of the costs of the shortest path from the storage
node to every producer and consumer is minimal according to Eq.
(5). In the shortest path between a pair of nodes (e.g., i and k), the
cost is the same to every edge and can be normalized as the data
rate, assuming the packet size is a unit. Thus, the cost of a path
is the product of the data rate and hop counts in the path.

To efficiently determine the optimal storage position is a chal-
lenge problem for nodes distributed in a mesh topology. There are
mþ n variables hðp1; kÞ; . . . ;hðpm; kÞ, hðc1; kÞ; . . . ; hðcn; kÞ in Eq. (5).
It is not obvious to resolve the minimal CTotalðkÞ among all possible
nodes with multiple variables. Given the random distribution of
nodes, the Euclidean distance of a pair of nodes is not proportional
to their hop counts, which makes the problem more complicated.
For simplicity, we consider the problem in the plane geometry and
assume the shortest path is proportional to the Euclidean distance.
Then hði; kÞ and hðj; kÞ can be written as follows:

hði; kÞ ¼
ffi
xi � xkð Þ2 þ yi � ykð Þ2

q
hðj; kÞ ¼

ffi
xj � xk
� �2 þ yj � yk

� �2
q ð10Þ

According to Eq. (5), the problem of finding the optimal storage
node converts to 1-median problem. It can be formulated as fol-
lows: given mþ n points piðxi; yiÞ, finding a point pðxk; ykÞ such that
the sum of the Euclidean distance from all points to point p is

Fig. 9. The projection of x-, y-axis from the grid.

Fig. 8. The grid sensor network model.

98 Z. Yu et al. / Computer Communications 33 (2010) 92–102

Author's personal copy

minimal. The 1-median problem is NP-hard [11]. There are many
approaches to acquire approximation solutions. Arora et al. [1] pro-
posed an ð1þ 1=cÞ-Approximation schemes with computing com-
plexity O nOðcþ1Þ� �

where c is a constant specified by user. Har et
al. [6] proposed an ð1þ eÞ-Approximation algorithm via Coresets
with computing complexity Oðe�2 lg nÞ where e is parameter de-
fined by user.

Different from the 1-median problem, the number of nodes
(possible positions) in a sensor network is limited once the net-
work is deployed in the optimal storage position problem. Thus,
we can try and test every node and select the one as the storage
position whose storage cost is minimal. In the following, we de-
scribe the optimal data storage algorithm (ODS-Mesh) in a mesh
topology network, which is a greedy algorithm for determining
the optimal storage node. ODS-Mesh, given in the pseudo-code be-
low, selects from among all nodes the optimal node, which has the
lowest storage cost according to Eq. (5). ODS-Mesh is a try-and-test
approach, adopting a greedy policy by verifying every node in the
network. Algorithm 4 finds the optimal position in the for loop over
all possible nodes, computing the associated cost and selecting the
node with the minimal cost as the storage node (Lines 2–15). To-
tally, there are two types of cost: CStorage, which arises from produc-
ers sending data to the storage node and is calculated according to
Eq. (1) (Lines 4–6), and CQuery, which arises from the consumers
querying data from the storage node and is calculated according
to Eq. (2) (Lines 7–9). hði; kÞ and hðj; kÞ remain to be the hop counts
between ði; kÞ and ðj; kÞ.

Algorithm 4 ODS-Mesh: data storage in mesh topology

Input:N: The total number of nodes in a mesh network;
m: Producers p1; . . . ;pm and their data producing rates are

Rðp1Þ; . . . ;RðpmÞ, respectively;
n: Consumers c1; . . . ; cn and their data querying rates are

Rðc1Þ; . . . ;RðcnÞ, respectively.
Output: The optimal storage node ods.
1: Initialize the minimal cost Cmin ¼ þ1;
2: for k ¼ 1 to N do
3: Set CStorageðkÞ;CQueryðkÞ;CTotalðkÞ to zero;
4: for i ¼ p1 to pm

5: CStorageðkÞþ ¼ RðiÞ � hði; kÞ;
6: end for
7: for j ¼ c1 to cn

8: CQueryðkÞþ ¼ RðjÞ � hðj; kÞ;
9: end for
10: CTotalðkÞþ ¼ CStorageðkÞ þ CQueryðkÞ;
11: if CTotalðkÞ < Cmin then
12: Cmin ¼ CTotalðkÞ
13: ods ¼ k
14: end if
15: end for
16: Select ods as the storage node CTotalðodsÞ ¼ min16k6NfCTotalðkÞg;
17: Return the optimal storage node ods.

The complexity of ODS-Mesh is OðN � ðmþ nÞÞ where N, m, and
n are, respectively, the number of nodes, producers and consumers.
N is the primary factor affecting the complexity in a given network
topology. Such a try-and-test approach is inefficient when the net-
work consists of a large number of sensor nodes. It does not take
into account the locations of producers and consumers as well as
data rates, but rather blindly verifies every node. This is not only
time-consuming, but also impractical in large scale networks.

5.4. NDS in a mesh network topology

To reduce the computational complexity of ODS-Mesh, we give
an approximation approach in the mesh network topology to find a
NDS position. The new approach is built on the basis that when

sensor nodes are uniformly and densely distributed in an area,
the hop count between pairwise nodes can be well approximated
by using their Euclidean distance. Although the hop count may
be affected by many factors, like Euclidean distance, network den-
sity, routing strategy, topology regularity, etc., we still can use the
Euclidean distance as a rough estimation. Normally, hop counts be-
comes larger along with the increment of Euclidean distance of
pairwise nodes. For finding min16k6NfCTotalðkÞg, we introduce the
following function f ðx; yÞ as an approximation to the total storage
cost, in which ðxpi

; ypi
Þ and ðxcj

; ycj
Þ denotes the location of pro-

ducer pi and consumer cj, respectively, and ðx; yÞ denotes the coor-
dinate of the storage node k. hði; kÞ and hðj; kÞ represent the
Euclidean distance between pairwise nodes ði; kÞ and ðj; kÞ.

f ðx; yÞ ¼
Xpm

i¼p1

RðiÞ � h2ði; kÞ þ
Xcn

j¼c1

RðjÞ � h2ðj; kÞ

¼
Xpm

i¼p1

RðiÞ � x� xið Þ2 þ y� yið Þ2
� �

þ
Xcn

j¼c1

RðjÞ

� x� xj
� �2 þ y� yj

� �2
� �

ð11Þ

The problem of finding a near optimal storage position converts
to determining the position ðxk; ykÞ such that the value of the func-
tion f ðxk; ykÞ is minimal. Because f ðx; yÞ is a continuous function
with two variables x and y confined to a bounded region in the
xy-plane, we can resolve the local minimum value by

f 0xðx; yÞ ¼ 0
f 0yðx; yÞ ¼ 0

(
ð12Þ

We continue to calculate the second partial derivatives of the

function, and get f 0xxðx; yÞ ¼ f 0yyðx; yÞ ¼ 2
Pm

i¼1RðiÞ þ
Pn

j¼1RðjÞ
� �

> 0,

f 0xyðx; yÞ ¼ 0. To obtain the extremum ðxk; ykÞ of f ðx; yÞ, we define

d ¼ f 0xxðxk; ykÞf 0yyðxk; ykÞ � f 0xyðxk; ykÞ
h i2

. If d > 0 and f 0xxðxk; ykÞ > 0,

then ðxk; ykÞ is a relative minimum. Therefore, we derive the fol-
lowing position ðxk; ykÞ where Function (11) reaches its extremum.
Such position ðxk; ykÞ can be a reference point for the storage.

xk ¼
Ppm

i¼p1
RðiÞ�xiþ

Pcn
j¼c1

RðjÞ�xjPpm
i¼p1

RðiÞþ
Pcn

j¼c1
RðjÞ

yk ¼
Ppm

i¼p1
RðiÞ�yiþ

Pcn
j¼c1

RðjÞ�yjPpm
i¼p1

RðiÞþ
Pcn

j¼c1
RðjÞ

8>>>><
>>>>:

ð13Þ

Now we propose NDS, the near-optimal data storage algorithm,
to find a storage position that can be or close to the optimal posi-
tion. NDS avoids the heavy computation in a try-and-test strategy
such as ODS-Mesh because it starts from a reference position heu-
ristically and verifies only a small part of nodes. The key idea of
NDS is to first find a reference position, which could be within
one-hop distance to the real optimal storage position with a high
probability. It does this by utilizing ðxk; ykÞ in Eq. (13) as the refer-
ence position. Centered from it, a local optimal node within one-
hop distance will serve as the storage node.

Algorithm 5 provides the pseudo-code for NDS, in which the
reference position is calculated according to Eq. (13) (Line 1). Then
the node that is nearest to the reference position is selected as
starting node (Line 2). From this node the local optimal storage
node is found among its one-hop neighbors (Lines 5–18). All nodes
that are one-hop away from the starting node are tested and their
costs are computed according to Eq. (5). Finally, the lowest cost
node is selected as the storage position (Line 19). Notice that we
initially select the starting node as the storage node. This avoids
missing itself as the local optimal one (Line 3). In the algorithm,

Z. Yu et al. / Computer Communications 33 (2010) 92–102 99

Author's personal copy

hði; kÞ and hðj; kÞ denote the hop counts between ði; kÞ and ðj; kÞ,
respectively.

Algorithm 5 NDS: Near-optimal data storage in a mesh topology

Input: N: The total number of nodes in a mesh network;
m: Producers p1; . . . ; pm , their positions are Gðxp1

; yp1
Þ; . . . ;Gðxpm

; ypm
Þ and their

data producing rates are Rðp1Þ; . . . ;RðpmÞ, respectively;
n: Consumers c1; . . . ; cn , their positions are Gðxc1 ; yc1

Þ; . . . ;Gðxcn ; ycn
Þ and their

data querying rates are Rðc1Þ; . . . ;RðcnÞ, respectively.
Output: The near-optimal storage node.
1: Calculate the reference position ðx0; y0Þ according to Eq. (13);
2: Find the starting node Nstart nearest to the reference position;
3: Set near-optimal storage node nds ¼ Nstart and let Cmin be CTotalðNstartÞ;
4: Calculate the number of neighbors, NUMneighbor , of the node Nstart;
5: for k ¼ 1 to NUMneighbor do
6: Set CStorageðkÞ;CQueryðkÞ; CTotalðkÞ to zero;
7: for i ¼ p1 to pm do
8: CStorageðkÞþ ¼ RðiÞ � hði; kÞ;
9: end for
10: for j ¼ c1 to cn do
11: CQueryðkÞþ ¼ RðjÞ � hðj; kÞ;
12: end for
13: CTotalðkÞþ ¼ CStorageðkÞ þ CQueryðkÞ;
14: if CTotalðkÞ < Cmin

15: Cmin ¼ CTotalðkÞ
16: nds ¼ k
17: end if
18: end for
19: Return nds as the storage node.

An advantage of Algorithm 5 is that it is able to make use of ref-
erence position to greatly reduce the search space to a one-hop
range. Meanwhile, how close the returned storage node nds to
the optimal storage position depends on the approximation of
the calculated reference position to the ‘‘median” of all producers
and consumers. Simulation results in Section 6 demonstrate that
the reference position ðxk; ykÞ in Eq. (13) is a good approximation
and there are more than 75% cases to get the optimal storage posi-
tion by running NDS algorithm. To analyze its complexity, we as-
sume that the area size of the network is S, the radio
transmission range of a sensor node is R, and the total number of
nodes is N. The average number of nodes that are one-hop away
from the starting node is NpR2=S. Since NDS only needs to try-
and-test each node within neighbors in an area of pR2, the com-
plexity of NDS (Algorithm 5) is a fraction pR2=S of ODS-Mesh
(Algorithm 4), which is OðpR2=S � N � ðmþ nÞÞ.

6. Performance evaluation in many-to-many model

In this section, we evaluate the performance of ODS and NDS in
the common situation where there are m producers and n consum-
ers forming a mesh topology. Note that ODS denotes ODS-Mesh
algorithm. We do not provide the simulation results of ODS-Linear
and ODS-Grid algorithms because we have already proved their
generated optimal data storage positions. After confirming the via-
bility of our design, we compared our strategy with other alterna-
tive strategies CDS [10,19] and GHT [13], and also evaluated the
effect of different parameters, such as the number of nodes (N),
producers (m) and consumers (n), the average delay between the
producers and consumers, algorithm run time to compute storage
position. The simulation was conducted as follows: a node (e.g., the
base station) collected all parameters of the network and com-
puted a storage position, then the producers and consumers bro-
kered information through the storage node. Because we are
interested in evaluating long-term performance for different data
storage strategies with continuous queries, each test was run for
100 simulation rounds with different initial topology. All experi-
ments, unless otherwise denoted, used the same basic parameters.

In each testing, we randomly selected a number of producers
and consumers among nodes and arbitrarily set their data rates
with a range between 40 Bytes/s and 400 Bytes/s. Let d denote
the average node degree that is the average number of neighbors
in a one-hop range of the starting node. Let AVG(d) denote the aver-
age node degree over 100 rounds. In our simulations, d has a value
between 3 and 6. In every 100 simulation rounds, we recorded the
times that NDS can produce the same optimal storage position as
ODS, denoted as EQU (times). The DIF (percentage) displays the
over-consumed energy of NDS on ODS, defined as ENDS�EODS

EODS
� 100%.

Fig. 10 shows the average energy consumption for different
numbers of consumers where N ¼ 400 and m ¼ 150. In order to
evaluate the impact from consumers, we varied their number be-
tween 1 and 50 while fixing the number of producers at 150. The
consumer number increment will increase the amount of energy
cost for all storage strategies, yet it is smaller for ODS and NDS.
We note in particular that the average energy consumption of
NDS is very close to that of ODS as can be seen from the overlap
of their curves. This is because when nodes are uniformly distrib-
uted in the network area, the one-hop coverage area of the starting
node in most cases contains the optimal storage node. Table 3 lays
out the details between ODS and NDS where the last two columns
illustrate their average energy consumption in 100 testing rounds.
Within 100 tests, there are over 75% cases that NDS can produce
the optimal storage position as ODS does. This percentage is still
true in following simulations, showing the accuracy of NDS to be
a good approximation algorithm to ODS.

Fig. 11 shows the average energy consumption when the number
of producers increases from 10 to 200 when N ¼ 400 and n ¼ 10. A
larger number of producers will dramatically increase the average
energy consumed by every strategy. Compared to CDS and GHT,
ODS and NDS maintain lower energy consumption. NDS can almost
achieve the same less energy cost as ODS do when producers send
data to the selected storage node and consumers query data from
it. Table 4 provides the data in detail. The dynamic storage node in

Fig. 10. Average energy consumption in increased number of consumers.

Table 3
The energy consumption ðN ¼ 400; m ¼ 150Þ.

n AVG(d) EQU DIF (%) EODS ðmJÞ ENDS ðmJÞ

1 3.79 85 0.090 5497.95 5502.89
10 3.72 99 0.004 5873.96 5874.18
20 3.32 75 0.206 6951.82 6966.11
30 3.88 89 0.021 7104.63 7106.14
40 3.84 87 0.015 7754.70 7755.89
50 5.62 86 0.002 8088.51 8088.69

100 Z. Yu et al. / Computer Communications 33 (2010) 92–102

Author's personal copy

GHT makes it a better choice than CDS to reduce the data transmis-
sion cost, as shown in Figs. 10 and 11.

Fig. 12 shows the average energy consumption in increased net-
work size when the number of producers and consumers are fixed
at m ¼ 50 and n ¼ 1, respectively. We can see that the energy con-
sumption does not necessarily increase with the number of nodes
distributed in a sensor network. This is because the data rates and
query rates are set randomly. However, ODS and NDS use much
less energy than other approaches. From Fig. 12, we can witness
the height of NDS in the histogram is almost equal to ODS. For
showing the detail, we label the AVG(d) and EQU for 100 rounds
in the figure. Table 5 shows the relative value for ODS and NDS
in detail. The energy cost difference between ODS and NDS is very
trivial. Even the maximal DIF is less than 0.5%, which can be ne-
glected in most cases.

In the following, we will illustrate the computing complexity of
different algorithms by means of comparing the run time in the
same testing environment. We tested ODS, NDS, CDS, and GHT in
the same PC with Pentium IV 1.70 GHz CPU and 256 MB main mem-
ory. Fig. 13 shows the average run time to get the storage position
with different number of nodes when m = 200, n = 50 in 100 simu-
lation rounds. CDS and GHT can get the storage position directly.
They have almost the same run time and their curves overlap.
Since ODS needs to try-and-test each sensor node, its run time
increases tremendously with the number of nodes in the network,
which makes it infeasible in a very large-scale network. In contrast,
NDS increases much mildly because it only needs to test neighbor-
ing nodes.

Fig. 11. Average energy consumption in increased number of producers.

Table 4
The energy consumption ðN ¼ 400; n ¼ 10Þ.

m AVG(d) EQU DIF (%) EODS ðmJÞ ENDS ðmJÞ

10 3.72 83 0.085 118.25 118.35
50 5.14 88 0.057 2891.46 2893.12

100 5.47 90 0.090 3958.09 3961.65
150 3.72 99 0.004 5873.96 5874.18
200 4.36 88 0.059 8007.49 8012.21

Fig. 12. Average energy consumption in increased network size.

Table 5
The energy consumption ðm ¼ 50; n ¼ 1Þ.

N AVG(d) EQU DIF (%) EODS ðmJÞ ENDS ðmJÞ

300 5.17 87 0.056 1713.49 1714.45
400 4.25 79 0.006 1735.01 1735.13
500 3.71 78 0.210 1806.95 1810.73
600 4.68 87 0.151 1816.76 1819.49
700 4.13 80 0.231 1834.93 1839.16
800 4.75 95 0.179 1849.68 1852.99

Fig. 13. Average run time in increased network size.

Fig. 14. Average delay in increased network size.

Z. Yu et al. / Computer Communications 33 (2010) 92–102 101

Author's personal copy

The delay between producers and consumers also plays an
important role in the data storage process in wireless sensor net-
works. We measure the average delay using the total number of
routing hops from the producers and consumers to the storage node
in a deployed network. This is a parameter which can be used to re-
flect the total traffic to deliver an event to multiple consumers.
Fig. 14 shows the average delay for nodes between 400 and 1000
and m = 200, n = 50 in 100 simulation rounds. The curves of ODS
and NDS are very close and the average delay of the producers and
consumers in both ODS and NDS is approximately 4.4 hops (1100/
(200 + 50) � 4.4), which is much less than the delay of CDS and GHT.

7. Conclusions

This paper integrated data rates into the data storage problem
to reduce the total energy cost in the wireless sensor network.
Multiple producers and consumers may exist in the network to
make the problem more complicated. To efficiently solve the stor-
age problem, we proposed two novel data storage strategies, opti-
mal data storage (ODS) and near-optimal data storage (NDS). They
can both minimize energy consumption by choosing the storage
node adaptively by taking data rates of producers, query rates of
consumers, and their geographic locations into consideration. The-
oretical analysis and simulation results show that ODS is able to
compute the global optimal storage position while NDS can find
a local optimal one.

Acknowledgements

This work was partially supported by HK RGC PolyU 5322/08E,
China NSFC under Grant Nos. 60803161 and 60873070, and 863
Program under Grant No. 2009AA01Z135.

References

[1] S. Arora, P. Raghavan, S. Rao, Polynomial time approximation schemes for
euclidean k-medians and related problems, in: Proceedings of the 30th Annual
ACM Symposium on Theory of Computing (STOC’98), Dallas, TX, USA, May
1998, pp. 106–113.

[2] Q. Fang, J. Gao, L.J. Guibas, Landmark-based information storage and retrieval
in sensor networks, in: Proceedings of the 25th Conference of the IEEE
Communication Society (INFOCOM’06), Barcelona, Catalunya, Spain, April
2006, pp. 1–12.

[3] D. Ganesan, D. Estrin, J. Heidemann, Dimensions: why do we need a new data
handling architecture for sensor networks?, Computer Communication Review
33 (1) (2003) 143–148

[4] T.M. Gil, S. Madden, Scoop: an adaptive indexing scheme for stored data in
sensor networks, in: Proceedings of the 23rd International Conference on Data
Engineering (ICDE’07), 2007, pp. 1345–1349.

[5] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy, S. Shenker. Difs: a
distributed index for features in sensor networks, in: Proceedings of the First
IEEE International Workshop on Sensor Network Protocols and Applications
(SNPA’03), Anchorage, Alaska, USA, May 2003, pp. 163–173.

[6] S. Har-Peled, S. Mazumdar, Coresets for k-means and k-median clustering and
their applications, in: Proceedings of the 36th Annual ACM Symposium on
Theory of Computing (STOC’04), Chicago, IL, USA, June 2004, pp. 291–300.

[7] C. Intanagonwiwat, R. Govindan, D. Estrin, Directed diffusion: a scalable and
robust communication paradigm for sensor networks, in: Proceedings of the
Sixth Annual International Conference on Mobile Computing and Networking
(MobiCom’00), Boston, Massachusetts, USA, August 2000, pp. 56–67.

[8] X. Li, Y. Kim, R. Govindan, W. Hong, Multi-dimensional range queries in sensor
networks, in: Proceedings of the First ACM Conference on Embedded
Networked Sensor Systems (Sensys’03), Los Angeles, California, USA,
November 2003, pp. 63–75.

[9] X. Liu, Q. Huang, Y. Zhang, Combs, needles, haystacks: balancing push and pull
for discovery in large scale sensor networks, in: Proceedings of the Second
ACM Conference on Embedded Networked Sensor Systems (SenSys’04),
Baltimore, MD, USA, November 2004, pp. 122–133.

[10] S. Madden, M. Franklin, J. Hellerstein, W. Hong, Tinydb: an acquisitional query
processing system for sensor networks, ACM Transactions on Database
Systems (TODS) 30 (1) (2005) 122–173.

[11] N. Megiddo, A. Tamir, On the complexity of locating linear facilities in the
plane, Operations Research Letters 5 (1) (1982) 194–197.

[12] K. Murthy, J. Kam, M.S. Krishnamoorthy, An approximation algorithm to the
file allocation problem in computer networks, in: Proceedings of the Second
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, 1983,
pp. 258–266.

[13] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, S. Shenker. Ght: a
geographic hash table for data-centric storage, in: Proceedings of the First ACM
International Workshop on Wireless Sensor Networks and Applications
(WSNA’02), Atlanta, Georgia, USA, September 2002, pp. 56–67.

[14] R. Sarkar, X. Zhu, J. Gao, Double rulings for information brokerage in sensor
networks, in: Proceedings of the 12th Annual International Conference on
Mobile Computing and Networking (MobiCom’06), Los Angeles, California,
USA, September 2006, pp. 286–297.

[15] B. Sheng, Q. Li, W. Mao, Data storage placement in sensor networks, in:
Proceedings of the Seventh ACM International Symposium on Mobile Ad Hoc
Networking and Computing (MobiHoc’06), 2006, pp. 344–355.

[16] S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, D. Estrin, Data-centric storage
in sensornets, ACM SIGCOMM Computer Communications Review 33 (1)
(2003) 137–142.

[17] A. Silberstein, R. Braynard, J. Yang, Constraint-chaining: on energy-efficient
continuous monitoring in sensor networks, in: Proceedings of the 25th ACM
SIGMOD International Conference on Management of Data (SIGMOD’06),
Chicago, Illinois, USA, June 2006, pp. 157–168.

[18] B. Xiao, H. Chen, S. Zhou, Distributed localization using a moving beacon in
wireless sensor networks, IEEE Transactions on Parallel and Distributed
Systems (TPDS) 19 (5) (2008) 587–600.

[19] Y. Yao, J. Gehrke, Query processing for sensor networks, in: Proceedings of the
First Biennial Conference on Innovative Data Systems Research (CIDR’03),
Asilomar, California, USA, January 2003.

[20] B. Yu, B. Xiao, Detecting selective forwarding attacks in wireless sensor
networks, in: Proceedings of the 20th International Parallel and
Distributed Processing Symposium IPDPS 2006 (SSN2006), Greece, April
2006, pp. 1–8.

102 Z. Yu et al. / Computer Communications 33 (2010) 92–102

