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In this paper, we propose Simplified Regular Expression (SRE) signature, which uses

multiple sequence alignment techniques, drawn from bioinformatics, in a novel approach

to generating more accurate exploit-based signatures. We also provide formal definitions

of what is ‘‘a more specific’’ and what is ‘‘the most specific’’ signature for a polymorphic

worm and show that the most specific exploit-based signature generation is NP-hard. The

approach involves three steps: multiple sequence alignment to reward consecutive

substring extractions, noise elimination to remove noise effects, and signature trans-

formation to make the SRE signature compatible with current IDSs. Experiments on a range

of polymorphic worms and real-world polymorphic shellcodes show that our bio-

informatics approach is noise-tolerant and as that because it extracts more polymorphic

worm characters, like one-byte invariants and distance restrictions between invariant

bytes, the signatures it generates are more accurate and precise than those generated by

some other exploit-based signature generation schemes.

ª 2009 Elsevier Ltd. All rights reserved.
1. Introduction the characteristics of one or a number of exploits; a vulnera-
Internet worms propagate over the Internet through infec-

tions in which a worm sends a payload (such as a shellcode or

a copy of itself) to the target host by exploiting operation

system or network service vulnerabilities (Tang et al., 2009). A

polymorphic worm is a worm that changes its appearance at

each infection, making detection and prevention much

harder. One of the most popular and effective ways to detect

worms is signature-based detection (also called content-based

filtering). The generated signature can be either exploit-based

or vulnerability-based: an exploit-based signature describes
ina 973 Grant No. 2005C
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all possible exploits (inp

-based signatures can on
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bility-based signature describes properties of one vulnera-

bility and can detect all possible exploits utilizing this

vulnerability.

Although vulnerability-based signature could be more

effective, so far both exploit-based and vulnerability-based

signatures have equal importance for worm detection in

current IDSs (Vulnerability, 2005) for the following reasons.

First, the real vulnerability-based signature1 can be generated

only if a vulnerability is disclosed (Brumley et al., 2006);

however an exploit-based signature can be fast and timely

generated to detect zero-day exploits of an undisclosed
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uts) which satisfy a vulnerability condition in a program. In fact,
ly provide approximate solutions, which can detect a part of all

.

mailto:ytang@nudt.edu.cn
mailto:csbxiao@comp.polyu.edu.hk
mailto:xclu@nudt.edu.cn
http://www.elsevier.com/locate/cose


Table 1 – Analysis of current IDS rules.

IDS (rule file name) Snort
(exploit.rules)

Bro
(signatures.sig)

# of rules analyzed 155 2966

# (%) of rules with ordered

multiple invariant parts

63 (40.6%) 365 (12.3%)

# (%) of rules with distance

restriction

60 (38.7%) 312 (10.5%)

# (%) of rules with one-byte

invariant part

34 (22%) 86 (2.9%)
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vulnerability. Second, most IDS/anti-virus vendors generate

both types of signatures. Through them, we not only know

when we were attacked, but how we were attacked by inves-

tigating whether an exploit is new or a variant of a well-

known exploit. Third, some vulnerability-based signatures

cannot be adopted in current IDSs since they require that IDSs

are able to perform profound protocol analysis (Crandall et al.,

2005). However, this obviously overestimates the capability of

current IDSs. On the contrary, it has no such requirement to

generate exploit-based signatures and hence exploit-based

signature generation systems are more compatible to current

IDSs. Compared with manual signature generation, the

recently studied automatic signature generation approaches

can generate more accurate signatures for worms much

faster, especially for polymorphic worms. Thus, this paper

will only focus on automatic exploit-based signature genera-

tion for polymorphic worms.

We find that currently available exploit-based signature

generation approaches may fail to create accurate signatures

from collections of exploit samples of polymorphic worms. To

understand why, consider a sample of a polymorphic worm

(an infection flow) as a string sequence consisting of invariant

and wildcard bytes. Invariant bytes have fixed values and are

present in every worm sample. In contrast, wildcard bytes

change their values in each sample. Fig. 1 shows an example

of the polymorphic Code Red II worm, which contains

a sequence of seven invariant parts: ‘‘GET’’, ‘‘.ida?’’, ‘‘XX’’,

‘‘%u’’, ‘‘%u780’’, ‘‘¼’’, and ‘‘HTTP/1.0 r n’’. Typically, we would

try to extract the invariant parts of polymorphic worms as

their signatures, since invariant bytes in a worm flow are

composed of a number of invariant parts which are crucial to

the exploitation of a vulnerable server (Crandall et al., 2005;

Newsome et al., 2005). But this raises two difficulties. First,

some invariant parts in polymorphic worms cannot be

extracted. Earlier approaches (Kreibich and Crowcroft, 2003;

Kim and Karp, 2004; Singh et al., 2004) were able to generate

only a single invariant part. More up-to-date approaches

(Polygraph (Newsome et al., 2005) and Hamsa (Li et al., 2006))

can extract most invariant parts except for one-byte invariant

parts (such as ‘‘¼’’ in the Code Red II worm). Second, no

approach takes into account all distance restrictions between

invariant parts (like ‘‘‘%u780’ is 4 bytes after ‘%u’’’ in the Code

Red II worm). Yet we might surmise that whether one-byte

invariant (signature) parts and distance restrictions are valu-

able in worm detection. Consider Table 1, which shows part of

rules (a rule represents a signature) of two well-known IDSs,

Snort and Bro. It can be seen that 40.6% of rules in Snort’s

exploit.rules file consist of multiple invariant parts, 38.7%

contain distance restrictions, and 22% contain one-byte

signature parts. These figures suggest that distance restric-

tions could play a role in worm infections and that signatures
GET / XX.ida?

any file name

Fig. 1 – Polymorphic Code Red II worm. Shaded content represe

bytes.
generated by previous NSG systems may not be accurate

enough to identify worms, resulting in a high rate of false

positives.

In this paper, we model the problem of generating accurate

exploit-based signature given some zero-day exploits of a new

polymorphic worm. We propose a signature type – Simplified

Regular Expression (SRE) signature. SRE can be easily trans-

formed to rules in current IDSs to accurately capture poly-

morphic worms. Based on SRE, we provide formal definitions

of what is ‘‘a more specific’’ and what is ‘‘the most specific’’

signature of a polymorphic worm such that we can compare

the accuracy of two signatures. We show that it is an NP-hard

problem to generate the most specific SRE signature of

a polymorphic worm. Our approach proposed in the paper is

a network-based and exploit-based scheme to generate SRE

signature for a single polymorphic worm. It is a bioinformatics

approach, inspired by the multiple sequence alignment

techniques (used to identify motifs and domains preserved by

evolution) in bioinformatics. The approach consists of three

steps: multiple sequence alignment, noise elimination and

signature transformation. The multiple sequence alignment

step is based on the T-coffee algorithm (Notredame et al.,

2000) and our newly proposed CSR (Consecutive Substrings

Rewarded) algorithm. CSR is a pairwise alignment algorithm

that captures contiguous invariant parts in worm samples. It

is an extension of the Needleman–Wunsch algorithm and is

based on rewarding consecutive matches. We minimize the

impact of noise samples by using a noise elimination algo-

rithm that is relevant to a noise tolerance rate q. A signature

transformation step is used to derive accurate SRE signatures

that can be conveniently used in current IDSs. We analyze the

complexity of the approach and the impact of its noise

tolerance rate q.

Experiments on a range of polymorphic worms and real-

world polymorphic shellcodes show that the SRE signatures

generated by our approach are more accurate than those of

previous methods, extracting more polymorphic worm char-

acters, including the one-byte invariant and distance restric-

tion, and distinguishes between benign traffic and worm
%u %u780 HTTP/1.0\r\n

4 bytes

=

7 bytes

nts wildcard bytes. Unshaded content represents invariant



Table 2 – Categorization of existing signature generation
schemes.

Signature
generation
mechanisms

Output signature type

Exploit-based
signature

Vulnerability-based
signature

Network-

based

Honeycomb (Kreibich

and Crowcroft, 2003),

Autograph (Kim and

Karp, 2004), PAYL (Wang

et al., 2003), EarlyBird

(Singh et al. 2004),

Polygraph (Newsome

et al., 2005), Hamsa

(Li et al., 2006), Nemean

(Yegneswaran et al.,

LESG (Li et al., 2007)
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traffic. Our approach is resilient to a small portion of noise

samples. Our experiments show that our approach

(combining the CSR and T-coffee algorithms) is more accurate

than other sequence alignment algorithms with regard to

accuracy.

The rest of the paper is organized as follows. We first

review the related work in Section 2. In Section 3, we propose

the SRE signature and raise the accurate exploit-based

signature generation problem. In Section 4, we present a bio-

informatics approach that generates accurate SRE signatures

given some exploit samples from a polymorphic worm.

Section 5 evaluates our approach with and without noise

sample interference. We discuss the complexity, the scope

and limitation of our approach in Section 6. Finally, Section 7

offers our conclusion.

2005), Our approach

Host-based TaintCheck (Newsome

et al., 2005), DACODA

(Tang et al., 2007),

DIRA (Smirnov, 2005)

Vulnerability Signature

(Brumley et al., 2006),

Vigilante (Costa et al.,

2005), COVERS (Liang and

Sekar, 2005a), Packet

Vaccine (Wang et al.,

2006), ARBOR (Liang and

Sekar, 2005b), Automatic

Diagnosis (Xu et al., 2005)
2. Related work

2.1. Polymorphism technique

Polymorphism technique has been exploited to create worm

flows and worm writers have started using polymorphic

engines in recent years. Published polymorphic shellcode

generators include ADMmutate, PHATBOT, Jempiscodes,

PHolyP, Clet, TAPiON, and Metasploit. Common techniques

used to write polymorphic shellcodes include Garbage and

NOP insertions, register shuffling, equivalent code substitu-

tion, and encryption/decryption. Although it has been shown

that it may be possible to create polymorphic shellcode that

has no artifact (i.e. invariant bytes) (Song et al., 2007), the

paper also says that signature-based methods still work on

even state-of-the-art polymorphic worms while Newsome

et al. observe that, in practice, most polymorphic worms must

contain invariant bytes as they are crucial to exploiting

vulnerable servers (Newsome et al., 2005).

2.2. Exploit-based automatic signature generation

There are a number of automatic signature generation

schemes that can output exploit-based signatures. They can

be broadly classified as either network-based or host-based.

A network-based scheme relies solely on network traffic to

generate exploit-based signatures while a host-based scheme

needs to collect more information at a host, such as the

source/binary code of a vulnerable program, the execution

context of an exploitation. The categorization of existing

signature generation schemes is shown in Table 2.

2.2.1. Network-based and exploit-based schemes
Early network-based signature generation schemes, including

Honeycomb (Newsome et al., 2005), Autograph (Kim and Karp,

2004), PAYL (Wang et al., 2003), and EarlyBird (Singh et al.,

2004), do not work well with polymorphic worms since their

signatures contain only a single contiguous string. Polygraph

(Newsome et al., 2005) and Hamsa (Li et al., 2006) are two

token-based approaches that select a set of tokens that have

high coverage of suspicious traffic pool and will not lead to

a high false positive. However, the signatures generated by

Polygraph and Hamsa are not accurate enough because they
do not take account one-byte invariant bytes and distance

restrictions in polymorphic worms. Nemean (Yegneswaran

et al., 2005) uses a semantic analysis of network protocols to

generate connection and session signatures. It requires to

explicitly analyze protocols and the generated connection

signatures are similar to the token-subsequence signatures in

Polygraph but have no information of distance restrictions on

tokens. Our approach is a network-based and exploit-based

scheme. In comparison with most recent work in this cate-

gory, such as Polygraph (Newsome et al., 2005), Nemean

(Yegneswaran et al., 2005) and Hamsa (Li et al., 2006), our

approach can generate more accurate signatures and does not

rely on well classified worm flow pool and explicit protocol

analysis. Compared with our previous preliminary work in

(Tang et al., 2007), this paper improves the CSR algorithm and

the proposed bioinformatics approach is more complex to

generate accurate signatures by integrating new steps, i.e.

multiple sequence alignment, noise elimination and signature

transformation.

2.2.2. Host-based and exploit-based schemes
One host-based and exploit-based scheme, TaintCheck (News-

ome and Song, 2005), uses dynamic taint analysis to detect

anomaly instruction execution and then outputs a three-byte

signature, which could be used to overwrite a jump target.

DACODA (Crandall et al., 2005) adopts a similar mechanism and

outputs a set of tokens as a signature to detect attacks. DIRA

(Smirnov, 2005), a compiler, can transform arbitrary programs

to a form to detect control hijacking attacks. Malicious input

(packet) is identified as the signature. Compared to these

schemes, our approach does not require to know some unre-

vealed information (e.g., TaintCheck and DACODA need to

know the vulnerable program, DIRA must have source code).
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Our proposed approach aims to generate more accurate signa-

tures than theirs (three-bytes Newsome and Song, 2005, tokens

Crandall et al., 2005, and whole packet Smirnov, 2005) to

recognize and filter out polymorphic worm traffic.

2.3. Vulnerability-based automatic signature generation

In recent years, we have witnessed some vulnerability-based

automatic signature generation schemes. Brumley et al. (2006)

use static analysis techniques to generate two approximate

vulnerability-based signatures (MEP symbolic constraint

signature and regular expression signature). Vigilante (Costa

et al., 2005) uses dynamic dataflow analysis to generate

vulnerability-based signatures. COVERS (Liang and Sekar,

2005a) generates vulnerability-based signatures through

a forensic mechanism to correlate victim server’s memory

with network input message. Packet vaccine (Wang et al., 2006)

randomizes address-like strings in packet payloads, carries out

exploit detection and vulnerability diagnosis, and finally

outputs vulnerability-based signatures, called Application-

level Signature. Xu et al. (2005) present a method that traces the

corrupting instructions and generates signatures using data/

address values embedded in the malicious input message. The

common limitation of these schemes is that they need to know

the vulnerable program and some need to test variant imple-

mentation versions to identify the vulnerable program. Their

side-effects are witnessed, such as impasting the performance

of the protected host (Brumley et al., 2006; Costa et al.,

2005; Liang and Sekar, 2005a; Wang et al., 2006; Xu et al., 2005);

requiring patching of kernels (Wang et al., 2006; Xu et al.,

2005) or modification of run time libraries (Brumley et al., 2006;

Liang and Sekar, 2005a; Xu et al., 2005); generating non-

compatible signatures for network filtering (Costa et al., 2005;

Liang and Sekar, 2005b; Xu et al., 2005).
3. Accurate exploit-based signature
generation problem

In this section, we first propose a new signature – Simplified

Regular Expression (SRE ) signature. Based on this signature, we

formally define what is ‘‘a more specific’’ signature and what

is ‘‘the most specific’’ signature to compare SRE signatures.

Then we present the accurate exploit-based signature gener-

ation problem and we show that the most specific signature

generation for polymorphic worms is NP-hard.
Table 3 – Current IDS rules and their corresponding SRE signa

Rule of Snort

An example rule with

distance restriction and

1-byte invariant part

alert udp $EXTERNAL_NET any / $HOME_NE

(msg:‘‘EXPLOIT ISAKMP delete hash with emp

attemp’’; content:‘‘j08j’’; depth:1; offset:16;

content:‘‘j0Cj’’; depth:1; offset:28; content:‘‘j00

depth:2; offset:30; reference:bugtraq,9416;

reference:bugtraq,9417; reference:cve,2004-01

classtype:misc-attack; sid:2413; rev:9;)

Equivalent SRE signature [16]‘\x08’[28]‘\x0C’[30]‘\x00\04’*
3.1. SRE signature

Although regular expression has been widely employed in

intrusion detection, like in Snort and Bro, many syntax rules

in regular expression are rarely used for worm detection in the

real-world. Hence, we propose Simplified Regular Expression

(SRE ) signature that is efficient in worm matching and

compatible with current IDSs.

An SRE signature is a regular expression that contains only

two qualifiers – ‘‘.*’’ and ‘‘.{k}’’. For simplicity, these can each

be further abbreviated by replacing ‘‘.*’’ with ‘‘*’’, which

represents an arbitrary string (including a zero-length string),

and by replacing ‘‘.{k}’’ with ‘‘[k]’’, which represents a string

consisting of k arbitrary characters and defines a distance

restriction whose length is k. For example, ‘‘‘one’[2]‘two’*’’ is an

SRE signature that is equivalent to the regular expression

‘‘one.{2}two.*’’. SRE signatures are still regular expressions,

but contain less syntax rules. In other words, the set of SRE

signatures is a subset of the set of regular expressions. Since

an arbitrary SRE signature still satisfies the definition of

a regular expression, it can be converted to an equivalent NFA/

DFA, and be conveniently used for detection in any IDS that

supports regular expression. Suppose that F¼ {*, [k]} is the set

of the two qualifiers and that Sþ is the set of nonempty strings

over a finite alphabet S. An SRE signature is defined as follows:

Definition 1. ((SRE signature)) An SRE signature is a signature in

the form of (q0)s1q1s2.qk–1sk(qk), where qi ˛ F is a qualifier, si ˛ Sþ

is a substring (i ˛ [0, k]), (q0) and (qk) means q0 and qk are optional.

Given that X is an SRE signature, we use jXj to denote the

total length of substrings in X , and use jjXjj to denote the total

length of substrings plus the total length of distance restric-

tions in X . Thus, jjXjj � jXj refers to the total length of distance

restrictions in X . For instance, if X ¼ } �0 a0½2 0bcd0½1 0efgh0 � }
��

,

then jXj ¼ 8ð1þ 3þ 4Þ; kXk ¼ 11ð1þ 2þ 3þ 1þ 4Þ, and the

total length of distance restrictions in X is 3 (11� 8, or 2þ 1).

Table 3. shows rules of some current IDSs and their equivalent

SRE signatures. The examined intrusion detection rules,

comprising distance restriction and 1-byte invariant part, can

be easily transformed to SRE signatures, and reversely.

3.2. Comparison of signature accuracy

We aim to generate more accurate signatures for polymorphic

worms, so it is natural to ask what is ‘‘a more accurate’’ and
tures.

Rule of Bro

T 500

ty hash

04j’’;

64;

signature s2b-2101-9 {ip-proto¼¼ tcp dst-port¼¼ 139

event ‘‘NETBIOS SMB SMB_COM_TRANSACTION Max

Parameter and Max Count of 0 DOS Attempt’’ tcp-state

established,originator payload /\x00/payload

/.{3}\xFFSMB%/payload/.{42}\x00\x00\x00\x00/}

‘\x00’[3]‘\xFFSMB’[42]‘\x00\x00\x00\x00’*
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what is ‘‘the most accurate’’ signature for a polymorphic

worm? Intuitively, the ‘‘the most accurate’’ signature should

be ‘‘the most specific’’ while also being ‘‘generally’’ repre-

sentative. It would be more specific the more features of

a worm it contained. This would reduce false positives. At the

same time, however, it would be generally representative in

that it would not contain useless or incorrect features of

a worm that would lead to false negatives. The following

defines the more specific than relationship that we use to

compare two SRE signatures in terms of their specificity.

Definition 2. ((contain, 9)) Letting X and Y be two SRE signatures,

we say that Y contains X , denoted by X9Y, if LðXÞ4LðYÞ. That is,

the strings that match signature must also match signature Y.

Definition 3. ((more specific than, _)) Let X and Y be two SRE

signatures. If X9Y and kXk > kYk, we say X is more specific than

Y, or Y is more general than X , and this is denoted by X3Y.

Here are some examples for Definition 2 and Definition 3:

‘‘‘abc’*‘bcd’’’ 9‘‘‘ab’* ‘c’*’’, ‘‘‘ab’[2]‘cd’’’9‘‘‘ab’*‘cd’’’; ‘‘‘aaa’*‘b’’’ _

‘‘‘aa’*‘b’’’, ‘‘‘aa’[3]‘c’’’_ ‘‘‘aa’*‘c’’’.Note that ifastringor anetwork

flow x (as a special SRE signature with only one substring and

without qualifiers) matches an SRE signature Y, we also use

‘‘x9Y’’ todenote it. For instance, thestring ‘‘abcdef’’matches the

signature ‘‘‘ab’*‘ef’’’ and can be denoted by ‘‘abcdef’’ 9‘‘‘ab’*‘ef’’’.

3.3. Most specific signature generation problem

Given polymorphic worm samples, that is, a set of byte

sequences, from zero-day exploits, it is possible to create the

most specific (or accurate) signature for worm detection. In

this section, we define the most specific signature generation

problem for a polymorphic worm, and show that the problem

is NP-hard. Since a sequence is a string that can be treated as

a special SRE signature without any qualifiers, we can define

the signature of a sequence set.

Definition 4. ((Signature of a Sequence Set)) Let R¼ {s1, s2, ., sk} be

a set of sequences. X is an SRE signature of R if and only if for each

s ˛ R, s9Xand this is denoted by R < :X .

Definition 5. ((the Most Specific Signature of a Sequence Set)) If X is

an SRE signature of R¼ {s1, s2, ., sk}, a set of sequences, and for any

other SRE signature Y such that R < :Y, X9Y always holds, we say

X is the most specific signature (MSSig) of R, and this is denoted by

X ¼ MSSigðRÞ.

MSSG (the Most Specific Signature Generation) Problem.

INPUT: R¼ {s1, ., sn} is a sample set of a polymorphic worm w.

OUTPUT: A signature X such that X ¼ MSSigðRÞ.

From the SRE signature property, we know that given a set

of sequences R, MSSig(R) is unique. By reduction from a known

NP-complete problem, the LCS (Longest Common Subse-

quence) problem (22), we have the following theorem.

Theorem 1. MSSG problem is NP-hard.

Definition 6. ((Signature of a Polymorphic Worm)) Given a

polymorphic worm w, if all possible samples of w match an SRE
signature X , then X is a signature of w, and this is denoted by

w < :X .

Definition 7. ((the Most Specific Signature of a Polymorphic Worm))

Given a polymorphic worm w and its SRE signatureX , if w < :X and

for any other SRE signature X0 such that both w < :X0 and X9X0

hold, then X is the most specific signature (MSSig) of w, and this is

denoted by X ¼ MSSigðwÞ.

Definition 6 states what a signature is and Definition 7

states what ‘the most specific (accurate) signature’ is for

a polymorphic worm. In a network-based approach to gener-

ating exploit-based signature, given a sample set R of a poly-

morphic worm w, we aim to generate MSSig(R), which is

demonstrated to be NP-hard by Theorem 1. In practice, we

could use a polynomial scheme to generate an accurate

signature that is close or identical to MSSig(R). It is highly

possible that this signature is also the most specific signature

of w when the collected R is representative for w and its size is

large enough.
4. A bioinformatics approach to SRE
signature generation

In this section, we propose a bioinformatics approach to

accurate SRE signature generation for a single polymorphic

worm, inspired by some related algorithms from bio-

informatics. The kernel of this approach is multiple sequence

alignment, which has been broadly studied in bioinformatics

where it has been used to find all preserved or common motifs

and domains from a set of DNA/RNA sequences (Notredame,

2002). This application is similar to our accurate signature

generation problem in which we need to identify invariant

bytes from a set of polymorphic worm samples. In the rest of

this section, using an example, we first provide an overview of

the bioinformatics approach, which is based on a new pair-

wise sequence alignment algorithm proposed in Section 4.2.

The approach comprises three main steps: multiple sequence

alignment (Section 4.3), noise elimination (Section 4.4) and

signature transformation (Section 4.5).

4.1. Overview

We first transform a set of samples (network flows) of a poly-

morphic worm into a set of character sequences, and then

generate an SRE signature for this worm in three steps:

multiple sequence alignment, noise elimination, and signature

transformation. Fig. 2 illustrates the procedure. ‘WormSam-

ple1’ (‘‘ONEwerTWOtyjfTHREEcxbfd’’) to ‘WormSample6’

(‘‘yuiddONEnsddTWOweredsTHREEnfg’’) are six worm

samples and ‘noise1’ and ‘noise2’ are two noise samples. The

first step analyzes and aligns these worm samples and noise

flows. The alignment is represented as a colored matrix, where

the greater the number of identical characters in a column, the

darker its color. The next step is to identify noise samples using

a noise elimination algorithm. Fig. 2 shows sequences ‘noise1’

and ‘noise2’ correctly identified as noise flows. The remaining

sequences are recognized as worm samples. From them,

identical characters in the same columns are extracted as



Fig. 2 – Three steps in the bioinformatics approach.
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invariant bytes of the polymorphic worm. Step 3 produces an

SRE signature ‘‘*‘ONE’[4]‘TWO’*‘THREE’*’’ by putting distance

restrictions between adjacent invariant bytes. This is the most

specific signature of the worm.

4.1.1. Step 1. Multiple sequence alignment
Sequence alignment compares pair or multiple sequences by

searching for a series of individual characters or character

patterns that are in the same order in the sequences. The

definition of multiple sequence alignment is given in Defini-

tion 8. An alignment (result) is represented as a matrix A and

the row Ap within the matrix represents the aligned sequence

of sp. Gaps (‘–’) are inserted between elements so that

elements with identical characters from different sequences

can be aligned in the same columns. As can be seen in Fig. 2,

we use colors to indicate how many rows containing an

identical character for each column of A. Columns with more

rows are filled with a darker color.

Definition 8. (Multiple Sequence Alignment.) Given a family of

sequences S ¼ fs1; .; skg over an alphabet S, jspj is the length of

the sequence sp, and an alignment of sequences in S is a (k�N)-

matrix A ¼ ðAp;iÞ1�p�k;1�i�N with max1�p�kjspj � N �
P

1�p�k jspj,
if and only if:

1. Ap, i ˛ S W {‘–’} (where ‘–’ ;S is called a gap);

2. Upon removal of all blanks, row Ap¼ (Ap, i)1�i�N reduces to

Sp; and

3. No column consists only of blanks.

Multiple sequence alignment (MSA) is the core of our

approach. Various MSA techniques have been proposed in the
Fig. 3 – Two alignments gen
area of bioinformatics, including Exact alignment, Progressive

alignment (Notredame et al., 2000; Thompson et al., 1994), and

Iterative alignment (Notredame, 2002). Progressive alignment is

by far the most widely used and uses pairwise alignment with

sequences being aligned one by one. We propose our MSA

algorithm in Section 4.3, which is based on the adopted T-

Coffee algorithm and a new pairwise alignment algorithm CSR

proposed by us (see Section 4.2).

4.1.2. Step 2. Noise elimination
Owing to imperfect suspicious flow classification or worm

sample clustering, there may be noise in worm samples. This

step finds the noise and removes it. As can be seen in Fig. 2

(step 2), sequences (rows in matrix) identified as noise do not

have ‘*’ at the end of the sequence name, but the sequences

identified as worm samples do. The noise elimination algo-

rithm can be found in Section 4.4.

4.1.3. Step 3. Signature transformation
This step outputs the final SRE signature transformed from

the MSA alignment result. The transformation technique will

be discussed in Section 4.5.

4.2. Pairwise sequence alignment algorithm

A pairwise sequence alignment is a matrix where one sequence

is placed above the other to find and align common characters.

Gaps (‘–’) are inserted to help in aligning matching characters.

A mismatch occurs if elements in the same column are not

identical. Fig. 3 shows results for pairwise sequence alignment

between ‘‘oxnxexzxtwox’’ and ‘‘ytwoyoynyeyz’’. In the

following, we first describe limitations of the well-known
erate different results.
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Needleman–Wunsch pairwise alignment algorithm on signa-

ture generation, and then propose a new pairwise alignment

algorithm – an improved CSR algorithm from (Tang et al., 2007).

This algorithm is the basis of the multiple sequence alignment

algorithm in our approach.

4.2.1. Limitations of the Needleman–Wunsch pairwise
alignment algorithm
The Needleman–Wunsch algorithm (Needleman and Wunsch,

1970) is a typical global alignment algorithm that can compute

an alignment between two sequences by maximizing a simi-

larity score as in Formula (1), where km denotes the number of

matches, Wm denotes the score for a match, kd denotes the

number of mismatches, Wd denotes the score for a mismatch,

kgaps denotes the number of gaps, and d denotes the penalty

score for a gap. For example, if we set Wm¼ 1, Wd¼ 0, d¼�1,

the similarity score of the alignment in Fig. 3(a) is

�6(4� 1þ 3� 0þ 10� (�1)), the similarity score of the align-

ment in Fig. 3(b) is �11 (3� 1þ 2� 0þ 14� (�1)).

SCðx; yÞ ¼ km �Wm þ kd �Wd þ kg � d (1)

Although the Needleman–Wunsch algorithm can maximize

the score in Formula (1), it is not suitable for polymorphic

worm signature generation because it maximizes only the

total number of matches but does not reward consecutive

matches, yet most invariant parts in polymorphic worms are

composed of consecutive characters, and consecutive char-

acters in a signature, in turn, can improve the accuracy and

efficiency of worm traffic detection. Consider the example in

Fig. 3 where two strings ‘‘oxnxexzxtwox’’ and ‘‘ytwoyoy-

nyeyz’’ are aligned in two ways. Fig. 3(a) is the alignment

generated by the Needleman–Wunsch algorithm with a simi-

larity score of �6 while Fig. 3(b) is another possible alignment

with a similarity score of �11. Although the similarity score of

the latter alignment is smaller than the one of the former, it

contains a contiguous substring ‘two’, which is semantically

meaningful. Thus it is more likely to be an invariant part of

a polymorphic worm.

4.2.2. CSR pairwise alignment algorithm
Over many experiments we have discovered that no matter

how the parameters were adjusted, limited to the optimi-

zation function in Formula (1) that maximizes the total

number of matches instead of consecutive matches, the

Needleman–Wunsch algorithm always failed to generate

contiguous substrings that are much meaningful in worm

traffic detection. Our proposed pairwise sequence align-

ment algorithm, CSR (consecutive substrings rewarded)2

extends Needleman–Wunsch by rewarding consecutive

matches, that is, more contiguous substrings in an align-

ment result. We do this by modifying the similarity score

function from Formulas (1)–(2). In Formula (2), an additional

function enc() is used for rewarding contiguous substrings.

That is, for a possible alignment result, each contiguous

substring will result in an additional (rewarding) score and

the longer the substring is, the higher the additional score

will be.
2 See Algorithm 2. in Appendix A for more details.
SCðx; yÞ ¼ km �Wm þ kd �Wd þ kg � d

þ
X

S is a substring

in analignment result

encðjsjÞ ð2Þ

For example, given that enc(x)¼ 3(x� 1) and Wm¼ 1, Wd¼ 0,

d¼�1, the similarity score of the alignment in Fig. 3(a)

remains to be �6 (1� 4þ 0� 3þ (�1)� 10þ 3� (1� 1)) while it

is �5 in Fig. 3(b) (1� 3þ 0� 2þ (�1)� 14þ 3� (3� 1)). Our CSR

algorithm outputs the optimized alignment as shown in

Fig. 3(b).
4.3. Multiple sequence alignment algorithm

The multiple sequence alignment algorithm in our approach

derives from the T-Coffee algorithm (Notredame et al., 2000)

but differs in that for the pairwise alignment applied in

building a primary library, we use our CSR algorithm while

T-Coffee uses the Needleman–Wunsch algorithm. A significant

advantage of our approach is that our algorithm accepts any

kind of sequences whereas T-Coffee accepts only limited data

types, such as DNA, RNA, and protein sequences. Fig. 4 shows

the four stages of our MSA algorithm, describes as follows.

1) Pairwise alignment to build primary library. The first stage

will build a primary library by aligning every two sequences

from all input sequences using our CSR algorithm. If there

are N sequences to be aligned, the primary library contains

alignment results of N(N� 1)/2 sequence pairs. Each align-

ment in the primary library is represented as a list of pair-

wise element matches. For example, the pairwise

alignment shown in Fig. 3(b) can be represented as ‘‘A.9

with B.2’’ (the 9th element of sequence A is aligned with the

2nd element of sequence B), ‘‘A.10 with B.3’’ and ‘‘A.11 with

B.4’’.

2) Library extension. This stage extends each pairwise align-

ment to a triplet. For example, as shown in Fig. 4, the

pairwise alignment of sequence A and sequence B is

extended to the alignment between A and B through

sequence C. Each pairwise element match in the extended

library is given a weighted score. For example, if ‘‘A.10 with

C.11’’ and ‘‘C.11 with B.2’’ are listed, then the weight score

of ‘‘A.10 with B.2’’ will increase by 1.

Library extension is the main technique applied in the T-

Coffee algorithm. The weighted element match in each pair-

wise alignment reflects its popularity in the whole library. The

benchmark simulation results in (Notredame et al., 2000)

showed that T-Coffee algorithm outperformed other algo-

rithms like Prrp, DiAlign, and ClustalW (Thompson et al.,

1994). Our experiments in Section 5.5 demonstrate similar

results that library extension can improve the generated

signature accuracy.

3) Guide tree construction. Because each pairwise alignment

can output a similarity score according to Formula (2), the

pairwise alignments in stage 1 can be used to produce

a distance matrix in which a smaller distance represents

more matches between two close sequences. We can use
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Fig. 4 – The four stages in the progressive multiple sequence alignment algorithm.

c o m p u t e r s & s e c u r i t y 2 8 ( 2 0 0 9 ) 8 2 7 – 8 4 2834
this matrix to construct a binary guide tree using the

neighbor-joining method (Saitou and Nei, 1987). The tree

guides the progressive alignment in which a close sequence

is iteratively added to get the final multiple alignment.

4) Progressive alignment. The multiple sequence alignments

are progressively assembled using a series of pairwise

alignments and following the branch order in the guide

tree. Similar to ClustalW (Thompson et al., 1994) and

T-Coffee (Notredame et al., 2000), the alignment is carried

out by a dynamic programming algorithm using the infor-

mation in the extended library (the pairs of elements and

their weights). The progressive alignment in Fig. 4 first

aligns A and C, then goes with B.
4.4. Noise elimination

Imperfect suspicious flow classification or worm sample

clustering can produce noise in worm samples which must be

eliminated to derive accurate worm signatures. Since MSA in

step 1 generates maximum element matches from each

pairwise alignment, a limited number of noise flows will not

influence the extraction of most common characters. That is,
most worm samples can be aligned to get valuable matches

even if there are a few noise flows. There are two noise

samples at Step 1 in Fig. 2, yet the six worm samples are

properly aligned to show extractable common invariant parts.

The proposed noise elimination algorithm in Algorithm 1 is

designed to improve the accuracy of signature generation in

a noise-tolerant way. Given the alignment of k sequences, we

define a noise tolerance rate q and select Qk$qQ sequences as

noise within k sequences. The remaining k� Qk$qQ sequences

will be regarded as worm samples and we will use them to

output the final SRE signature. The noise elimination algo-

rithm first determines the invariant bytes of a polymorphic

worm. The invariant bytes will be characters that appear more

than Qk$qQ times in one column. Then we determine Qk$qQ noise

samples as those containing fewer invariant bytes.

Algorithm 1. (Noise elimination algorithm.)

input: A: a (k�N ) matrix, which is the alignment of k

sequences in S ¼ ðs1; .; skÞ;
output: N : a set of noise, N4S;

parameters: q: noise tolerance rate (0� q� 1);

Determine invariant bytes

foreach i ˛ {1, ., N} do
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foreach c ˛ S do

ni,c ) the count of elements in column i whose value is c;

fi,c ) ni,c/k;

end

end

foreach i ˛ {1, ., N} do

Fi) max
c˛S

fi;c;

if Fi� 1� q then

Ii ) c, where c is the character to make Fi¼ fi, c; /* Ii is an

invariant byte */

else Ii¼‘ ’; /* Ii is not an invariant byte */

end

Determine noise

foreach si˛S do

/ * count how many invariant bytes are included in this

sequence */;

InvByt(si)) the count of Ai, j(1� j�N ) such that Ai, j¼ Ij ;

end

N)B;

/ * select Qk$qQ sequences as noise which contain less invariant

bytes */;

for i¼ 1 to Qk$qQ do

si is the sequence such that si˛S=N , and for any other

s0˛S=N we have InvByt(si)� InvByt(s0);

N)NWfsig
end

return N

The selection of the noise tolerance rate q is a key point

in the noise elimination algorithm. A fixed value of q could

be impractical. If q is too small, some noise may not be

filtered out. In contrast, if q is too large, some worm

samples may be wrongly eliminated as noise and there

will be not enough worm samples left.3 In both cases, our

approach may fail to generate accurate signatures. We

propose to use an adaptive q scheme that q changes its

value according to the total number of available sequences

(k, and k is required to be over 4), as shown in Formula (3).

The objective of this scheme is to ensure that for any k

(k> 4), kqzQ0:8k� 3:2Q sequences will be chosen as noise,

k� kq ¼ kð1 � qÞz4þ P20%ðk� 4ÞR sequences will be chosen

as worm samples. In other words, at least 4 sequences will

be chosen as samples. For the remaining k� 4 sequences

we choose 20% as samples (80% as noise), a conservative

policy.

q ¼ 0:8� 3:2=kðk > 4Þ (3)

4.5. SRE signature transformation from alignment
result

An alignment result can be easily transformed into an SRE

signature. Given an alignment of multiple worm samples,

after the noise elimination and invariant byte extraction, we

can get the distance restriction for adjacent invariant bytes by

counting the number of in-between none-blank positions.
3 The worm sample size should be larger than 4 for accurate
signature generation as shown in experiments in Section 5.4.
Taking Fig. 2 as an example, the corresponding SRE signature

is ‘‘[0,6]‘ONE’[4]‘TWO’[1,6] ‘THREE’[1,5]’’, where ‘[1,6]’ is

a distance bound restriction meaning that there are at least

one and at most six elements between ‘TWO’ and ‘THREE’ in

worm samples (WormSample1–WormSample6).

Although using ‘[k1, k2]’ to express a distance bound

restriction (instead of ‘*’ in SRE signature) is a more precise

way to express the range distance restriction, this paper does

not adopt such a distance bound restriction in generated

signatures. This is because even though there are some range

distance restrictions in polymorphic worms that can be

exactly expressed by a bound of ‘[k1, k2]’, we may not be able

to extract a perfect bound given inadequate worm samples.

For instance, suppose that a polymorphic worm should have

a real range distance restriction with the bound of ‘[1, 100]’. If

the worm samples are inadequate, as a result, we may only get

an over-specific bound, like ‘[12,50]’, which will result in a high

false negative rate. The last step in our approach outputs SRE

signatures by extending each range bound of ‘[k1, k2]’ to ‘*’,

i.e., extending ‘‘[0,6]‘ONE’[4]‘TWO’[1,6]‘THREE’[1,5]’’ to

‘‘*‘ONE’[4]‘TWO’* ‘THREE’*’’, as in Fig. 2. Note that we still keep

the fixed distance restriction in generated SRE signatures (like

[4] in Fig. 2).
5. Experiments

In this section, we evaluate our bioinformatics approach

under different scenarios. After introducing metrics used to

measure signature quality, we first evaluate our approach

using synthetic polymorphic worms and compare it with

previous approaches, like Polygraph (Newsome et al., 2005)

and Hamsa (Li et al., 2006). Then, we show the signature

generation quality for polymorphic shellcodes, which were

constructed by some real-world shellcode engines. We also

carried out experiments to test the noise-tolerance ability of

our approach where there were noise in worm samples. We

also compare some well-known multiple sequence alignment

(MSA) algorithms with our approach (CSRþT-Coffee) in terms

of signature generation accuracy. Our signature generation

approach was implemented in VC6.0 with about 7000 lines of

Cþþ code. All experiments were run on a desktop machine

with 2.0 GHz Intel Core 2T7200 processor, running Windows

XP SP2.

5.1. Evaluation metrics

We measure the quality of a generated signature for variant

approaches in terms of: (1) the false positive (FP) in normal

traffic and false negative (FN) in tested polymorphic worm

samples. (2) the invariant-byte deviation and distance-restriction

deviation from the most specific signature. The measurement

details are described below.

5.1.1. FP and FN
To test the FP of a generated signature in our experiments,

we used a normal traffic pool, in which the data was

collected from two sources: (1) 24GB network traffic at the

campus network gateway of Hong Hong Polytechnic

University, including 5-day HTTP traces (45,111 flows,



Table 4 – The synthetic polymorphic worms for evaluation.

Polymorphed worm name TSIG IISPrinter CodeRedII Witty Zotob ISAKMP

Real-world worm/malware Lion worm Beavuh malware Code Red II worm Witty worm Zotob worm N/A

Bugtraq ID 17692 2674 2880 9913 14513 9416

CVE ID CVE-2006-2073 CVE-2001-0241 CVE-2001-0500 CVE-2004-0362 CVE-2005-1983 CVE-2004-0164

Target system BIND DNS server ATPhttpd 0.4 Microsoft IIS 5.0 RealSecure

Server Sensor

PnP service Check Point

Software Firewall

(total length of substrings,

total length of distance

restrictions)

(6,216) (39,0) (31,11) (12,15) (20,82) (4,28)
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15 GB) and 3-day DNS traces (1.5 GB); and (2) the first

week’s network TCP dump data from 1999 DARPA Intru-

sion Detection Evaluation Data Sets (Lippmann et al., 2000)

(10 GB), which is guaranteed no attack traffic. To test FN of

a generated signature for a polymorphic worm, we

obtained FN result by detecting another 5000 synthetic

samples of the same worm.

5.1.2. Invariant-byte deviation and distance-restriction
deviation
Ideally the generated signature should be the most specific for

a polymorphic worm. In our evaluation experiments, if we

know the most specific signatures of a polymorphic worm in

advance, we can quantify the quality of a generated signature

by measuring how far it deviates from the most specific one,

represented as the invariant-byte deviation and the distance-

restriction deviation.

Given that X is a generated signature and Y is the most

specific signature of a polymorphic worm w, we use STRðXÞ
and STRðYÞ to denote strings converted from X and Y
respectively by removing all qualifiers. Obviously, we can find

a set of operations that convert STRðXÞ to STRðYÞ and mini-

mize the total operation cost. The operations can be character

insertion, deletion and replacement. The minimum operation

cost is commonly known as the Levenshtein distance (Lev-

enshtein, 1966). Here we call it the invariant-byte deviation

between X and Y. For example, given X ¼ }c � aa � bb � } and

Y ¼ }½3 aa � bbb � }� , their invariant-byte deviation is 2, since

STRðXÞ ¼ }caabb} can be converted to STRðYÞ ¼ }aabbb} by

two operations that deleting the ‘c’ at the start and adding a ‘b’

to the end of STRðXÞ. The distance-restriction deviation states the

absolute value of difference between the distance restrictions

in X and Y, that is, jðjjXjj � jXjÞ � ðjjYjj � jYjÞj. For example,

given X ¼ }c � aa � bb � } and Y ¼ }½3 aa � bbb � }� , the distance

restriction deviation is j(5� 5)� (8� 5)j ¼ 3.
Table 5 – Generated signatures for five worm samples and the

Worm (average sample length) Signatu

TSIG (569) *‘\xFF\xBF’[200]‘\x00’[14]‘\x00\x00\xF

IISprinter (460) ‘GET http://’* ‘: ’* ‘\r\n’* ‘null.printer?

CodeRedII (309) ‘GET/’*‘.ida?’*‘XX’[15]‘%u’*‘%u780’* ‘¼
Witty (109) ‘\x05\x00’[5]‘\x12\x02’*‘\x05\x00’[5]‘n

Zotob (253) ‘\x00’[3]‘\FFSMB%’[56]‘&\x00’[4]‘\PIPE

ISAKMP (77) *‘\x08’[11]‘\x0c’[1]‘\x00\x04’*
5.2. Signature generation for synthetic polymorphic
worms

In this section, we first illustrate synthetic polymorphic

worms whose samples without noise are used to evaluate the

generated signature accuracy of our approach. Though a few

false positives are produced, the generated signatures are very

accurate in that they are all specific. The accuracy is also

related to the number of worm samples investigated. We also

compare the accuracy of our approach with others.

5.2.1. Synthetic polymorphic worm
Although some polymorphic engines have been released in

recentyears, there are nowell-known polymorphic worm traffic

reported on the Internet. Most NSG-based detection methods

(like Polygraph Newsome et al., 2005 and Hamsa Li et al., 2006)

evaluated their performance using synthetically generated

polymorphic worms based on real-world exploits. In the first

series of experiments, we follow their approach using synthetic

polymorphic worms to evaluate our approach. We choose six

real-world exploits and develop some Python scripts to make

them polymorphic. Thus we can create arbitrary number of

synthetic polymorphic worm samples for signature generation

and FN testing. Among the six synthetic polymorphic worms,

Beavuh can launch real-world malware exploits, four others

(Lion, Code Red II, Witty and Zotob) can launch real-world worm

exploits, and ISAKMP can develop particularly selected exploits

whose invariant parts contain only one or two bytes.

Table 4 summarizes the six synthetic polymorphic worms,

the first row giving their names and the second row indicating

the real-world worms/malwares that make use of the same

exploit. The rows entitled ‘‘Bugtraq ID’’ and ‘‘CVE ID’’ show

the corresponding vulnerabilities exploited by these worms

and the ‘‘Target system’’ row exhibits the targeted vulnerable

systems. The last row gives the real total length of substrings
ir tested false positives and false negatives.

re Run time (seconds) FP FN

A’[2] 18.7 0 0

’*‘ HTTP/1.0\r\n’ 10.78 0 0

’[7]‘HTTP/1.0\r\n’ 4.7 0 0

\x00’*‘\x05\x00’[5]‘\xDE\x03’* 0.45 0 0

\\x00\x05\x00\x00’[19]‘6\x00’* 2.56 0 0

0.22 0.00735% 0



Fig. 5 – The average invariant-byte deviation and average distance-restriction deviation of the generated signatures given

different numbers of samples.

Table 6 – Accuracy of signatures for Red Code II worm.

Signature type
(approach)

Generated signature Limitations in
accuracy

Single substring

(earlier systems

(Kreibich and

Crowcroft, 2003;

Kim and Karp,

2004; Wang et al.,

2003; Singh

et al., 2004)

‘.ida?’ or ‘%u7801’ lost of most

invariant parts and

the distance

restrictions of

invariant parts

Token-

subsequence

(Polygraph

Newsome

et al., 2005)

GET /.*.ida?

.*XX.*%u.*%u7801.*HTTP

/1.0\r\n

lost of ‘‘¼’’ and the

distance

restrictions of

invariant parts

Multi-sets of

tokens

(Hamsa Li

et al., 2006)

{‘.ida? ’: 1, ‘%u780’:

1,‘HTTP/1.0\r\n’:1,

‘GET/’: 1,‘%u’: 2}

lost of ‘‘¼’’, the

order and the

distance

restrictions of

invariant parts

SRE signature

(Ours)

‘GET/’*‘.ida?

’*‘XX’[15]‘%u’*‘%u780’*

‘¼’[7]‘HTTP/1.0\r\n’

none
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and total length of distance restrictions for the most specific

signature of each polymorphic worm.

5.2.2. Signature quality
We tested our signaturegeneration approach for each synthetic

polymorphic worm without adding noise. The generated

signatures from five randomly selected worm samples are

shown in Table 5. We observe that they are exactly the same as

the most specific signatures as we know in advance. These (the

most specific) signatures consequently lead to almost zero false

positives on normal traffic, and zero false negative on tested

polymorphic worm samples. Note that our approach is robust

enough to generate the most specific signature of ISAKMP

worm, which contains two 1-byte and one 2-byte invariant

parts. This suggests that although our approach (CSR

algorithm) rewards contiguous (long) substring extraction, it is

also effective in capturing short substrings, even some 1-byte or

2-byte invariant parts. The FP of the signature for ISAKMP worm

is not zero, since it matches multimedia (.rm) files on HTTP

flows five times, however these flows are not ISAKMP worm.

5.2.3. Number of worm samples needed
To determine how many worm samples are needed to generate

an accurate signature, we tested our signature generation

algorithm with samples varied from 2 to 10. Each test was

conducted ten times and we computed the average invariant-

byte deviation and the average distance-restriction deviation,

which are shown in Fig. 5. We can see that a sample containing

more than four worms has an average invariant-byte deviation

and average distance-restriction deviation of zero, meaning

that no invariant bytes or distance restrictions were lost in the

generated signatures and that they are maximally specific.

5.2.4. Signature accuracy comparison
Table 6 compares our approach with most recent exploit-

based and network-based signature generation methods,

testing the polymorphic Code Red II worm. Our approach can

extract more valuable information (such as 1-byte invariant
parts and distance restrictions) from worm exploits, improve

signature accuracy and can potentially benefit current IDSs for

prompt worm detection.

5.3. Signature generation for real-world polymorphic
shellcodes

In this series of experiments, we used some popular real-

world polymorphic engines (Metasploit Team, 2007, CLET

DeTristan et al., 2003 and Admmutate Ktwo, 2001) to create

polymorphic shellcodes by taking a single shellcode sample

and encrypting it with each engine 1000 times to generate



Table 7 – Signatures generated for 10 shellcode sequences from each polymorphic engine.

Shellcode
(polymorphic
engine)

Generated signature FP FN

shell_bind_tcpa

(Metasploit)

*‘\x89’[3]‘\xd9’[1]‘\xf4’*‘CCCCCC7’[2]‘jAXP0A0AkAAQ2AB2BB0BBABXP8ABuJI’ [8]‘KOKOKL’[2]‘JKPM’[4]

‘KOKOKO’[2]‘LKBL’[4]‘LK’[2]‘GLLKCL’[6]‘JOLKPO’[2]‘LKQO’

[4]‘JK’[2]‘LK’[2]‘LK’[2]‘JN’[2]‘IP’[2]‘NL’[2]‘IP’[4]‘IQ’[2]‘DM’[4]‘JK’[2]‘GK’[10]‘LKQO’[4]‘JK’[2]‘LKDLPKLKQOEL’

[2]‘JK’[2]‘FLLK’[2]‘BL’[2]‘EL’[6]‘IK’[2]‘LK’[4]‘LK’[2]‘DLLK’[2]‘ELNMLK’[4]‘QN’ [2]‘LNPNDNJL’[2]‘KO’[22]‘QO

’[2]‘KO’[4]‘HKJMKLGK’[2]‘KO’[2]‘QO’[8]‘JM’[10]‘KO’[10]‘NM’[2]‘KO’[20]‘KO’ [8]‘QL’[22]‘KO’[10]‘-

KO’[6]‘NMFN’[4]‘KO’[6]‘KO’[14]‘KO’[10]‘KO’[16]‘KO’[4]‘KO’[14]‘BM’[12]‘HL’[14]‘IP’[2]‘NJKN’

[22]‘FMKN’[2]‘FL’[2]‘LM’[4]‘NKNKNK’[4]‘KN’[4]‘KO’[4]‘KO’[2]‘QK’[22]‘KO’[4]‘NM’[4]‘HN’[2]‘KO’[4]‘KOKO’

[2]‘KO’[2]‘LK’[2]‘KL’[6]‘KO’[4]‘KO’[4]‘CN’[8]‘KO’[2]‘KO’[2]‘AA\x0d\x0a’

0 0

exec_add_userb

(Clet)

[600]‘\xeb’[2]‘1’[2]‘\xf0\x8b’*‘\xff\xff\xff’ *‘t\x07\xeb’[1]‘\xe8’[1]‘\xff\xff\xff’* ‘\xfe\x01\x1e\xc9\xfe

\x01\x1e\xc9\xfe\x01\x1e\xc9\xfe\x01\x1e\xc9’

0 0

exec_bind_tcpc

(Admmutate)

*‘\xe8’[1]‘\xff\xff\xff’[344]‘s\x90\xf0\xd1\xbf\xbf \xf0\xd1\xbf\xbf’ 0.00147% 0

a A shellcode that sets up a socket, binding to a specific port and listening for a connection; Upon accepting a connection, it spawns a new shell.

b A shellcode that adds a user account in a remote system.

c A shellcode that listens for a connection and allows us to remotely executes an arbitrary command.
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1000 unique shellcode sequences. Table 7 shows the signa-

tures generated by our approach for 10 shellcode sequences

from each engine. The results also demonstrate that the

signatures generated are able to identify normal traffic for

near-zero FP (there is only one FP for wrongly classifying

a multimedia file as a worm flow), and detect other 990

shellcode sequences for zero FN perfectly.

5.4. Signature generation with noise

Next we show that our approach can generate accurate

signatures even if the input sequences contain noise. Firstly,

we randomly selected 6 worm samples from the Code Red II

worm and created noise sample strings with length of 500

bytes (so-called low-similarity noise). Each test has been run

5 times to get an average result. Fig. 6(a) shows the generated

signature quality. When the number of noise samples is
a

Fig. 6 – The average invariant-byte deviation and distance-restri

samples.
small (fewer than 9, the noise ratio is less than 57%), the

generated signatures are very accurate to be the most

specific one. When the number of noise samples increases

from 9 to 13, the generated signatures are less accurate

because a few invariant bytes could be lost. When the

number of noise samples is large (larger than 13), the

generated signatures become very inaccurate. The sudden

increase appears in Fig. 6(a) because most invariant bytes

and distance restrictions are lost as a result of too many

noise samples wrongly identified as worm samples.

Secondly, we used 6 samples from Code Red II worm while

noise samples were HTTP request flows randomly collected

from normal traffic (so-called high-similarity noise). As Fig. 6(b)

shows, when there are fewer than four noise samples (a noise

ratio of 40%), the signatures that are generated are most

specific. However, when there are more than four samples, the

average invariant-byte deviation increases dramatically. This
b

ction deviation of the generated signatures for variant noise
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is because some common bytes or keywords, frequently wit-

nessed in HTTP request flows, like ‘‘mozilla/’’, are incorrectly

extracted as invariant bytes and thus our approach tends to

classify those flows as worm samples.

5.5. MSA algorithm comparison

We also compare our Multiple Sequence Alignment (MSA)

algorithm (CSRþT-Coffee algorithm) with others in experi-

ments to illustrate the impact of MSA on the signature

accuracy. Our approach uses CSR algorithm, instead of

traditional Needleman–Wunsch (NW) algorithm, for the

pairwise alignment, and adopts T-coffee for the progressive

MSA. ClustalW (Thompson et al., 1994) is an alternative MSA
a

c

e

Fig. 7 – Performance of differ
algorithm. We carried out comparison experiments by

replacing the MSA algorithm in step 1 of our approach with

other possible combinations. There are four MSA algorithm

combinations with different pairwise and MSA algorithms:

NWþClustalW, NWþT-Coffee, CSRþClustalW, and

CSRþT-Coffee. As in the setting described in Section 5.2, we

tested the signature quality generated for each algorithm

combination using samples of different sizes and worm

samples from Code Red II, Witty, and IISPrinter. As Fig. 7

shows, the CSRþT-Coffee algorithm (adopted in our

approach) yields the best performance, the only one to

generate accurate signatures without losing any invariant

bytes and distance restrictions when the number of worm

samples is larger than 4.
b

d

f

ent MSA combinations.
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6. Discussion

6.1. Complexity analysis

Suppose that there are N sequences of length L as the

input to our signature generation approach. The time

complexity of the CSR algorithm is O(L2) and the time

complexity of multiple sequence alignment is

O(N2L2)þO(N3L)þO(N3)þO(NL2), where O(N2L2) represents

the computation involved in the pairwise alignment to

build primary library, O(N3L) for library extension, O(N3) for

guide tree construction and O(NL2) for the computation of

the progressive alignment. Since the time complexity of

noise elimination in step 2 and the signature trans-

formation in step 3 is trivial (respectively O(N )) and nor-

mally L [ N in practice, the total time complexity of our

signature generation approach is O(N2L2)þO(NL2). Table 5

shows the run time of signature generation with 5 worm

simples from each polymorphic worm.
6.2. Scope and limitations

Our approach generates exploit-based SRE signatures. It can

work well for the early stage detection of zero-day exploits

before new polymorphic worms widely propagate on the

Internet, since it can be generated when only a small

number of samples but not other information are available.

Though our approach may fail for some worms if they do not

have any artifacts (i.e. invariant bytes) (Crandall et al., 2005)

and hence can not be described by any exploit-based

signatures, the approach is effective for a significant portion

of the state-of-the-art polymorphic worms and exploits in

the wild.

In this paper, we assume that worm samples are from

one polymorphic worm or they are from multiple poly-

morphic worms but have been well clustered. This

assumption is practical since a number of worm sample

clustering methods have been proposed, such as the hier-

archical clustering method in (Newsome et al., 2005), the

online star clustering algorithm in (Yegneswaran et al.,

2005), and the incremental online clustering algorithm in

(Wang et al., 2003). Even if the clustering technique is not

perfect, a few samples from other polymorphic worms can

be regarded as noise and this will not affect the final SRE

signature generation because the proposed approach is

noise-tolerant to filter out a small part of noise.

Our approach is subject to the limitations of all exploit-

based signature generation approaches, that is: (a) the

generated signatures cannot detect all potential exploits of

a vulnerability, (b) the worm traffic detection effect could

be mitigated due to making a significant number of

mistakes of both false positives and false negatives, as

a result of specially designed adversary attacks (Perdisci

et al., 2006; Newsome et al., 2006). In fact, all learning-

based signature generation approaches (including some

vulnerability-based signature generation approaches) could

suffer from these kinds of attacks (Venkataraman et al.,

2008). Fortunately, no such attacks in the wild have been

reported so far.
7. Conclusion

In this paper, we addressed the problem of generating

accurate exploit-based signature for a single polymorphic

worm and proposed a novel signature generation method

based on multiple sequence alignment – a bioinformatics

approach. This approach provides a more powerful method

to accurately analyze the intrinsic similarities of worm

samples. An IDS can employ such approach to locally

generate accurate exploit-based signatures for polymorphic

worms and such signatures can be distributed to other IDSs

to circumvent further worm damage. The experiments on

a range of polymorphic worms and real-world data traffic

show that this approach is noise-tolerant and the signatures

are more accurate and precise than other exploit-based

signature generation methods. In future work we will exploit

fast multiple sequence alignment algorithms (such as

MAFFT) for use in signature generation.
Appendix.
CSR Algorithm

The proposed CSR algorithm in Algorithm 2 is extended from

the Needleman–Wunsch algorithm. It uses the divide-and-

conquer strategy and dynamic programming technique to

construct the optimal alignment that maximizes the simi-

larity score in Formula (2). The maximum similarity score is

achieved by iteratively calculating two matrices: the score

matrix F and the traceback matrix PTR. Given two sequences

X and Y, suppose X[1..i] and Y[1..j] are prefix subsequences of

X and Y, Fi, j stores the possible maximum similarity score

for the two prefix subsequences, and PTRi, j records how to

traceback to get the corresponding optimal alignment with

the highest score Fi, j. The optimal alignment of X and Y will

be stored in FN, M and PTRN, M after F and PTR have been

achieved. The CSR algorithm consists of three main steps:

1. Initialize the iterative matrix F and PTR.

2. Recursively calculate the score matrix F and the trace-

back matrix PTR. As shown in Algorithm 2, Fi, j is

computed from Fi�1, j�1, Fi�1, j, and Fi, j�1 in three cases.

Correspondingly, it means that the optimal alignment of

subsequence X[1..i] and Y[1..j] is constructed in the

following three cases: Case 1, optimal alignment of

subsequence X[1..i� 1] and Y[1..j� 1], X[i] to Y[j]; Case 2,

optimal alignment of subsequence X[1..i� 1] and Y[1..j],

X[i] to a gap; Case 3, optimal alignment of subsequence

X[1..i] and Y[1..j� 1], Y[j] to a gap. Note that in case 2, we

use the enc() function to reward consecutive matches,

which is the core difference of our CSR algorithm from

the Needleman–Wunsch algorithm.

3. Reduce the alignment from the traceback matrix PTR.

Algorithm 2. (CSR algorithm.)

input: sequence X, Y,

output: alignment result sequence R, similarity score SC

parameters: Wm: match score; Wd: mismatch score; d: gap

penalty; enc(): contiguous substring rewarding function ;
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Initialization

N ) the length of X; M ) the length of Y;

foreach i such that 1� i�N do

Fi,0 ) id;Ti,0 ) 0; PTRi,0 ) Up;

end

foreach j such that 1� j�M do

F0,0 ) 0; T0,0 ) 0; PTR0,0 ) Traceend;

Iteration

foreach i such that 0� i�N do

foreach j such that 0� j�M do

if Xi¼Yj then

Sxi,Yj¼Wm ; Ti, j¼ Ti�1, j�1þ 1;

else Sxi,Yj¼Wd ; Ti, j¼ 0

Fi;j)maxf
Fi�1;j�1 þ SXi ;Yj

þ EncðTi;jÞ ½case 1�
Fi�1;j þ d ½case 2�
Fi;j�1 þ d ½case 3�

;

PTRi;j)fDial if ½case 1 Leftif ½case 2 Upif ½case 3���

end

end

Traceback

t ) PTRN,M ; i ) N; j ) M;

Allocate a empty sequence R;

Whilet s TraceEnd do

Allocate a new character r and add it to the head of

sequence R;

Switch t do

Case Dial r ) Xi; i ) i� 1; j ) j� 1

Case Up r ) ‘space’; i ) i� 1

Case Left r¼ ‘space’; j ) j� 1;

end

t ) PTRi,j;

end

Return

SC ) FN,M; return SC, R
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