
Generating Simplified Regular Expression
Signatures for Polymorphic Worms�

Yong Tang1, Xicheng Lu1, and Bin Xiao2

1 College of Computer, National University of Defense Technology,
Changsha Hunan, 410073, P.R. China

{Ytang, Xclu}@nudt.edu.cn
2 Department of Computing, Hong Kong Polytechnic University,

Hong Kong
csbxiao@comp.polyu.edu.hk

Abstract. It is crucial to automatically generate accurate and effec-
tive signatures to defense against polymorphic worms. Previous work
using conjunctions of tokens or token subsequence could lose some im-
portant information, like ignoring 1 byte token and neglecting the dis-
tances in the sequential tokens. In this paper we propose the Simplified
Regular Expression (SRE) signature, and present its signature generation
method based on the multiple sequence alignment algorithm. The multi-
ple sequence alignment algorithm is extended from the pairwise sequence
alignment algorithm, which encourages the contiguous substring extrac-
tion and is able to support wildcard string alignment and to preserve
the distance of invariant content segment in generated SRE signatures.
Thus, the generated SRE signature can express distance information for
invariant content in polymorphic worms, which in turn makes even 1
byte invariant content extracted from polymorphic worms become valu-
able. Experiments on several types of polymorphic worms show that,
compared with signatures generated by current network-based signature
generation systems (NSGs), the generated SRE signatures are more ac-
curate and precise to match polymorphic worms.

1 Introduction

Signature-based intrusion detection system(IDS) is one of the most deployed
and effective way for worm defense. Todate, the signatures used by these IDSs
for detecting worms are manually generated by security experts, which is too
slow (typically days after worm released) in contrast with the speed of worm
propagation (usually outbreak in zero day). Motivated by increasing the rate
of signature generation, a number of automatic signature generation systems or
methods have been proposed in recent years, which could be classified into two

� The work was partially supported by the National Basic Research Program of China
(973) under Grant No. 2005CB321801, and the National Natural Science Foundation
of China under Grant No. 90412011.

B. Xiao et al. (Eds.): ATC 2007, LNCS 4610, pp. 478–488, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Generating Simplified Regular Expression Signatures 479

categories - network-based signature generation (NSG) [1,2,3,4,5,6] and host-
based signature generation (HSG) [7,8,9,10]. NSG systems have the advantage
that they have no influence on the protecting hosts or networks. They usually
firstly collect suspicious flows that contain the samples of worms through flow
classifier or honeypot, then output content-based signatures for the worms by
analyzing these suspicious flows.

Accuracy of outputted signatures is the most important criteria to evaluate
NSG systems. The earlier NSG systems [1,2,3] generate single contiguous byte
string signatures, which have been proven to be not effective [4,5] for matching
worms. Some up-to-date NSG systems [4,6] generate token-based signatures,
where a token is a byte sequence that occurs in a significant number of suspicious
flows. But as we shall show in later in the paper, these token-based signature
could lose some important information, like ignoring 1 byte token and neglecting
the distances in the sequential tokens.

Regular expression have significant advantages for intrusion detection, in
terms of flexibility, accuracy, and efficiency [11,12]. In this paper we propose
Simplified Regular Expression (SRE) signature, a more expressive and accurate
signature type. Given the samples of a polymorphic worm, we propose to gener-
ate its SRE signature using the multiple sequence alignment, which encourages
the contiguous substring extraction and is able to support wildcard string align-
ment and to preserve the distance of invariant content segment in generated
SRE signatures. Thus, the generated SRE signature can express distance infor-
mation for invariant content in polymorphic worms, which in turn makes even
1 byte invariant content extracted from polymorphic worms become valuable.
Experiments on several types of polymorphic worms show that our approach
outperforms previous works in terms of signature accuracy.

The rest of paper is organized as follows. We first introduce the anatomy of
polymorphic worms and summarize the limitation of the signature types out-
putted by current NSG systems. In Section 3 we provide the formal definition
of SRE signature. Next in Section 4 we describe how to generate SRE signature
for single polymorphic worm using sequence alignment and provide the corre-
sponding algorithms. We present the evaluation and limitation of our approach
in Section 5 and Section 6.

2 Background: Polymorphic Worms and Limitation of
Current Signature Types

Polymorphic worms employ polymorphism technique to change their byte se-
quence at every instance for evading detection. Within a polymorphic worm
body, there are two classes of bytes. Invariant content are those bytes fixed in
value and must be present in every worm sample to ensure infection successful.
Wildcard bytes are those which will change value for each different worm sample.
For example, a polymorphic Code Red II worm is presented in Fig. 1, which in
turn contains seven invariant content: “GET”, “.ida?”, “XX”, “%u”, “%u7801”,
“=”, and “HTTP /1.0\r\n”. Within these invariant content, “%u7801” is 4 bytes

480 Y. Tang, X. Lu, and B. Xiao

after “%u”, “HTTP /1.0\r\n” is 7 bytes after “=”. We call these relations, like
“possible start position of a substring” or “how many characters between two
substrings”, distance restrictions. In practice, distance restrictions are critical
for successful worm infections.

GET / XX %u.ida?

any file name

%u7801 HTTP/1.0\r\n

4 bytes

=

7 bytes

Fig. 1. Polymorphic Code Red II worm. Shaded content represents wildcard bytes,
unshaded content represents invariant bytes.

Next we use this example to explain the limitations of the signature types
outputted by current NSG systems. The earlier NSG systems [1,2,3] generate
contiguous byte string signatures, like “HTTP /1.0\r\n” or “%u7801”, which
are not accuracy enough to characterize this worm. Polygraph[4] and Hamsa[6]
generate token (substring with a minimum length and a minimum coverage in
the suspicious flows) based signatures. But we found that token-based signatures
are still not accurate enough. First, tokens can not have the length of 1, like
“=”; otherwise, every possible character (0-255 in value) will be extracted as a
“token”. Second, Polygraph and Hamsa can not express the distance restrictions
of invariant content, like “‘%u7801’ is 4 bytes after ‘%u”’. Y. Tang et al. [13]
propose PADS signature. A PADS is a position-aware frequency distribution of
characters in a fixed length region. But there is not an fixed length region that
contains all of invariant content in this example.

3 SRE Signature

A regular expression describes a set of strings without enumerating them explic-
itly. It is widely believed that regular expression have significant advantages for
intrusion detection, in terms of flexibility, accuracy, and efficiency [11,12]. Mo-
tivated by the insufficiency of the signature types of previous NSG systems, we
propose a novel signature type–Simplified Regular Expression (SRE) signature.

A SRE signature is a simplified form of regular expression, in which there are
only three repeating qualifiers: “*”, “[k1, k2]” and “[k]”. We replace the “.*” in
regular expression by “*” to represent an arbitrary string (including zero-length
string), replace “.{k1, k2}” by “[k1, k2]” to represent any string with a length
from k1 to k2, and replace “.{k}” by “[k]” to represent a string consisting of k
number of arbitrary character. For example, “‘one’*‘two’[2]‘three’[3,5]” is a SRE
signatures that is equal to the regular expression “one.*two.{2}three.{3,5}”.

Suppose Φ = {∗, [k], [k1,k2]} is the set of the three repeating qualifiers we just
introduced. Σ+ is the set of not empty strings over a finite alphabet Σ. The
formal definition of SRE signature is provided by Definition 1.

Generating Simplified Regular Expression Signatures 481

Definition 1 SRE Signature. A SRE signature =(p0)s1p1s2p2s3 . . . pk−1sk

(pk), where pi ∈ Φ is a repeating qualifier, si ∈ Σ+ is a substring (i ∈ [0, k]), (p0)
and (pk) means p0 and pk are optional.

Within a SRE signature, the substrings are used to express the invariant
content in polymorphic worms, the repeating qualifiers are used to express the
distance restrictions between invariant content. For the previous example, we can
use the SRE signature “‘GET /’*‘.ida?’*‘XX’*‘%u’[4]‘%u7801’*‘=’[7]‘HTTP /
1.0\r\n”’ to precisely express the characteristic of Code Red II worm.

4 Generating SRE Signature for Polymorphic Worm
Using Sequence Alignment

4.1 Overview

Sequence alignment is the procedure of comparing two (pairwise) or more (mul-
tiple) sequences by searching for a series of individual characters or character
patterns that are in the same order in the sequences. Sequence alignment is
widely used to quantify and visualize similarity between sequences, and it has
been most prominently applied in bioinformatics [14,15]. A pairwise sequence
alignment is a scheme of writing one sequence on top of another where the
residues in one position are deemed to have a common character. Fig. 2 illus-
trates the pair-wise sequence alignment between “ONExxxTWOxxxxTHREExx
xx” and “dsfONEdsdTWOvvvTHREEb”. By inserting some gap(‘-’), the com-
mon characters are deemed to the same columns.

Fig. 2. Example of pair-wise sequence alignment

The alignment result can be described by a sequence with wildcards, in which
the question wildcard ‘?’ presents one character, the asterisk wildcard ‘*’ presents
one or zero character. The alignment result in Fig. 2 is expressed by the se-
quence “***‘ONE’???‘TWO’???*‘THREE’***?”. As we shall introduce later,
such alignment result can be converted to a SRE signature according to its se-
mantic. For instance, “***‘ONE’???‘TWO’???*‘THREE’***?” can be converted
to SRE signature “[0,3]‘ONE’[3]‘TWO’[3,4]‘THREE’[1,3]”.

If we have captured a number of network flows that are the instances of a
polymorphic worm, we generate the worm’s signature by the following steps.

1) Transform the flows to character sequences. In the rest of the paper, these
character sequences are referred to samples of a worm.

2) Analyze these samples by multiple sequence alignment that arranges these
samples in a scheme where positions believed to be invariant bytes are written in
a common column. For example, suppose A=“oxnxexzxtwoxxw”, B =“ytwoyown

482 Y. Tang, X. Lu, and B. Xiao

yeyz”, C =“cvcvcvtwovcwc” are three samples of a polymorphic worm, as Fig. 4
shows, aligning these three samples will get a result “*******?‘two’??‘w’*****”.

3) Transfer the alignment result to a SRE signature as the final signature for this
worm. For previous example, the alignment result “*******?‘two’??‘w’*****”can
be converted to the SRE signature “[1,8]‘two’[2]‘w’[0,5]”.

4.2 Problem of Current Sequence Alignment Algorithm

The Needleman-Wunsch algorithm [16] is a typical global alignment algorithm
that computes the optimal alignment between two sequences by maximizing a
similarity score function as Formula (1) gives, where km denotes the number
of matches, Wm denote the score for character match, kd denotes the number
of mismatches, Wd denote the score for character mismatch, kgaps denotes the
number of gaps, δ denote the penalty score for a gap. If we set Wm = 1, Wd = 0,
δ = −1, for the example in Fig. 2, this algorithm outputs an alignment with
similarity score 4 (11 × 1 + 7 × 0 + 7 × −1).

SC(x, y) = km × Wm + kd × Wd + kg × δ (1)

If a piece is a substring in alignment result with a length of only 1, we
found that the Needleman-Wunsch algorithm is likely to output a large num-
ber of pieces in resulting alignment, instead of outputting the invariant con-
tent of polymorphic worms. Consider the simple example provided by Poly-
graph [4] that align two strings “oxnxexzxtwox” and “ytwoyoynyeyz”. Fig. 3(a)
shows the alignment result of the Needleman-Wunsch algorithm, which contains
four pieces(‘o’,‘n’,‘e’,‘z’). Creating too many trivial and useless pieces will pre-
vent finding contiguous invariant content we are concerning about. Obviously
Fig. 3(b) is a better alignment since the substring ‘two’ is semantical.

(a) (b)

Fig. 3. Two Alignment results for different algorithm

Through a plenty of experiments, we found that no matter the parameters
are adjusted, the Needleman-Wunsch algorithm always tend to product a large
number of pieces and hence lost some invariant content in polymorphic worms.

4.3 Pairwise Sequence Alignment Algorithm

As Algorithm 1 shows, we propose a new pairwise sequence alignment algorithm
for our approach–CSR (contiguous substrings rewarded) algorithm, which is ex-
tended from the Needleman-Wunsch algorithm by the following three means:

Generating Simplified Regular Expression Signatures 483

1.Rewarding contiguous substrings: Motivating by reducing pieces, we
modify the similarity score function of the Needleman-Wunsch algorithm
from Formula (1) to Formula (2) by introducing a score function enc() to
reward contiguous substrings. For the example given in Fig. 3, if we define
enc(x) = 3(x − 1) and set Wm = 0.5, Wd = 0, δ = −1, the similarity score
of Fig. 3(a) is -8 (0.5 × 4 + 0 × 3 + −1 × 10), the similarity score of Fig. 3(b)
is -6.5 (0.5 × 3 + 0 × 2 + −1 × 14 + 3 × (3 − 1)). Hence our CSR algorithm
will output the better alignment Fig. 3(b).

SC(x, y) = km × Wm + kd × Wd + kg × δ +
∑

s is substring
in alignment result

Enc(|s|) (2)

2.Supporting wildcards: The CSR algorithm allows the input sequences con-
tain two previously introduced wildcard–‘?’ and ‘*’. We provide a set of
character comparison rules, as Table 1 depicts, where ‘α’ and ‘β’ denote
two different characters, ‘−’ is a gap in alignment. By calling the function
LookupCharCompTab(.) (line 27), the CSR algorithm lookup this table to
determine the value of a position in result sequence.

Table 1. Character comparison rules for CSR algorithm. x and y are the characters in
input sequences in the same column, r is the character will appear in the same column
of alignment result sequence.

x α α α ? α ? α − ∗ α ?
y α β ? ? ? ∗ ∗ ∗ ∗ − −
r α ? ? ? ? ∗ ∗ ∗ ∗ ∗ ∗

3.Preserving distance restriction: In order to preserve the distance restric-
tions during the alignments of polymorphic worm samples, we assign every
character in sequences a length area [min, max] during the alignment pro-
cess, where min is the low-bound, max is the up-bound. As the line 4, 7
shows, we first initialize the length range of every character in input se-
quences to [1, 1]. During the alignment, we set the length range of a inserted
gap to [0, 1]. As the algorithm line 28, 29 shows, finally the length range of
a character in alignment result is calculated by minimizing the low-bound
and maximizing the up-bound of the characters with the same column.

Convert alignment result to SRE signature. The alignment result of the
CSR algorithm is a sequence with wildcards. Notice that each wildcard carries
a length range, thus we can easily convert alignment result to a SRE signature
by merging the wildcards between two substrings and accumulating their length
range. For example, consider the alignment result in Fig. 3(b), the length range
of every ‘*’ is [0,1], the length range of every ‘?’ is [1,1], we merge the eight
wildcards before substring “two” to one repeating qualifier, and calculate its
low-bound of length range to 0 × 7 + 1 = 1, up-bound to 1 × 7 + 1 = 8. Hence,
the repeating qualifier before the substring ‘two’ is ‘[1,8]’. Repeat this process,
we can get the converted SRE signature “[1,8]‘two’[1,8]” finally.

484 Y. Tang, X. Lu, and B. Xiao

input : sequence X, Y ,
output : alignment result sequence R, similarity score SC
Parameters: Wm: match score; Wd: mismatch score; δ: gap penalty ; enc (): contiguous

substring rewarding function ; LookupCharCompTab (.): lookup the character
comparison table to determine the character placed in alignment result.

Initialization1
N ← the length of X; M ← the length of Y ;2
foreach i such that 1 ≤ i ≤ N do3

Fi,0 ← iδ;Ti,0 ← 0; PTRi,0 ← Up; Xi.min ← 1; Xi.max← 1;4
end5
foreach j such that 1 ≤ j ≤ M do6

F0,j ← jδ; T0,j ← 0; PTR0,j ← Left; Yj .min← 1; Yj .max← 1;7
end8
F0,0 ← 0; T0,0 ← 0; PTR0,0 ← TraceEnd;9

Iteration10
foreach i such that 0 ≤ i ≤ N do11

foreach j such that 0 ≤ j ≤ M do12
if Xi, Yj are not wildcard and Xi = Yj then13

SXi,Yj
= Wm ; Ti,j = Ti−1,j−1 + 1 ;14

else SXi,Yj
= Wd ; Ti,j = 0 ;15

Fi,j ← max

⎧
⎪⎨

⎪⎩

Fi−1,j−1 + SXi,Yj
+ enc(Ti,j) [case1]

Fi−1,j + δ [case2]
Fi,j−1 + δ [case3]16

PTRi,j ←

⎧
⎪⎨

⎪⎩

Dial if [case1]
Left if [case2]
Up if [case3]17

end18
end19

Traceback20
t = PTRN,M ; i← N ; j ←M ;21
Allocate a empty sequence R;22
while t �= TraceEnd do23

Allocate a new character r and add it to the head of sequence R;24
switch t do25

case Dial26
r ← LookupCharCompTab(Xi, Yi);27
r.min← min(Xi.min, Yj .min); r.max← max(Xi.max, Yj .max);28
i← i− 1; j ← j − 1;29

case Up30
r ← ‘*’; r.min← 0; r.max← max(Xi.max, 1) ; i← i− 1;31

case Left32
r = ‘*’; r.min← 0; r.max← max(Yj .max, 1); j ← j − 1;33

end34
t← PTRi,j ;35

end36
Return37

SC ← FN,M ; return SC, R38

Algorithm 1. CSR algorithm

4.4 Multiple Sequence Alignment Algorithm

Given the samples of a polymorphic worm, we aim to generate its SRE signa-
ture using multiple sequence alignment. Because the CSR algorithm supports
wildcard characters and can preserve distance restrictions, we simply design our
multiple sequence alignment algorithm by progressively employing CSR algo-
rithm, as Algorithm 2 gives.

Generating Simplified Regular Expression Signatures 485

input : sequence set S,
output: alignment result sequence R
repeat1

randomly select two sequences X and Y from S; S ← S \ {X, Y }; employ the CSR2
algorithm to align X and Y , the result sequence is AX,Y ; S ← S ∪ {AX,Y }

until |S| = 1 ;3
return AX,Y4

Algorithm 2. Multiple sequence alignment algorithm

For example, if the sequences A =“oxnxexzxtwoxxw”, B =“ytwoyownyeyz”,
and C =“cvcvcvtwovcwc” are three samples of a polymorphic worm, as Fig.4
shows, we first align A and B, and then use the result (denoted as MALIGN(A, B))
to align with C, finally get the alignment result “*******?‘two’??‘w’*****”,which
can be converted to the SRE signature “[1,8]‘two’[2]‘w’[0,5]” at last. We can see
that the distance restrictions, such as “‘w’ is 2 bytes after ‘two’”, are correctly
preserved in this SRE signature.

A

B

C

MALIGN({A,B})

MALIGN({A,B,C})

Fig. 4. Example of multiple sequence alignment algorithm

5 Evaluation

Experiment Settings. Similar to Polygraph [4] and Hamsa [6], we use three
synthetically generated polymorphic worms (ATPhttpd exploit, Code Red II
exploit, and BIND-TSIG exploit) to evaluate our approach. In order to test
the false positive rate of generated signatures, we use the first week’s network
TCPdump data of the 1999 DARPA Intrusion Detection Evaluation Data Sets
[17] (1.8GB) as the normal traffic data, and set enc(x) = 3(x − 1), Wm = 0.5,
Wd = 0, δ = −1 as the parameters of CSR algorithm.

Signature Quality. For each worm, we generate it signature by analyzing its
eight samples using our multiple sequence alignment algorithm. Table. 2 gives the
generated signatures of the three worms. Table 5 gives the signature comparison
for Code Red II worm between our approach and Polygraph. we can see that our
SRE signature is more precise than Polygraph’s conjunction signature, because
our signature preserves the distance restrictions for invariant content through
the repeating qualifiers ‘[4]’ and ‘[7]’; in addition, our signature contains ‘=’,
which is an invariant content with a length of 1, however Polygraph does not.

Performance Study. Suppose all flows are l bytes long, although the CSR
algorithm added some sentences (line 13-15) each with a runtime of O(1) in the
main iteration of Needleman-Wunsch algorithm, the time and apace overhead

486 Y. Tang, X. Lu, and B. Xiao

Table 2. Generating signatures for three worms

Worm Signature False
positive

False
negative

Speed
(secs)

Memery
usage
(MB)

BIND-TSIG *‘\xFF\xBF’[200]‘\x00\x00\xFA’[2] 0 0 2.1 4.0
ATPhttpd ‘GET /’* ‘\xFF\xBF’*‘HTTP/1.1\r\n’ 0 0 9.2 4.3

Code Red II ‘GET /’*‘.ida?’*‘XX’*‘%u’[4]
‘%u7801’*‘=’[7]‘HTTP /1.0\r\n’ 0 0 1.1 3.9

Table 3. Signature type comparison for Polymorphic Code Red II worm

Signature Generated signature
Conjunction signature

(Polygraph) GET /.*.ida?.*XX.*%u.*%u7801.*HTTP /1.0\r\n
SRE signature ‘GET /’*‘.ida?’*‘XX’*‘%u’[4]‘%u7801’*‘=’[7]‘HTTP /1.0\r\n’

of CSR algorithm is still O(l2). Aligning θ flows using our multiple sequence
algorithm takes O(θl2) time and O(l2)space. Table 2 shows the time and memory
consumption of generating signatures for the three worms. All experiments were
executed on a PC with single 3.0GHz Intel Pentium IV processor.

6 Limitation and Future Work

In this work we focus on signature generation, how to capture the samples of
polymorphic worms is beyond the scope of this paper. And we only consider
generating single signature given the samples of a polymorphic worm, which is
the base of the fully general case that generating signatures for mixed several
different worms.

In our future work, we plan to design a system that can automatic generate
signatures for multiple polymorphic worms in a live environment. Given the
suspicious flows that contain the samples of several polymorphic worms, we first
need to cluster them into some clusters. Fortunately there are already some
researches on worm samples clustering [4,18]. After clustering, we can generate
a signature for each cluster using the method presented in this paper.

7 Conclusion

In this paper, we propose a new signature type–SRE signature. A SRE sig-
nature is a simplified form of regular expression, which is more effective for
characterizing polymorphic worms. We present a multiple sequence alignment
based method to generate SRE signature for single polymorphic worm. In or-
der to overcome the problem that the typical Needleman-Wunsch algorithm will
product a large number of useless pieces, we propose a novel pairwise sequence
alignment algorithm–CSR algorithm. Experiment results indicate that our ap-
proach is effective for automatic signature generation of polymorphic worms.

Generating Simplified Regular Expression Signatures 487

References

1. Kreibich, C., Crowcroft, J.: Honeycomb - creating intrusion detection signatures
using honeypots. In: Proceedings of the Second Workshop on Hot Topics in Net-
works (Hotnets II), Boston (November 2003)

2. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm signature
detection. In: USENIX Security Symposium, pp. 271–286 (2004)

3. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated worm fingerprinting. In:
Proc. 6th USENIX OSDI, San Francisco, CA (December 2004)

4. Newsome, J., Karp, B., Song, D.: Polygraph: Automatically generating signatures
for polymorphic worms. In: Proceedings of the 2005 IEEE Symposium on Security
and Privacy, pp. 226–241. IEEE Computer Society Press, Washington (2005)

5. Crandall, J.R., Su, Z., Wu, S.F., Chong, F.T.: On deriving unknown vulnerabilities
from zero-day polymorphic and metamorphic worm exploits. In: Proceedings of the
12th ACM conference on Computer and communications security, pp. 235–248.
ACM Press, New York (2005)

6. Li, Z., Sanghi, M., Chen, Y., Kao, M.-Y., Chavez, B.: Hamsa: Fast signature gen-
eration for zero-day polymorphic worms with provable attack resilience. In: Pro-
ceedings of the 2006 IEEE Symposium on Security and Privacy (S&P’06), IEEE
Computer Society Press, Washington (2006)

7. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis,
and signaturegeneration of exploits on commodity software. In: NDSS (2005)

8. Liang, Z., Sekar, R.: Fast and automated generation of attack signatures: a basis
for building self-protecting servers. In: CCS ’05: Proceedings of the 12th ACM
conference on Computer and communications security, pp. 213–222. ACM Press,
New York (2005)

9. Xu, J., Ning, P., Kil, C., Zhai, Y., Bookholt, C.: Automatic diagnosis and response
to memory corruption vulnerabilities. In: CCS ’05: Proceedings of the 12th ACM
conference on Computer and communications security, pp. 223–234. ACM Press,
New York (2005)

10. Wang, X., Li, Z., Xu, J., Reiter, M.K., Kil, C., Choi, J.Y.: Packet vaccine: black-
box exploit detection and signature generation. In: CCS ’06: Proceedings of the
13th ACM conference on Computer and communications security, pp. 37–46. ACM
Press, New York (2006)

11. Sommer, R., Paxson, V.: Enhancing byte-level network intrusion detection signa-
tures with context. In: CCS ’03: Proceedings of the 10th ACM conference on Com-
puter and communications security, pp. 262–271. ACM Press, New York (2003)

12. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to ac-
celerate multiple regular expressions matching for deep packet inspection. In: Pro-
ceedings of ACM SIGCOMM’06, vol. 36, pp. 339–350. ACM Press, New York
(2006)

13. Tang, Y., Chen, S.: Defending against internet worms: A signature-based approach.
In: Proceedings of the 24th Annual Conference IEEE INFOCOM 2005 (March
2005)

14. Gelfand, M.S., Mironov, A., Pevzner, P.: Gene recognition via splices sequence
alignment. In: Proc. Natl.Acad. Sci. USA, pp. 9061–9066 (1996)

15. Goad, W.B., Kanehisa, M.I.: Pattern recognition in nucleic acid sequences: a
general method for finding local homologies and symmetries. Nucleic Acids Re-
search 10, 247–263 (1982)

488 Y. Tang, X. Lu, and B. Xiao

16. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443–453
(1970)

17. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: The 1999 darpa off-
line intrusion detection evaluation. Comput. Networks 34(4), 579–595 (2000)

18. Yegneswaran, V., Giffin, J.T., Barford, P., Jha, S.: An Architecture for Generat-
ing Semantics-Aware Signatures. In: Proceedings of the 14th USENIX Security
Symposium, Baltimore, MD, USA, pp. 97–112 (August 2005)

	Introduction
	Background: Polymorphic Worms and Limitation of Current Signature Types
	SRE Signature
	Generating SRE Signature for Polymorphic Worm Using Sequence Alignment
	Overview
	Problem of Current Sequence Alignment Algorithm
	Pairwise Sequence Alignment Algorithm
	Multiple Sequence Alignment Algorithm

	Evaluation
	Limitation and Future Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

