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ABSTRACT
Sybil attacks have been regarded as a serious security threat to ad
hoc networks and sensor networks. They may also impair the po-
tential applications of VANETs(Vehicular Ad hoc Networks) by
creating an illusion of traffic congestion. In this paper, we present
a lightweight security scheme for detecting and localizing Sybil
nodes in VANETs, based on statistic analysis of signal strength
distribution. Our scheme is a distributed and localized approach,
in which each vehicle on a road can perform the detection of po-
tential Sybil vehicles nearby by verifying their claimed positions.
We first introduce a basic signal-strength-based position verifica-
tion scheme. However, the basic scheme proves to be inaccurate
and vulnerable to spoof attacks. In order to compensate for the
weaknesses of the basic scheme, we propose a technique to prevent
Sybil nodes from covering up for each other. In this technique, traf-
fic patterns and support from roadside base stations are used to our
advantage. We, then, propose two statistic algorithms to enhance
the accuracy of position verification. The algorithms can detect po-
tential Sybil attacks by observing the signal strength distribution of
a suspect node over a period of time. The statistic nature of our
algorithms significantly reduces the verification error rate. Finally,
we conduct simulations to explore the feasibility of our scheme.

Categories and Subject Descriptors
C.2.0 [COMPUTER-COMMUNICATION NETWORKS]: Gen-
eral—Security and protection

General Terms
Algorithms, Reliability, Security
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1. INTRODUCTION
Until recently, road vehicles were the realm of mechanical engi-

neers. But with the plummeting costs of electronic components and
the permanent willingness of the manufacturers to increase road
safety and to differentiate themselves from their competitors, ve-
hicles are becoming “computers on wheels”, or rather “computer
networks on wheels” [4]. VANETs (Vehicular Ad hoc Networks)
have the potential to not only facilitate the decision making tasks
of the drivers (e.g., trip planning based on traffic congestion on the
road), but also to improve highway safety (by bringing information
about catastrophic events and road conditions to the driver’s atten-
tion). However, researchers [3][4] have pointed out that VANETs
are facing a number of security threats, which might impair the ef-
ficiency of VANETs and even life safety. One of these threats is
Sybil attacks, in which a malicious vehicle creates an illusion of
traffic congestion by claiming multiple identities. Not only does
this create an illusion, it has the potential to inject false information
into the networks via a number of fabricated non-existing vehicles;
it can even launch further DoS attacks by impairing the normal op-
erations of data dissemination protocols such as [15][16][18]. For
example, in the application of deceleration warning systems [3], if
a vehicle reduces its speed significantly, it will broadcast a warn-
ing to the following vehicles. Recipients will relay the message to
vehicles further behind. However, this forwarding process can be
intervened by a large number of malicious Sybil vehicles. In this
way, the malicious adversary can create a massive pileup on the
highway, potentially causing great loss of life.

Traditionally in ad hoc networks and sensor networks, three types
of defenses against Sybil attacks are introduced, including: radio
resource testing, registration, and position verification [11]. Ra-
dio resource testing is based on the assumption that a radio cannot
send or receive simultaneously on more than one channel. It does
not apply to VANETs since a node may cheaply acquire multiple
radios. Registration alone cannot prevent Sybil attacks, because a
malicious node may get multiple identities by non-technical means
such as stealing. Further, strict registration causes serious privacy
concerns. In position verification, the network verifies the position
of each node and ensure that each physical node is bound with only
one identity. A number of position (or distance) verification tech-
niques [8][9][10][13] have been proposed recently. However, they
either are designed for indoor applications or rely on fixed base sta-
tions or specific hardwares. None of them would be suitable for the
highly mobile context of vehicular networks. To our knowledge,
there are few works addressing the security threat of Sybil attacks
in VANETs.

The motivation behind this paper is that we can estimate a node’s
position by analyzing its signal strength distribution and then verify
whether its position claim is consistent with the estimated position.



In traditional sensor networks, we can not rely on signal-strength-
based position verification for two reasons. First, signal-strength-
based position estimation can only provide limited accuracy. We
can not distinguish two nodes which are close to each other. Sec-
ond, it’s difficult to ensure that the position estimation process is
not intervened by potential Sybil nodes. However, the unique prop-
erties of VANETs, such as traffic patterns, base station support, and
high mobility, present us new opportunities to address the problem
from different aspects. In addition, we would prefer a distributed
and localized scheme, not relying on roadside base stations (detec-
tion should not be performed by base stations), for in the near fu-
ture base stations can only be sparsely deployed and most sections
of roads will be still not covered by base stations.

In this paper, we propose a lightweight security scheme for de-
tecting and localizing Sybil nodes in VANETs. We first investigate
the feasibility of using signal strength measurement to verify vehi-
cles’ positions. As we expected, the simulation illustrates that given
the unstable nature of radio propagation, signal-strength-based po-
sition verification can only afford quite limited accuracy. More-
over, this verification technique is vulnerable to fabricated mea-
surements by Sybil nodes. Thus, to adapt signal-strength-based
position verification to VANETs, one essential step is to ensure that
all signal strength measurements originate from honest physical
nodes instead of fabricated Sybil nodes. Then, we present a tech-
nique to remove false measurements from potential Sybil nodes. In
the technique, we take full advantage of the inherent properties of
VANETs, such as high mobility, traffic pattern, and roadside base
stations. To compensate for the limited accuracy of signal-strength-
based position verification, we then propose a statistic approach,
enhanced position verification algorithm, which is based on statis-
tic analysis of signal strength distribution of a potential Sybil node
over a period of time. This approach can estimate the physical
position of the Sybil node and even obtain its corresponding trajec-
tory. We also present another statistic approach, Sybil node clas-
sification algorithm, intended to find other accomplice Sybil nodes
originating from the same malicious physical node after a potential
Sybil node is detected. Simulation results show that our scheme can
achieve a detection rate over 95%, even given a short observation
period.

The rest of this paper is organized as follows. In Section 2, we
define the attack model and system assumptions. Section 3 presents
the basic position verification scheme based on signal strength mea-
surement. Section 4 first introduces a technique to ensure that
all measurements originate from physical nodes and then proposes
two statistic approaches to detect potential Sybil nodes. Section 5
presents simulation evaluation for our scheme. Section 6 provides
attack analysis and introduces several unique features of our scheme.
Finally, we introduce the related work in Section 7 and conclude the
paper in Section 8.

2. ATTACK MODEL AND ASSUMPTIONS
In this section, we define the attack model of Sybil attacks and

then present the system assumptions which would be appropriate
for future applications of VANETs.

2.1 Attack Model
The Sybil attack refers to a malicious node illegitimately taking

on multiple identities [7]. In wireless networks, mobile nodes usu-
ally discover new neighbors by periodically broadcasting beacon
packets, in which they claim their identities. However, given the
invisible nature of wireless communication, a malicious node can
easily claim multiple identities without being detected. Identity au-
thentication doesn’t help prevent Sybil attacks in VANETs (Vehic-
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Figure 1: An example VANET under Sybil attacks.

ular Ad hoc Networks), since a malicious driver can still get addi-
tional identity information by non-technical means such as stealing,
or simply borrowing from his friends. The goal of detecting Sybil
attacks is to ensure that each physical node is bound with only one
legal identity.

In this paper, we refer to a vehicle as a node in the context of
VANETs. We refer to a physical node claiming multiple identi-
ties as a malicious node and, correspondingly, the malicious node’s
additional identities as Sybil nodes.

Sybil attacks can incur great security threats to VANETs. First,
Sybil nodes may cause an illusion of traffic congestion. A greedy
driver may convince the neighboring vehicles that there is consid-
erable congestion ahead, so that they will choose alternate routes
and allow the greedy driver a clear path to his/her destination [4].
Second, Sybil nodes may directly or indirectly inject false data into
the networks, greatly impacting on the data consistency of the sys-
tem. For example, VANETs may rely on multiple vehicles voting
to generate a traffic status report. However, if some of the voters are
Sybil vehicles, the report may be deviated from the fact, depending
on the benefits of the malicious. Finally, Sybil nodes may launch
further DoS attacks such as channel jamming attacks and message
suppression attacks [3]. Data dissemination protocols for VANETs
such as [15] [16] [18] can be easily cracked by Sybil attacks.

2.2 Assumptions
The following assumptions would be appropriate for a future

VANET application. First, we assume that there are a certain amount
of vehicles travelling independently on roads and most drivers (ve-
hicles) can be trusted. Only a few greedy drivers (vehicles) may
perform Sybil attacks in order to achieve their malicious goals. Sec-
ond, we assume that all vehicles, including malicious vehicles, are
equipped with same radio modules, one for each. The radio module
may be based on any RF(Radio Frequency) communication tech-
nique providing RSSI(Received Signal Strength Indicator), such as
DSRC [1]. Third, we assume that each vehicle is equipped with
GPS devices, and GPS positions are supposed to be accurate. Fi-
nally, we assume that roadside base stations are sparsely deployed
along roads, and the identity authentication infrastructure such as
ELP(Electronic License Plate) [5] has been implemented for the
whole network. Identity authentication prevents a malicious ve-
hicle from unlimitedly fabricating false identities. Of course, as
we afore mentioned, identity authentication alone cannot prevent
Sybil attacks. Please also note that the main detection mechanisms
of our scheme are not implemented in roadside base stations, but
we do require indirect support from base stations.



3. BASIC SIGNAL-STRENGTH-BASED PO-
SITION VERIFICATION

The detection of Sybil attacks usually relies on three categories
of approaches, namely, radio resource testing, identity registration,
and position verification [7] [11]. Position verification seems to
be a promising approach for VANETs, whereas radio resource test-
ing requires special radio modules such as multi-channel radio and
identity registration doesn’t work very well in VANETs.

In this section, we propose a basic scheme for verifying position
claims by signal strength analysis and then explore the feasibility
of this scheme through simulations. For simplicity of analysis, we
assume that, in this section, all nodes in a network are static.

3.1 Scheme
Our position verification scheme relies on monitoring the signal

strength of periodical beacons. For clarity of description, we de-
fine three categories of nodes’ roles: claimer, witness, and verifier.
Each node would periodically play all these roles, that is, each node
is a claimer, a witness as well as a verifier but at various moments
and for various purposes.

1. Claimer. Each node periodically broadcasts a beacon mes-
sage at beacon intervals, tb, for the purpose of neighbor discov-
ery. In the beacon message, it claims its identity and position
such as GPS position. At this moment, we name the node as a
claimer. The goal of our scheme is to verify its claimed posi-
tion.

2. Witness. All neighboring nodes, within the signal range of the
claimer, would receive the previous beacon message. They measure
the signal strength and save the corresponding neighbor informa-
tion in their memory. Next time they broadcast a beacon message,
they will attach their neighbor list, including the signal strength
measurements for each received beacon, to the beacon message.
We name these nodes performing measurement and reporting mea-
surements as witnesses.

3. Verifier. After receiving a beacon message, a node waits
for a verifying interval, tv , during which it collects enough signal
strength measurements concerning the previous beacon message
from neighboring witnesses. tv may be a little longer than the bea-
con interval tb, since after another interval of tb, each neighboring
witness should have broadcasted a beacon containing the expected
measurements. With the collected measurements, the node can lo-
cally compute an estimated position of the claimer, for example, by
performing MMSE(Minimum Mean-Square Error) on the collected
signal strength and a pre-defined radio model. We call a node per-
forming verification a verifier.

To obtain the estimated position, we first calculate the mean
square error:

MSE(p) =

Pk
i=1(Sr(wi)− Sm(wi, p))2

k

where p is a potential position of the claimer, k is the number of
witnesses, Sr is the received signal strength at witness wi, Sm is
the calculated signal strength at wi obtained from radio propagation
model. By varying p, we can minimize MSE and finally get the
optimal estimated position p̂.

If the estimated position of a claimer is far away from its claimed
position, we regard this node as a suspect node. Note that due to
the unstable and irregular nature of RF(Radio Frequency), we still
cannot assert, based on the results of this simple computation, that
a Sybil attack is happening.

We take Figure 1 as an example. Node s1, a claimer, broadcasts a
beacon, claiming its identity and position. Node n1, a verifier, col-
lects all signal strength measurements from neighboring witnesses
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Figure 2: Estimated position distribution.

which have received the beacon. Obviously, the final estimated po-
sition of s1 would be near the position of node m, instead of the
position s1 claimed, as node s1 and m are physically the same ve-
hicle.

The beacon message can be in the following format:

{NodeID, Beacon#, Position, NebList, Signature}

NebList : {NodeIDi, Beacon#i, RSSi}

where NodeID is the claimer’s identity, Beacon# is a beacon se-
quence number, Position is the sender-claimed position, NebList
is the sender’s most recent neighbor list containing signal strength
measurements, Signature is the digital signature for the whole
packet. In each item of NebList, RSSi is the Received Signal
Strenth of beacon Beaconi recently received from neighboring
node NodeIDi.

3.2 Simulation
Radio model. In our simulation, we apply a widely-used radio

propagation model, the shadowing model [14], which consists of
two parts. The first one is known as path loss model, which also
predicts the mean received power at distance d. The second part of
the shadowing model reflects the variation of the received power at
a certain distance. The overall shadowing model is represented by�

Pr(d)

Pr(d0)

�
dB

= −10βlog(
d

d0
) + XdB

where d0 is a reference position, d is the position where the signal
strength is measured, β is called the path loss exponent, and XdB is
a Gaussian random variable with zero mean and standard deviation
σdB .

Scenario I. In this scenario, we suppose that the signal range is
200m, the physical position of a claimer is at the point of 200m, and
all 10 witnesses distributed at random positions faithfully report the
measured signal strength from the claimer. Since the signal range
(200m) is much larger than the road width(for example, 20m), we
also suppose that all vehicle are distributed on a line. Our simula-
tion runs independently for 100 times with different random wit-
ness positions, and the distribution of estimated position is shown
in Figure 2(a). From the figure, we can find that the estimated po-
sitions of most tests (> 99%) are within 10m of the real position
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Figure 3: A scenario with roadside infrastructures.

of the claimer, thereby suggesting that the positioning accuracy is
about 10m.

Scenario II. The basic configurations of Scenario II is the same
as Scenario I. However, we assume that the claimer is a malicious
node, which claims that its position is at the point of 300m instead
of its real position at 200m. What’s more, 30% of the witnesses are
sybil vehicles. In order to change the computed result to match the
fabricated position (at 300m), these sybil witnesses would report
fictitious measurements instead of the real measured ones. The re-
sults in Figure 2(b) shows that much of the estimated positions are
detracted from the real position (at 200m), moving closer to the
fabricated position (at 300m).

3.3 Conclusion
We can reach two conclusion based on the above simulation re-

sults. First, the signal-strength-based verification accuracy is rather
limited, with an error about 10m. That is to say, if two physical
vehicles are very close to each other, less than 10m, we can not
ensure whether they are two neighboring vehicles or two sybil ve-
hicles. Second, Sybil witnesses might largely impact the results of
position verification. If all witnesses tell the real measured signal
strength, the estimated position is very close to the claimer’s phys-
ical position.

In the next section, we will show how we take full advantage of
the unique features of VANETs, such as traffic patterns and high
mobility, to apply signal-strength-based position verification into
the detection of Sybil attacks.

4. DETECTING SYBIL NODES IN VANETS
In this section, we propose a detection scheme for ensuring that

each physical vehicle is bound with only one identity. If multiple
identities, claiming to be at various positions, prove to be at one
physical position through position verification, then sybil attacks
are likely in progress. In this section, we propose several tech-
niques to compensate for the two weaknesses of the basic signal-
strength-based position verification, namely, limited accuracy and
Sybil witnesses.

4.1 A Technique to Remove Sybil Witnesses
Before a verifier performs the position-estimation computation,

it should remove the signal-strength measurements originating from
potential Sybil witnesses as much as possible. We present a tech-
nique for ensuring that each witness is a physical vehicle but not a
Sybil vehicle. In this technique, we take full advantage of the traffic
patterns and base station support in the vehicular environment.

As we assumed in Section 2.2, roadside base stations, manipu-
lated by governments, are sparsely distributed along roads. Then,
based on this assumption, we establish the following two rules:

Rule 1. A roadside base station would issue a position certifica-
tion for each vehicle passing by. The position certification contains

a time stamp and location information of the base station and there-
fore can prove the presence of the vehicle near the base station at
a certain time.

Rule 2. All witnesses for a claimer should consists of vehicles in
the opposite traffic flow of the claimer.

With Rule 1, we can ensure where a certain vehicle comes from.
We take Figure 3 as an example. Node a can get a position cer-
tificate from base station BS2, when passing by BS2, and node b
also get one from BS1. When a and b meet each other, it’s easy
for them to prove that they come from the opposite directions by
exchanging certificates.

With Rule 2, we can ensure that each witness in the opposite traf-
fic flow is a physical vehicle instead of a Sybil one. The example
in Figure 1 can illustrate how this rule works. Malicious node m
fabricates 7 Sybile nodes, in which, s7 is traveling in the opposite
direction and the rest the same. When trying to verify the positions
of s1,...,s6, we only choose witnesses in the opposite (right-to-left)
traffic flow such as node n2,...,n5. However, with Rule 1, we would
ignore node s7, because it cannot prove that it comes from the up-
stream of the road, and actually it does not. In this way, we can
ensure that each witness is a physical vehicle coming from the op-
posite direction.

With Rule 1 and Rule 2 together, we achieve the goal that the
membership of witnesses consist of only physical vehicles, exclud-
ing any Sybil vehicle. A verifier wouldn’t select witness nodes
from the same traffic flow, because it’s difficult to decide which wit-
nesses in the same traffic flow are potential Sybil witnesses. With
the help of roadside infrastructure, the impact of dishonest Sybil
nodes on position verification can be effectively removed.

Please also note that our scheme only requires that base stations
are sparsely deployed along the roadside. In other words, most sec-
tions of the road are not covered within the signal range of base
stations. Base stations only serve as the authority to prove where a
given vehicle comes from. Research on how densely base stations
can be deployed for better performance will be part of our future
work.

4.2 Detection Model
We propose the following model for detecting Sybil nodes in

VANETs. Let P be a Euclidean space and let ‖P1 − P2‖ denote
the Euclidian distance from point P1 to P2.

A node is a triplet (N, f, f ′), where:

• N ∈ N is an integer that denotes the identity of the node

• f , the claimed location function of the node, is a continuous
function f : T → P that indicate the position that the node
claims over the lifetime T ⊆ R.

• f ′, the estimated location function, is also a continuous func-
tion f ′: T → P that indicate the estimated position, which
is computed based on the signal strength measurements, over
the lifetime T ⊆ R.

Detection Model. The detection model specifies which nodes
are potential Sybil nodes. Formally, let ν be the set of all vehicles
and let S be the set of sets of Sybil nodes. The model is a func-
tion D: ν → S. We classify two Sybil nodes into one set, if they
originate from one physical vehicle. The function,D, can be imple-
mented by any cluster algorithm. However, the challenge is how to
detect a Sybil node and how to decide the correlation between two
potential Sybil nodes.



4.3 Enhanced Position Verification
We present a statistic algorithm to detect whether a node hon-

estly claims its position. Each vehicle on a road can perform this
algorithm when enough signal strength measurements from nearby
witnesses are collected. The basic idea of this algorithm is that
although individual estimated positions for a certain normal node
may be inaccurate, the estimated positions for the normal node
would be very close to its claimed positions over a period of time.

Our algorithm is based on hypothesis tests. We divide the ob-
servation period, ∆to, into discrete time intervals, t1,...,tn. Hence
the claimed positions of a vehicle, v, is a sequence: f(t1),...,f(tn),
and the estimated positions: f ′(t1),...,f ′(tn). We suppose that v is
a normal node. The estimated position, f ′(ti), usually regarded as
random errors, should follow the normal distribution with the mean
µ = f(ti). Further, the difference, di = f ′(ti)−f(ti), is supposed
to follow the standard normal distribution with mean µd = 0 and
variance σ2

0 . Thus the problem is to test the following hypotheses
for the samples, di, 1 ≤ i ≤ n:

H0 : µd = 0 H1 : µd 6= 0

H ′
0 : σ2 ≤ σ2

0 H ′
1 : σ2 > σ2

0

When both H0 and H ′
0 are true, the algorithm returns that the

node honestly claims its position. Since the mean and variance are
supposed to be 0 and σ2

0 respectively, the test statistic is

|z| =
���� d− 0

σ0/
√

n

����
where d is the mean of samples, di. If |z| ≥ zα/2, H0 is rejected;
otherwise, H0 is accepted. zα/2 is the critical value of normal dis-
tribution N(0, 1), given significance α. α is the significance level,
a predefined parameter, denoting:

P{Reject H0|H0 is true} ≤ α.

Then we use χ-test to test the variance σ2. The test statistic is

χ2 =
(n− 1)s2

σ2
0

where s2 is the variance of samples, di. If χ2 ≤ χ2
α(n− 1), H ′

0 is
accepted; otherwise, H ′

0 is rejected. χ2
α(n− 1) is the critical value

of χ2 distribution, given significance α and freedom (n− 1).
In the above test, we are interested in whether there is a signif-

icant difference between claimed positions and the corresponding
estimated positions for a certain node over a period of time. Each
node may perform the above test for each neighboring node after an
observation period of ∆to. If a Syil node is detected, then the Sybil
node classification algorithm introduced in the next subsection will
be performed to find other potential Sybil nodes originating from
the same physical vehicles.

How much time it takes a vehicle to collect enough data to de-
tect potential Sybil attacks is determined by the observation period,
∆to. Due to the statistic nature of our approach, the longer the
observation time, the more accurate the verification can be.

4.4 Sybil Node Classification
Next we present a statistic algorithm intended to find other po-

tential Sybil nodes originating from the same physical node after a
Sybil node is detected by the algorithm introduced in the previous
subsection. It is evident that the estimated positions of two poten-
tial Sybil nodes, belonging to one physical node, would be very
close to each other over a period of time.

This algorithm can also be implemented based on hypothesis
tests. v1 and v2 are supposed to be two potential Sybil vehicles,
originating from a physical vehicle, v0, and f ′

1(t1),...,f ′
1(tn) and

f ′
2(t1),..., f ′

2(tn) are sequences of their estimated position respec-
tively over the observation period, ∆to. Since both f ′

1(ti) and
f ′
2(ti) are actually estimated positions for v0’s physical position

f0(ti), we obtain the difference

Di = [f ′
1(ti)− f ′

0(ti)]− [f ′
2(ti)− f ′

0(ti)] = f ′
1(ti)− f ′

2(ti)

which is also supposed to follow the normal distribution with mean
µ = 0 and variance 2 ·σ2

0 . Thus the problem is to test the following
hypotheses for the samples, di, 1 ≤ i ≤ n:

H0 : µd = 0 H1 : µd 6= 0

H ′
0 : σ2 ≤ 2 · σ2

0 H ′
1 : σ2 > 2 · σ2

0

When both H0 and H ′
0 are true, the algorithm returns that these

two nodes are Sybil nodes originating from the same malicious
physical node; otherwise, the algorithm returns that these two nodes
have no relationships with each other. The hypothesis test would
be similar to the test introduced in Section 4.3.

With this Sybil node classification algorithm, we can not only
find all potential Sybil node originating from the same physical
node, but also localize the malicious physical node.

4.5 Overall Detection Process
In this subsection, we summarize the overall detection process.

Our scheme is based on a distributed and localized approach. The
overall detection process, performed by each node, includes three
phases:

• Phase 1. Node v periodically broadcasts beacon messages
and receives beacon messages from neighboring nodes. The
corresponding signal strength measurements for each received
beacon message is saved in its memory.

• Phase 2. When node v collects enough signal strength mea-
surements for a neighboring node, s, node v performs the
enhanced position verification algorithm on s.

• Phase 3. If s proves to be a Sybil node in Phase 2, node v per-
forms the Sybil node classification algorithm on s and other
neighboring nodes, attempting to find all potential Sybil nodes
originating from the same malicious physical node.

During Phase 3, we can find the estimated physical position of
the malicious node and even its movement trajectory, which would
be very helpful for further intrusion response decisions.

5. SIMULATION EVALUATION
In this section, simulation tests are conducted to evaluate the en-

hanced position verification algorithm and the Sybil node classifi-
cation algorithm introduced above. We are interested in how our al-
gorithms perform with various values of system metrics, including
Sybil deviation, observation period, witness number, Xdb standard
deviation, significance level, and relative speed. Sybil deviation is
the difference in distance between a claimed position and the cor-
responding estimated position. Observation period, ∆to, as intro-
duced in Section 4.3, denotes the time period between the moment
the first beacon from a claimer arrives and the moment the position
verification algorithm is performed. For example, if observation
period is equal to n units, it means that there are n estimated posi-
tions calculated for the claimer during the observation period. Wit-
ness number is defined as the average number of witnesses when
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Figure 4: Evaluation of enhanced position verification algo-
rithm

a claimer sends out a beacon. XdB standard deviation denotes the
standard deviation of XdB in our radio model, suggesting the un-
stable level of radio channels. Significance level is the system pa-
rameter, α, in our hypothesis test. Relative speed is referred to as
the relative speed between two vehicles heading for one direction.

5.1 Enhanced Position Verification
In the first test, we evaluate the detection rate and the false posi-

tive rate for our enhanced position verification algorithm. The de-
tection rate indicates the probability that a Sybil vehicle can be de-
tected, and the false positive rate denotes the percentage of normal
vehicles which are mistakenly regarded as Sybil vehicles by our
algorithm.

Firuge 4 shows the evaluation of detection rate for our enhanced
position verification algorithm. Figure 4(a)(b) shows that the de-
tection rate increases as Sybil deviation or observation period in-
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Figure 5: False positive rate of enhanced position verification
algorithm

creases. When Sybil deviation is larger than or equal to 10m and
observation time larger than or equal to 10 units, the detection rate
is larger than 90%. It’s easy to understand that a claimed position
far from the physical position makes it more evident to detect, and
the statistic approach effectively compensates for the inaccuracy
of individual estimations at the cost of increased observation time
(detection time). As shown in Figure 4(c), by increasing witness
number, the detection rate will increased too. A large number of
witness vehicles can increase the accuracy of estimated positions,
thereby increasing the detection rate. Usually, a witness number,
5, would be enough to achieve a high detection rate (≥99%). Fig-
ure 4(d) shows that the more stable the radio channel, the higher the
detection rate would be. As we expected, if the channel is stable,
the estimated position for a potential Sybil node would be more ac-
curate, thereby increasing the detection rate. Figure 4(e) indicates
that the detection rate can also be increased by increasing signifi-
cance level. An increase in significance level can increase the crit-
ical values of zα/2 and χ2

α(n − 1) and accordingly increase the
probability that H0 and H ′

0 are rejected.
Figure 5 shows the evaluation of false positive rate for our en-

hanced position verification algorithm. Figure 5(a) illustrates that
the false positive rate mainly depends on observation period and
witness number. A larger witness number can increase the accu-
racy of individual estimations, while a longer observation period
would improve the final accuracy by using statistic approaches.
Figure 5(b) indicates the impact of XdB standard deviation on the
false positive. The more unstable the radio channel, the more inac-
curate the estimated positions, and therefore the more chances that
a normal node is mistakenly regarded as a Sybil node. The figures
also indicates that false positive rate would also increase as signif-
icance level increases. Therefore, although an increase in signifi-
cance level can improve detection rate, we have to make a tradeoff
for significance level between false positive rate and detection rate
according to specific application requirements.

5.2 Sybil Node Classification
In the second test, we investigate the classification rate and the

false positive rate for our Sybil node classification algorithm. The
classification rate denotes the probability that two Sybil nodes, one
of which might be a malicious physical node, are correctly classi-
fied into one group. The false positive rate is the probability that
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Figure 6: Evaluation of sybil node classification algorithm

one Sybil node and one innocent node are incorrectly classified into
one group.

Figure 6(a) shows that the classification rate can be increased as
the observation period increases. As shown in the figure, even when
observation period is equal to 5, the classification rate is larger
than 95%. It’s easy to understand that if the estimated positions
of a Sybil node keep very close to another node as time elapses,
it is very likely that they are either two Sybil nodes or one Sybil
node and one malicious physical node. Thus, the classification rate
mainly depends on observation period. Figure 6(b) illustrates the
variance of false positive rate over relative speed. Here, relative
speed is referred to as the relative speed between a Sybil node and
an innocent normal node nearby. If a normal vehicle keeps very
close to a malicious node for a long time, actually, it is difficult to
distinguish them by position estimation, due to the limited accu-
racy. However, that would be a small probability event based on
the assumption that each vehicle moves independently. As shown
in the figure, given observation time=10, we only required the rela-
tive speed to be larger than 1m/s to keep the false positive rate less
than 10%.

6. DISCUSSION

6.1 Attack Analysis
In this subsection, we are interested in the potential strategies

the adversary may apply to crack our detection scheme. In order
to make the final estimated position of a Sybil vehicle closer to its
claimed position, a malicious node may apply two potential strate-
gies: spoof transmitting power and witness penetration. The for-
mer attempts to impact the final estimated position from the signal
source aspect, while the latter from the witness aspect.

In spoof transmitting power, malicious physical nodes may de-
liberately decrease or increase the RF(Radio Frequency) power for
broadcasting a beacon message in order to impact the signal strength
measurements. However, this attempt is destined to fail, because
our scheme is based on analysis of signal strength distribution but
not direct distance measurement. We take Figure 7 as an exam-
ple. The malicious node, m, broadcasts a beacon claiming to be
node s1 at increased power. Thus, node n1,n2,n3, and n4 get the
enlarged measurements for the beacon. By performing MMSE on
both the measurements of n1,n2,n3,n4 and m’s signal strength dis-
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Figure 7: Spoof signal strength.

tribution pattern, we can still compute the actual position of s1 or
m.

In witness penetration, Sybil nodes play the role of witnesses and
refuse reporting the real signal strength measurements so that they
can cover up for each other. However, we may disable this attempt
by using the technique proposed in Section 4.1. In this technique,
all witnesses are selected from the opposite traffic flow. Our moti-
vation behind this technique is based on the fact that physical wit-
nesses in the opposite traffic flow can prove that they have come
from the upstream of the road, whereas Sybil witnesses cannot.

6.2 Features of Our Scheme
Our detection scheme presents several unique features. First,

with our detection scheme, we can have the potential to suppress
Sybil attacks in VANETs, preventing a malicious vehicle from fab-
ricating tens or hundreds of Sybil vehicles. Because each vehicle
is supposed to occupy a considerable amount of space, a malicious
vehicle can fabricate only a few Sybil vehicles around itself and
therefore the security threats to the whole network is significantly
reduced. Due to the limited accuracy of the signal-strength-based
approach, we still can not detect subtle small-scale attacks. Sec-
ond, based on analysis of signal strength distribution, our detection
scheme can be resistant to spoof attacks. It is difficult for a ma-
licious physical vehicle to change its signal strength distribution.
Unlike traditional radio-resource-testing-based approaches[7], we
don’t reply on assumptions on specific RF(Radio Frequency) de-
vices. Even when a malicious node is equipped with multiple radio
modules, we still can detect potential attacks by analyzing its sig-
nal strength distribution. Finally, our scheme has the potential to
detect all Sybil nodes originating from the same physical node and
localize the malicious physical node, thereby facilitating further in-
trusion response mechanisms.

7. RELATED WORK
Considerable attention from the research community has been

attracted by emerging vehicular networks. There have been sev-
eral proposals pointing out the importance of security in vehicular
networks[2][3][4][5]. In [3][4], a common security threat is intro-
duced. That is Sybil attacks, in which a malicious node creates an
illusion of traffic congestion by claiming multiple identities. New-
some et al.[7] introduces several techniques to detect Sybil attacks
in ad hoc networks, including radio resource testing, registration,
and position verification. Whereas radio resource testing replies on
specific assumptions on radio modules and registration alone is not



effective enough, position verification comes to be a more promis-
ing approach for vehicular networks. The use of received radio
signal strength for positioning is proposed in [9]. It is designed
for indoor applications, relying on establishing a signal-strength-
distribution map in advance. Brands et al.[8] propose a distance
bounding protocol that can be used to verify the proximity of two
devices connected by a wired link. Sastry et al.[10] propose a new
distance bounding protocol, based on ultrasound and radio wire-
less communication. The protocol can only make a rough decision
about whether or not a claimer is within a certain region. Golle
[11] presents a mathematical model to detect malicious data and
potential fabricated vehicles. However, it doesn’t concern detailed
detection mechanisms. Capkun et al.[13] present a secure posi-
tioning scheme, which suppose that nodes are static and relies on
multiple base stations as reference points. This scheme will not fit
the highly mobile context of VANETs.

Research on other protocol layers of VANETs is also in progress.
Korkmaz et al.[18] introduce a multi-hop broadcast protocol, de-
signed to address the broadcast storm, hidden node, and reliability
problems of multi-hop broadcast in urban areas. Yadumurthy et
al.[15] present a reliable MAC broadcast protocol for VANETs,
in which, for each broadcast packet, acknowledges from all re-
ceivers are returned to the sender. Moreno et al.[17] present a
bandwidth sharing protocol for VANETs. Wu et al.[16] propose
a data dissemination protocol for VANETs. This protocol relies
on nodes’ cooperation to forward packets toward the destinations.
However, a malicious node can easily crack these protocols by us-
ing its large number of Sybil nodes and then launches further DoS
attacks.

8. CONCLUSION
In this paper, we propose a lightweight security scheme for de-

tecting and localizing Sybil nodes in VANETs. Unlike traditional
approaches in ad hoc networks or in sensor networks, our scheme
intend to suppress Sybil attacks in VANETs rather than eliminate
individual attacks, for small-scale Sybil attacks can only make lim-
ited threats to VANETs. Our scheme is based on statistic analy-
sis of signal strength distribution, not relying on specific hardware.
We make use of the unique properties of VANETs to help us ad-
dress new challenges in system design. Simulation results show
that when the witness number is larger than 5 and the observation
period is 10 units, we can achieve a high detection rate (≥95%) as
well as a low false positive rate (≤5%).

Extensive work is still required in the future. First, we plan to
implement a prototype system for our scheme and then investigate
its feasibility in real vehicular settings. Second, a more realistic
radio propagation model, suitable for the highly mobile context of
VANETs, expects to be defined. Finally, we are also interested in
how roadside infrastructures can provide more security supports for
VANETs.
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