
Detecting SYN Flooding Attacks
Near Innocent Side�

Yanxiang He1, Wei Chen1, and Bin Xiao2

1 Computer School, The State Key Lab of Software Engineering,
Wuhan University, Wuhan 430072, Hubei, China

{yxhe, chenwei}@whu.edu.cn
2 Department of Computing,

The Hong Kong Polytechnic University,
Hung Hom, Kowloon, Hong Kong
csbxiao@comp.polyu.edu.hk

Abstract. DistributedDenial-of-Service (DDoS) attacks seriously threat
the servers in the Internet.Most of current research is focused on the detec-
tion and prevention methods at the victim side or the source side. However,
defense at the innocent side, whose IP is used as the spoofed IP by the at-
tacker, is always ignored. In this paper, a novel method at the innocent side
has been proposed. Our detection scheme gives accurate detection results
using little storage and computation resource. From the result of experi-
ments, the approach presented in this paper yields accurate DDoS.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks are a large-scale cooperative at-
tack, launched from a large number of compromised hosts. DDoS attacks have
posed a major threat to internet since 1990’s and they have caused some popular
web sites on the world, such as Yahoo, eBay, Amazon, become inaccessible to
customers, which caused huge financial losses. Current events have shown that
DDoS attacks continue to bring increasing threats to the internet. While many
methods have been proposed, there still is a lack of efficient defense.

Most DDoS attacks exploit Transmission Control Protocol(TCP)[1]. It has
been shown that more than 90% of the DoS attacks use TCP[2]. The most
efficient and commonly-used SYN flooding attacks[3, 4] exploit the standard
TCP three-way handshake in which the server receives a client’s SYN (synchro-
nization) request and replies with a SYN/ACK (synchronization/acknowledge)
packet. The server then waits for the client to send the ACK (acknowledge) to
complete the handshake. While waiting for the final ACK, the server maintains
a half-open connection. As more and more half-open connections are maintained
on a victim server, DDoS attacks will deplete the server’s resources.

� This work is supported by the National Natural Science Foundation of China under
Grant No. 90104005 and partially by HK Polyu ICRG A-PF86 and CERG Polyu
5196/04E.

X. Jia, J. Wu, and Y. He (Eds.): MSN 2005, LNCS 3794, pp. 443–452, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

444 Y. He, W. Chen, and B. Xiao

Lots of research work has been done to detect and prevent the TCP based
DDoS attack. According to the deployment location of defense systems, the
current DDoS detection and prevention methods can be classified into three
categories: defense at the source-end, at victim-end or at intermediate-network.
However, the information at the innocent host, whose IP is utilized as the spoofed
IP, is totally ignored. Each kind of mechanisms has its limitations, for example
detection at the side of a victim server can hardly produce an alarm at the
early stage because abnormal deviation can only be easily found until the DDoS
attack turns to the final stage. Furthermore, it is difficult for victim side to take
efficient response after DDoS is detected due to numerous malicious packets
aggregating at this side. Providing an early DDoS alarm near the source is a
difficult task because the attack signature is not easy to capture at this side.
The information at the innocent host side will be used in our approach because
the innocent side will receive abnormal TCP control packets during a DDoS
attack. Compared to other detection mechanisms, defense at the innocent host
has two main advantages:

– Detection at innocent side is more hidden since it is deployed apart from
attacking path. To avoid being detected, attackers usually sniffer and de-
ceive defense systems deployed around victims and attacking source before
launching attacks. It is difficult for attackers to be aware of the existence of
detection mechanism at the innocent side.

– It has little vulnerability to DDoS attack. The burden of monitoring nu-
merous attacking packets congesting at the victim side makes the defense
system itself vulnerable to DDoS attack. Defense at innocent side will avoid
this problem due to limited attack streams near innocent side. This enables
the defense system itself to have little risk of becoming potential target of
DDoS attacks.

Detection at innocent side has several challenges. On the one hand, accurate
detection is not easy to achieve since the abnormal signature is distributed in
a backscatter way [2]. To capture the small quantity of attack signatures, more
packets should be monitored and recorded for analysis, which implies expensive
storage cost. On the other hand, defense at innocent side is deployed far from
the victim side and detection effect depends on the number of participant of
Internet Service Providers(ISPs). To attract more ISPs to participate detection,
the detection scheme should use limited resource in defense, which will not bring
evident degradation to ISPs’ service. In this paper, we provide a detection scheme
which gives satisfying result with little storage and computation requirement.

In this paper we propose a novel detection method against SYN flooding
attack near innocent side. We summarize our contributions as follows:

– The detector performs detection at the side of innocent hosts because this
side can provide valuable information. Another benefit of such deployment
is to make the detection system itself invulnerable to DDoS attacks.

– A Bloom filter based detection scheme is proposed. We apply Bloom filter
to DDoS detection, which can record huge traffic information on high speed
network.

Detecting SYN Flooding Attacks Near Innocent Side 445

– With this space-efficient data structure, detection scheme monitors abnor-
mal handshake with little computation overhead. The detection scheme only
requires simple hash function operation, addition operation and subtraction
operation, which bring little overhead to present computers.

The remainder of the paper is organized as follows: Section 2 will introduce
some related works in spoofed DDoS detection. In Section 3, the TCP-based
DDoS attack will be discussed and analyzed. The techniques for DDoS detection
at innocent side will be proposed in section 4. Some experiment results will be
given in Section 5 to evaluate the performance of the proposed method. In Section
6 we will conclude our work and discuss future work.

2 The Related Work

Hash table is a high performance data structure used for quick data look up and is
versatilely applicable in network packet processing. The Bloom filter is a kind of
space-efficient hash data structure, which is first described by Burton Bloom [5].
It is originally used to reduce the disk access times to different files and other
applications and now it has been extended to network packet processing. Song
present a hash table data structure and lookup algorithm using extended Bloom
filter, which can support better throughput for router applications based on hash
tables. NetFlow [6] maintains a hash table of connection record in DRAM and
monitors network traffic. The concept of multiple hashing, which is similar to
Bloom filter, was used to track large flows in network traffic.

Hash table is also used to defend DDoS attack. Snoeren [7] present a hash-
based technique for IP traceback that generates audit trails for traffic within the
network, and can trace the origin of a single IP packet delivered by the network
in the recent past. Hash table is employed to look for an imbalance between the
incoming and outgoing traffic flows to or from each IP address [8]. IDR [9] is a
router equipped with DDoS protection mechanism, which uses Bloom filter to
detect DDoS attack.

3 The TCP-Based DDoS Attack

In this section, we analyze the difference between normal TCP handshakes and
spoofed one. During spoofed DDoS attack, the source IP address of attacking
packet is usually modified, which is not the attacker’s IP address anymore. The
normal three-way handshake to build a connection would be changed conse-
quently.

The normal three-way handshake is shown in Figure 1(a). First the client C
sends a Syn(k) request to the server S1. After receiving such request, server
S1 replies with a packet, which contains both the acknowledgement Ack(k + 1)
and the synchronization request Syn(j). Then client C sends Ack(j +1) back to
finish the building up of the connection. k and j are sequence numbers produced
randomly by the server and client respectively during the three-way handshake.

446 Y. He, W. Chen, and B. Xiao

Normal User

Server

A
SS

S

AS
S

AS

Rc

Rs
Internet

C

S1

AS
S

S: Syn(k)
AS: Ack(k+1)+Syn(j)
A: Ack(j+1)

A

A

A

A

(a) Normal three-way handshake

RI

Rv

Innocent Host

A
S

S

AS S

AS

AS

Ra

S

S

Attacker

Internet

A I

S2

Server

S: Syn(k)
AS: Ack(k+1)+Syn(j)

(b) Spoofed three-way handshake

Fig. 1. The process of the TCP three-way handshake

In the remainder of the paper, SY N shows a message sent to server S inside the
TCP control packet during the first round of the three-way handshake protocol.
A packet containing both Ack(k+1) and Syn(j) (denoted as ACK/SY N in the
following sections) is delivered back from server S in the second round. A control
package with Ack(j + 1)(denoted as ACK) involves in the third round. During
the normal three-way handshake procedure, SY N , ACK/SY N and ACK can
be observed at the edge router(Rc in Figure 1(a)) near the client.

If the packet at the first round is a malicious one with a spoofed IP address,
a valid authentication process is modified. As Figure 1(b) shown, the innocent
host I, whose IP is used as spoofed source IP, is usually not in the same domain
with the attacker host A. In other words, the edge router working for attacker
host A does not route for the innocent host I. In fact, to avoid being traced back,
the attacker usually uses the IP address belonging to other domains to make a
spoofed packet. Under this assumption, there exists difference between the nor-
mal TCP three-way handshake and the spoofed one. In Figure 1(b) the edge
router Ra in the attacker domain forwards the SY N packet with the spoofed
address PI , the IP address of the innocent host I, to the server S2. The sever
S2 replies with an ACK/SY N packet. This ACK/SY N will be sent to the in-
nocent host I because the server S thinks the SY N packet is from I according
to the spoofed source IP PI in it. So the edge router RI at the innocent host
side will receive the ACK/SY N packet from victim server S2. But there is no
previous SY N request forwarded by the client detector at RI . This scenario is
different from the normal one. Our approach is proposed on the base of this
difference.

4 The Bloom Filter Based Detection Scheme

In order to detect DDoS, the TCP control packets for handshakes are monitored
and analyzed at the edge router of innocent side. For example, the detector will
be installed on the router RI in Figure 1(b). To save storage cost, a Bloom filter
based method is applied to monitor two-way traffic between innocent side and

Detecting SYN Flooding Attacks Near Innocent Side 447

the rest of Internet. It checks the TCP control packets flowing through the edge
router. When it captures suspicious handshakes, the alarm about the potential
DDoS attack will be launched.

4.1 The Bloom Filter Based Hash Table

The basic idea of innocent-side detection is to monitor two-way TCP control
packets and capture abnormal handshakes. A TCP connection may hold for
several seconds or even for several minutes but most three-way handshake can be
finished in a very short period(e.g., less than 1 seconds) at the beginning phrase
of the connection. However, it is expensive to keep a record for each handshake
considering numerous traffic volume on the high speed link network. To record
useful information with limited storage, Bloom filter, a kind of space-efficient
hash data structure, is applied in our method.

Original Bloom Filter. Bloom filter is first described by Burton Bloom [5]
and originally used to reduce the disk access to differential files and other appli-
cations, e.g. spell checkers. Now it has been extended to defend against DDoS
attack [7, 8, 9]. The idea of Bloom filter is to allocate a vector v of m bits, ini-
tially all set to 0, and then choose k independent hash functions, h1, h2, . . . , hk,
each with range {1, . . . , m}. For each element a ∈ A, the bits at positions
h1(a), h2(a), . . . , hk(a) in v are set to 1(Figure 2). Note that a particular bit
might be set to 1 multiple times which may cause potential false result. Given a
query for b we check the bits at positions h1(b), h2(b), . . . , hk(b). If any of them
is 0, then certainly b is not in the set A. Otherwise we conjecture that b is in
the set. However there is a certain probability that Bloom filter give false result,
which is called a “false positive”. The parameters k and m should be chosen
such that the probability of a false positive is acceptable.

H1(a)=P1

Element a

H
2
(a)=P

2

H3(a)=P3

Hk(a)=Pk

.

.

.

0
1
...
0
1
...

0
1
...

0
1
0

m bits

(a) Original Bloom fil-
ter

H1(a)=P1

IP address: a

H
2
(a)=P

2

H3(a)=P3

Hk(a)=Pk

.

.

.

0
2
...
1
1
...

0
3
...

2
5
0

m counters

(b) Counting Bloom filter

Fig. 2. Bloom filter uses independent hash functions to map input into corresponding
bits

448 Y. He, W. Chen, and B. Xiao

Counting Bloom Filter. The original Bloom filter is not suitable to monitor
handshakes. We will use a variant of a Bloom filter called Counting Bloom filter
which substitutes m bits with countable integers table as shown in Figure 2(b).

After using counters table to replace m bit array, all the counts are initialized
to 0. When a key is inserted or deleted, the value of count is incremented or
decremented by 1 accordingly. When a count changes from 0 to 1, the corre-
sponding bit is turned on. When a count changes from 1 to 0 the corresponding
bit is turned off. The value in the count indicates the current statistic results of
traffic.

4.2 Detection Scheme

To detect attacking traffic with spoofed source IP, the destination IP(the server’s
IP) is recorded in the hash tables. When a SY N packet, the TCP control packet
for the first round handshake, is captured from the outgoing traffic, the desti-
nation IP(the server’s IP) is hashed into the hash table by k independent hash
functions. For the output of each hash function, if the corresponding counter
is 0, the corresponding counter is turned on. If the counter is already turned
on, the counter is incremented by 1 accordingly. If corresponding ACK/SY N
packet for the second round of handshake is soon captured in the incoming traf-
fic. The source IP(the server’s IP) is hashed into the hash table again. But
this time the corresponding counter is decremented by 1 for each independent
hash function. When a count changes from 1 to 0, the corresponding counter is
turned off. For a normal TCP handshake, ACK/SY N packet can be hashed to
a turn-on counter by each independent hash function because the corresponding
counter has already been turned on by previous SY N packet. The counter will
keep unchanged if the first two rounds of three-way handshake are completely
captured at the ingress and egress router at the innocent side. The detection
scheme is depicted in Figure 3. These counts are reset to 0 for every period t.

On the contrary, in the scenario of the spoofed handshake, suspicious
ACK/SY N packet should meet at least turn-off counter since previous SY N

H1(a)=P1

IP address: a

H
2
(a)=P

2

H3(a)=P3

Hk(a)=Pk

.

.

.

0
2
...
1
1
...

0
3
...

2
5
0

m counters

H1(a)=P1

IP address: a

H
2
(a)=P

2

H3(a)=P3

Hk(a)=Pk

.

.

.

+1

+1

+1

+1

-1

-1

-1

-1

Outgoing traffic:
SYN : +1

Incoming traffic:
ACK/SYN : -1

Fig. 3. The detection scheme increases or decreases the value of the count according
to the three-way handshake

Detecting SYN Flooding Attacks Near Innocent Side 449

Detection Scheme (INPUT: P) {
if P is a SY N packet then

for i = 0; i < k; i + + do
j=Hashi(P)
Counterj++

end for
else if P is a ACK/SY N packet then

for i = 0; i < k; i + + do
j=Hashi(P)
//Check whether exists turn-off counter
if Counterj == 0 then

Report Suspicious Alarm(SA)
RETURN

end if
end for
//If no turn-off counter, do subtraction
for i = 0; i < k; i + + do

j=Hashi(P)
Counterj- -

end for
end if
RETURN }

Fig. 4. The Bloom filter based Detection Scheme

packet has turned on the counter. During a DDoS attack, the second round hand-
shake packets, ACK/SY N , are backscattered according to the spoofed source
IP of attacking packets. The innocent side will receive part of these ACK/SY N
packets and try to hash them with k independent hash functions. It is possible
for the abnormal ACK/SY N to hit one turn-on counter since there may exist
collision for one of hash functions. However, the possibility of hitting all k turn-on
counters is rather low since it is not likely that all k independent hash functions
have collisions at the same time. If ACK/SY N packet hits one turn-off counter,
the detailed information of this packet is recorded for further analysis. The detec-
tion scheme only requires addition and subtraction operations. These operations
bring little overhead to system considering today’s computation ability.

When a new Suspicious Alarm(SA) is reported, the detector will analyze the
source IP distribution of SAs in database. Assumed a DDoS attack takes place,
the detector will find asymmetric ACK/SY N packets sent from victim server
with its IP Pvictim as the source IP. When SAs with the same source IP Pvictim

are reported in a short period, there probably exists a DDoS attack targeting
the host Pvictim. But if each SA has a different source IP, it is most likely caused
by some reasons other than a DDoS attack. To evaluate the distribution of the
source IP of the alarms, an expression is presented below:

score =
∑

s∈IPList

(|Xs| − 1)2

450 Y. He, W. Chen, and B. Xiao

Where Xs stands for a subset of the total SA set. All the elements in Xs are
SAs that have the same IP value s in a certain period. The score will increase
dynamically when the number of SAs with the same source IP increases. On
the other hand if each of the SAs has a different source IP, the score will reach
minimum.

5 Experiment

Experiments are designed to evaluate the detection method. In the experiment,
10 zombies are simulated to perform SYN flooding attacks toward the server.
The rate of the attack packets rises from 10 packets/sec to 1000 packets/sec in
10 seconds and 100 seconds separately. The maximum rate is set to 1000 pack-
ets/sec because it is enough to shut down some services as Chang reported [10].
In simulation only 1% of ACK/SY N packets replied by the victim server are
designed to arrive detectors near innocent side. These packets will trigger de-
tectors to generate SAs. The number of SAs generated by the client detectors is
shown in the Figure 5.

Although only 1% spoofed attack packets can be received by detector, detector
still give accurate SAs. The number of SAs is enough for detector to give a further
potential DDoS alarm at the early stage of the DDoS attack. The detection
results are satisfying even when the DDoS attacker increases the attack packets
slowly. From experiment results, the SAs number raises stably in the Figure 5(a)
because the DDoS attack is launched in a short time. In the Figure 5(b) the
number of SAs fluctuates a little because the attacking packets rise up at a
much slower rate.

The storage and computation cost of our scheme is compared with another
hash method used in Snort [11]. Snort uses a hash method to monitor network
traffic and each connection is recorded as a 5-tuple entry. In simulation, 1000000
IP addresses are randomly generated and inserted into hash tables using our hash

0 1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

35

40

Time Inteval(second)

T
he

 N
um

be
r

of
 S

us
pe

ct
 A

la
rm

s

(a) Within 10 seconds

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Time Inteval(second)

T
he

 N
um

be
r

of
 S

us
pe

ct
 A

la
rm

s

(b) Within 100 seconds

Fig. 5. The number of SA generated by the detector after receiving 1% of ACK/SY N
packets from the protected server. The attacking packets rate reaches to 1000 pack-
ets/sec within (a)10s (b)100s.

Detecting SYN Flooding Attacks Near Innocent Side 451

Table 1. Comparison of time and storage consumption between 5-tuple hash and our
hash method

Hash method Time Consumption(sec) Storage Consumption(byte)
5-tuple hash 0.328 14336

Our hash method 0.187 4096

method and the 5-tuple hash method. The simulation platform uses a Pentium
4 1.7G processor and 256M memory. The time and storage consumption are
compared and list in Table 1. It shows that our method uses less memory and
spends less time than 5-tuple hash method.

6 Conclusion and Future Work

In this paper a novel detection method against the DDoS attack is presented.
The detection system is deployed at the innocent side, which is quite different
from current methods which are often deployed at the sides of the victim server
or the attacking source. Detection at innocent side makes defense more hidden
to attackers. The basic idea in the detection is to differentiate between the nor-
mal TCP three-way handshake and the spoofed one. The proposed Bloom filter
based detection scheme can give accurate detection with little storage cost. The
experiment results are given in section 5 and the proposed approach is effective
to detect DDoS.

In the future research work we will apply method to real environment to test
the memory and computing cost for actual running. The optimization of k, m
will also be studied.

References

1. Postel, J.: Transmission Control Protocol : DARPA internet program protocol
specification,RFC 793 (1981)

2. Moore, D., Voelker, G., Savage, S.: Inferring internet Denial of Service activity.
In: Proceedings of USENIX Security Symposium, Washington, D.C, USA. (2001)
9–22

3. Wang, H., Zhang, D., Shin, K.G.: Detecting SYN flooding attacks. In: Proceed-
ings of Annual Joint Conference of the IEEE Computer and Communications So-
cieties(INFOCOM). Volume 3. (2002) 1530–1539

4. Schuba, C.L., Krsul, I.V., Kuhn, M.G., Spafford, E.H., Sundaram, A., Zamboni, D.:
Analysis of a denial of service attack on TCP. In: Proceedings of the 1997 IEEE
Symposium on Security and Privacy, IEEE Computer Society, IEEE Computer
Society Press (1997) 208–223

5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13 (1970) 422–426

6. Estan, C., Keys, K., Moore, D., Vargese, G.: Building a better NetFlow. In: ACM
SIGCOMM. (2004) 39–42

452 Y. He, W. Chen, and B. Xiao

7. Snoeren, A.C.: Hash-based IP traceback. In: Proceedings of the ACM SIGCOMM
Conference, ACM Press (2001) 3–14

8. Abdelsayed, S., Glimsholt, D., Leckie, C., Ryan, S., Shami, S.: An efficient fil-
ter for denial-of-service bandwidth attacks. In: IEEE Global Telecommunications
Conference(GLOBECOM’03). Volume 3. (2003) 1353–1357

9. Chan, E., Chan, H., Chan, K., Chan, V., Chanson, S., etc.: IDR: an intrusion
detection router for defending against distributed denial-of-service(DDoS) attacks.
In: Proceedings of the 7th International Symposium on Parallel Architectures,
Algorithms and Networks 2004(ISPAN’04). (2004) 581–586

10. Rocky.K.Chang: Defending against flooding-based distributed denial-of-service at-
tacks: a tutorial. Communications Magazine, IEEE 40 (2002) 42–51

11. Snort: (Open source network intrusion detection system, http://www.snort.org)

	Introduction
	The Related Work
	The TCP-Based DDoS Attack
	The Bloom Filter Based Detection Scheme
	The Bloom Filter Based Hash Table
	Detection Scheme

	Experiment
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

