Efficient Array & Pointer Bound Checking Against Buffer Overflow Attacks via
Hardware/Software *

Zili Shao, Chun Xue, Qingfeng Zhuge, Edwin H.-M. Sha

Department of Computer Science
University of Texas at Dallas
Richardson, Texas 75083, USA

{zxs015000, cxx016000, gfzhuge, edsha} @utdallas.edu

Abstract

Buffer overflow attacks cause serious security problems.
Array & pointer bound checking is one of the most effec-
tive approaches for defending against buffer overflow at-
tacks when source code is available. However, original ar-
ray & pointer bound checking causes too much overhead
since it is designed to catch memory errors and it puts too
many checks. In this paper, we propose an efficient array
& pointer bound checking strategy to defend against buffer
overflow attacks. In our strategy, only the bounds of write
operations are checked. We discuss the optimization strat-
egy via hardware/software and conduct experiments. The
experimental results show that our strategy can greatly re-
duce the overhead of array & pointer bound checking. Our
conclusion is that based on our strategy, array & pointer
bound checking can be a practical solution for defending
systems against buffer overflow attacks with tolerable over-
head.

1 Introduction

Buffer overflow attacks cause serious security prob-
lems. In 2003, 23 out of 28 serious vulnerability reports in
CERT/CC Advisories were buffer overflow related: nine-
teen were directly related to stack overflow or heap over-
flow, two were related to integer overflow that can cause
heap overflow, and two were related to memory deallocation
bugs that can also cause heap overflow. The two most noto-
rious worms that occurred in 2003, Sapphire (or SQL Slam-
mer) and MSBlaster, also took advantage of buffer overflow
vulnerabilities to break into systems.

Various approaches have been proposed to protect sys-
tems against buffer overflow attacks. To defend against

*This work is partially supported by TI University Program, NSF EIA-
0103709, Texas ARP 009741-0028-2001, NSF CCR-0309461, USA, and
HK POLYU A-PF86 and COMP 4-Z077, HK.

Bin Xiao
Department of Computing
Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong
csbxiao@comp.polyu.edu.hk

stack overflow attacks, techniques such as StackShield,
StackGuard, IBM SSP, StackGhost, etc., have been pro-
posed to guard stacks at runtime by adding extra in-
structions assisted by compilers [3]. To defend against
pointer-corruption attacks, the techniques such as hard-
ware/software co-design protection [11], PointGuard [2],
etc., are proposed by encrypting pointer values while they
are in memory and decrypting them before dereferencing.
The static checking method detects the vulnerabilities by
analyzing the C source code using software tools [12]. The
dynamic checking method uses program testing strategy
that checks buffer overflow vulnerabilities by executing pro-
grams with specific inputs [4]. All the above techniques can
not completely protect systems against buffer overflow at-
tacks.

So far, array & pointer bounds checking is one of the
most effective protection approaches against buffer over-
flow attacks when the source code is available. In ar-
ray & pointer bounds checking, instructions are added to
check the bounds of arrays and pointers at runtime [7, 1].
Since every array & pointer dereference is ensured to be
in bounds, overflow can not be caused. So this strategy
may completely protect systems against buffer overflow at-
tacks. The proposed array & pointer checking from the
previous work mainly focuses on checking memory errors,
therefore, checks are put for each memory access including
read/write. Therefore, a big performance overhead may oc-
cur especially for array and pointer intensive applications.
Typically, it may cause 2-5 times slowdown after bounds
checking is applied [1].

To reduce the performance overhead of array &
pointer bounds checking, two different optimization ap-
proaches have been proposed through software and hard-
ware,respectively. The software optimization method re-
duces the execution time mainly through elimination of re-
dundant checks and propagation of checks out of loops [5].
Although the techniques based on this approach can greatly

reduce the number of bounds checks, the overhead for some
applications is still big. For example, in [5], after the opti-
mization is applied, there are still 10-60% of checks left.
The hardware optimization method reduces the execution
time by parallel performing checking with additional hard-
ware. In [9], a sophisticated technique is proposed to op-
timize the performance by using a second CPU to perform
checking in parallel with very low overhead. However, the
proposed technique is expensive in terms of hardware cost.

In this paper, we propose an efficient array & pointer
bound checking strategy to defend against buffer overflow
attacks. In our strategy, only the bounds of write opera-
tions are checked. We discuss our C-to-C transformation
for implementing array & pointer bounds checking in the C
language based on this strategy. The representation of ex-
tended pointers and the transformation of pointers and ar-
rays considering the inter-operation with unprotected code
are discussed.

We then propose the optimization strategy via soft-
ware/hardware. Combining with the existing software op-
timization approaches, we discuss the strategy to insert
bounds checking so a compiler can easily use the new in-
struction in translation, and propose to reduce the number
of instructions that set the low-bound and high-bound ad-
dresses as much as possible in code generation. A special
bound checking instruction is proposed to efficiently per-
form bound check and its performance is analyzed under
the DLX architecture. Finally, we experiment with our ap-
proach. The experimental results show that the overhead
of array & pointer bounds checking can be greatly reduced.
Our conclusion is that based on our strategy, array & pointer
bounds checking can be a practical solution for defending
systems against buffer overflow attacks with tolerable over-
head.

The rest of this paper is organized as follows. The pro-
posed array & pointer checking approach is presented in
Section 2. The software/hardware optimization strategies
are discussed in Section 3 and Section 4, respectively. The
experiments are presented in Section 5. Section 6 concludes
this paper.

2 Efficient Checking and Transformation

Using array & pointer bound checking, every array &
pointer dereference is ensured to be in bounds, therefore,
overflow can not be caused. So this strategy may completely
protect systems against buffer overflow attacks. However,
Almost all bound checking approaches in the previous work
focus on checking memory access errors. Although they
can effectively defend against buffer overflow attacks, they
are not very efficient at runtime. In this section, we discuss
our C-to-C transformation strategy for implementing bound
checking against buffer overflow attacks. We first propose
our checking policy, and then discuss the representation and

transformation of arrays and pointers considering the inter-
operation with unprotected code.

Regardless which type of buffer overflow attacks, buffers
have to be overflowed for an attack to succeed. If all write
operations associated with pointers and arrays are ensured
to be in bounds, then overflow can not occur. Therefore, we
only need to check the bounds of a pointer when its deref-
erence is related to “write” operations for defending against
buffer overflow attacks. In our checking policy, checks are
only inserted before the dereference of a pointer that is re-
lated to “write” operation.

typedef struct EPT_<type> {
<type> * value;
<type> * low_bound;
<type> * high_bound;

typedef struct EPT_INT{
int * value;
int * low_bound,;
int * high_bound;

} enhance_ptr_int;

() (b)

Figure 1. (a) An enhanced pointer. (b) An en-
hanced integer pointer.

} enhance_ptr_<type>;

We use a simple method to carry bound informa-
tion with each pointer similar to the method used in
BCC,RTCC,bcc,etc. A prototype of our enhanced pointer is
shown in Figure 1(a), which is a structure containing three
addresses: a pointer itself, the lower and upper addresses of
a pointer. In the structure, “<type>" will be replaced with
the specific types associated with pointers in a program. For
example, Figure 1(b) shows a structure of an enhanced in-
teger pointer. Our transformation policies for pointers and
arrays are shown as follows.

2.1 The Transformation for Pointers

Declaration: Given a pointer in an original program, an
enhanced pointer is declared with the pointer as well as its
two bound addresses as shown in Figure 2(b).
Replacement: An enhanced pointer replaces the original
pointer at all places in the transformed program with its
“value” item in the structure.

Assignment: Each assignment of a pointer in an original
program is transformed as an initiation of the corresponding
enhanced pointer in the transformed program. For exam-
ple, in Figure 1(b), the enhanced pointer is initiated corre-
sponding to the assignment of “p=a” in the original program
(Figure 2(a)) , where its pointer value (_BP_p_int.value)
is pointed to “a[0]”, its lower bound and upper bound
(-BP_p-int.low_bound and _BP_p_int.high_bound) are set as
the bounds of array “a[]”. The bound data of the enhanced
pointer will be changed along with each assignment so it
can keep the same bound information as the assigned array
or pointer.

Parameter Passing with inter-operation: For parame-
ter passing, there will be no inter-operation problem, if
the “value” item of an enhanced pointer is used to di-
rectly replace the pointer in a function call. For exam-
ple, in an original program, if there is a function, “Func-
tion(p,...)”, with pointer “p” as the parameter, then “Func-
tion(_BP_p.value,...)” works well without any change af-
ter we replace “p” with the “value” item of the enhanced
pointer, “_BP_p.value” (“p” and “_BP_p.value” has the same
type). In this way, we can deal with unprotected code.
Parameter Passing with Bound information: However,
to serve our purpose, we should pass an enhanced pointer
instead of the pointer in a function call. So the bound check-
ing can be performed in the function with the bound infor-
mation associated with an enhanced pointer. In this way, the
interface of functions needs to be changed.

2.2 The Transformation for Arrays

Declaration: Given an array in an original program, an
enhanced pointer is declared, and inserted after the declara-
tion of the array in the transformed program (See Figure 2
as an example).

Initialization: An enhanced pointer for an array is initi-
ated when it is declared. For example, the enhanced pointer
for the array is initialized as shown in Figure 2(b), where
its pointer value (_BP_a_int.value) is pointed to the first
element of the array (&a[0]), its lower bound and upper
bound (_LBP_a_int.low_bound and _BP_a_int.high_bound) are
pointed to the bounds of the array (&a[0] and &a[99]), re-
spectively. After that, the bound information of the en-
hanced pointer will not be changed anymore.
Replacement: All arrays are kept without change in the
transformed program except the case discussed in the next
item.

Parameter Passing: Similar to the transformation for
pointers, if we want the inter-operation, we can keep ar-
rays as parameters without any change; otherwise, we use
an enhanced pointer to pass the bound data. For example,
assume “a[]” is an array, “_BP_a” is the corresponding en-
hanced pointer, and a bounded function, “copyl(&a[10])”,
is called in the original program. Then we assign the ad-
dress of “a[10]” to the “value” item of the enhanced pointer
(BP_a.value=&a[10]) and pass the enhanced pointer as
“copyl(_BP_a)” in the transformed program.

An example to add bound checking by our transforma-
tion strategy is shown in Figure 2. Figure 2(a) shows an
example C program and Figure 2(b) shows the program
with bound checking. The enhanced pointers with prefix
flag “_BP_” in Figure 2(b) are obtained from the the inte-
ger pointer (array) in Figure 2(a). The enhanced pointer
for the array is declared and initialized to contain its bound
data. The enhanced pointer for the pointer is declared
and replaces the original pointer at all places. The bound

foo()
int a[100];int i; int *p;
p=4a;
for(i=0; i<=100; i++)
*(p+i)=is

(a)

typedef struct EPT_INT {
int * yalue;
int * Jow_bound;
int * high_bound;

} enhance_ptr_int;

foo()

{

int a[100];

enhanced_ptr_int _ BP_a={&a[0].&a[0].,&a[99]};
int i;

enhanced_ptr_int _BP_p;

_BP_p.value = a;
_BP_p.low_bound = &alO0];
_BP_p.high_bound = &a[99];

for(i=0; i<=100zi++b ______________________

1if(((_BP_p.value+i)<_BP_p.low_bound) || |
! ((_BP_p.value+i)>_BP_p.high_bound)) { |

printf("Error: out of bounds.");
} exit(—1);

*(_BP_p.value+i)=i;

(b)

Figure 2. (a) An example C program. (b) The
program with bound checking.

checking statements are inserted before the dereference of
a pointer that is related to “write” operation. If the deref-
erence is out of bounds, it will be detected and the pro-
gram will halt and exit. For this program, the last operation,
“*(_BP_p.value+100)=i", is out of bounds. And this out-
bound violation will be caught in the program with bound
checking.

In summary, to defend against buffer overflow attacks,
we need to pass the bound information of arrays & pointer
if there are such parameters in functions, since it is possi-
ble that an attack will be launched by overflowing an array
pointed by passed parameter. For example, the vulnerable
library function, strcpy(), can be exploited to overflow the
array passed to it. On the other hand, based on our policy, it
is very easy to inter-operate with unprotected code such as
legacy software.

3 The Software Optimization

In this section, we discuss the optimization strategy com-
bining with the existing software optimization approaches.
We first introduce how the software optimization reduces
the overhead of pointer & array checking. Then we discuss
how to fully take advantage of the special bounds checking
instruction to optimize the performance. Finally, we pro-
pose to reduce the numbers of the instructions that set the
lower-bound and upper-bound addresses as much as possi-
ble in code generation.

The previous software optimization mainly focuses on
optimizing array bounds checking. The basic idea is to re-
duce the number of checks by eliminating redundant checks
and hoisting checks out of loops [5]. To change check lo-
cations, the point reported from an error and the point at
which the array bounds violation really occurs may not be
the same. This may not be good for catching memory er-
rors. However, this is fine for defending against buffer over-
flow attacks, where the security and performance are the
biggest concerns.

foo()

U it al100):
enhanced_ptr_int _BP_a={&a[0],&a[0],&a[99]
int i;

enhanced_ptr_int _BP_p;

_BP_p.value = a;

_BP_p.low_bound = &a[0];

_BP_p.high_bound = &a[99];

if(((_BP_p.value+0) < _BP_p.low_bound || |

(_BP_p.value+0) > _BP_p.high_bound) || .

((_BP_p.value+100) < _BP_p.low_bound || !

printf("Error: out of bounds.");
it(—1):
) exit(B

for(i=0; i<=100; i++)
*(_BP_p.value+i)=i;

}

Figure 3. The optimization by putting bounds
checking out of loops.

The extension to optimize pointer bounds checking by
this method is straightforward. The similar analyzing
method can be applied to eliminate checks and hoist checks
out of loops for pointer checks. For example, for the pro-
gram with bounds checking shown in Figure 2(b), we can
move the checks out of loops by only considering the min-
imum and maximum values of i that associates with the
deference of the pointer. In this way, we only need to do
two checks as shown in Figure 3 compared with 101 checks
done in the program in Figure 2(b). However, the calcu-
lation of the scopes related to a pointer or array may not
be always so easy. For some applications, the number of
checks left after the kind of optimization may be still big.
Therefore, the further optimization by utilizing the special
bounds check instruction is needed.

The new bounds checking instruction can be easily uti-
lized to optimize the performance by a compiler. We
only need to put a special prefix flag to distinguish bounds
checking sentences and ordinary comparison when insert-
ing checks into a program. For example, in Figure 3, the flag
“_BP_” is associated with the variables in bounds checking
sentences. In fact, this has been applied in almost every ar-
ray & pointer bounds checking approaches (and is an easy
revision if they don’t have). In this way, a compiler can

identify bounds checking sentences and translate them by
using the new bounds checking instruction.

We also need to reduce the numbers of the instruc-
tions that set the lower-bound and upper-bound addresses
as much as possible in order to further optimize the per-
formance, as they are another extra code associated with
array & pointer bounds checking. The bound information
of a pointer is initialized when the memory address of a
pointer is allocated, statically or dynamically. Usually, from
C source code level, this bounds initialization for a pointer
to sets the lower-bound and upper-bound addresses does
not need to be done for many times in an application. It
provides the foundation for optimizing the number of the
lower-bound and upper-bound setting instructions in code
generation. This optimization might have been done in
register assignment optimization with traditional compiler
optimization. With the special concern for bounds setting
instructions, an additional global optimization can be de-
ployed with specific registers to contain bounds information
in code generation.

4 Optimization with Special Bound Check-
ing Instruction

In this section, we propose a new instruction to perform
bound checking in order to reduce the execution time of
one check. We first analyze the execution time of perform-
ing one bound checking. Then we design a new instruction
called BCK to perform bound checking. The semantics and
the implementation of the new instruction are introduced. In
order to make our analysis and design be general and easily
extended to various platforms, our analysis and design are
based on the DLX architecture, a generic RISC CPU with
typical pipeline structure.

The DLX architecture [10] has a five-phase pipeline: IF,
ID, EX, MEM, and WB. On the DLX architecture, it needs
two comparison and two branch instructions to finish one
bound check. Assume that the object address, the lower-
bound address and the upper-bound address are in register
R1, R2, R3, respectively. Figure 4 shows the execution to
perform one bound check on DLX architecture, in which in-
struction “SLT RI, R2, R4” means “R4<—1 if RI<R2; oth-
erwise R4+-0”, and instruction “BNER R4,0Out_Bounds”
means “jump to Out_Bounds if R4 #0”. In the pipeline ar-
chitecture, branch operations are assumed to be processed
in the early phase (ID), so it takes one pipeline stall for each
branch operation. Even with such branch optimization, we
can see that it takes six clock cycles to finish one check
with the four instructions. Given such big overhead for
one check, it is hard for software optimization techniques
to achieve good performance especially in array & pointer
intense applications.

To reduce the overhead for one check, we need a spe-
cial instruction that can efficiently perform bound check-

R1: the object address R2: the low-bound address
R3: the high-bound address

SLT R3,RLRS |- IF ID \EX MEM WB |

BNER R4, Out Bounds '___________IF_ID\ EX MEM/WB_____
[idle\idle _idle | idle idle

BNER R3, Oul_BoundsL,,,,,,,,,,,,,,,,,,,,,,,IF,,,,I}HN;EX,,MEM
. idle\

Figure 4. It takes six clock cycles to perform
one bound check in the DLX architecture.

ing. In the DLX architecture (and RISC CPUs), there is no
operand that can contain memory address in typical ALU
instructions. Thus, this special instruction needs to take
three registers that store three addresses (the object address,
the lower-bound address, the upper-bound address) as the
inputs. To avoid pipeline stall, there should have no control
hazard between the new bound checking instruction and the
next instruction that has deference operation for a object
address. It can be solved with a special exception as the
output, since array & pointer bound checking can be dealt
by the same way: if it is in bounds, do nothing; otherwise,
an out-bound exception handling program is called to do
recovery or exit. Therefore, our special bound checking in-
struction called BCK in the DLX architecture has the format
and meaning as shown in Table 1.

Example instruction
BCK R1,R2,R3

Meaning

if ((R1 <R2) || (Rl > R3))
Generate OQut_Bounds
exception signal.

Table 1. The new bound checking instruction.

Using the exception as the output in BCK, the follow-
ing instruction can be fetched and executed without pipeline
stall. If BCK causes an exception by an out-bound object
address, then the pipeline is flushed at the end of EX phase;
therefore, the following instruction can not cause any mem-
ory/register change, as it is at the end of ID phase at that
time. As shown in Figure 5, to implement instruction BC'K
in DLX, the ID/EX register needs to be expanded so it can
contain one extra operand. And one extra ALU is needed
to perform the extra comparison in parallel. For commer-
cial RISC CPUs, the extra hardware might not be needed,
since their MMUs (Memory Management Unit) are pow-
erful to finish such simple comparison operations if they
support virtual memory.

In Intel 80x86, there is an array index checking instruc-
tion that can do checking for array indexes similar to our
proposed instruction in DLX architecture. Our performance

I@D ID/EX EX/lWEM MEM/WB

| |—= Data +—» -
Memory !
I

(%Hvﬁ

Out_Bound Exception Signal

Instruction Registers

Memory | gl [-

Control Unit

Figure 5. The implementation of the special
bound checking instruction in DLX.

analysis on DLX architecture shows that a big performance
improvement can be achieved if this kind of bound check-
ing instruction is applied in optimization. The extra instruc-
tions of setting bound information for a check can usually
be hoisted out of loops, and may only need to assign very
few times with an additional global optimization in an appli-
cation. So in the DLX architecture, it achieves about 83.3%
reduction in the execution time and about 75% in the num-
ber of instructions for one check.

S Experiments

In this section, we experiment with our array & pointer
bound checking method on a small set of programs.
In order to obtain cycle-accurate measurement, we use
the SimpleScalar/ARM Simulator [8] configured as the
StrongARM-110 microprocessor architecture as our test
platform. The simulator is installed on a Dell computer with
Intel Pentium 4 CPU running Red Hat Linux 9.

The benchmarks are shown in the first column in Ta-
ble 2. The first benchmark is from the example shown in
Figure 2. FFT (Fast Fourier Transform), IFFT (Inversed
FFT) and String Search are selected from MiBench, a free,
commercially representative embedded benchmark suite[6].
MatMpy is a benchmark to compute the multiplication of
two integer matrices with 20x20 (small) and 200x200
(large). QuickSort is quick sort program with the inputs
of 5000 integers (small) and 50,000 integers (large).

For each benchmark, we compare the time performance
of the original program, the protected program without op-
timization, and the protected program with optimization.
When adding bound checking statements, we apply our
checking policy that only checks the deference associated
with “write” operations. A protected program without opti-
mization is a program in which our array & pointer bound
checking approach in Section 2 is directly applied. A pro-
tected program with optimization is the program using the

Benchmarks Original Protected without Optimization Protected with Optimization
time (cycles) || time (cycles) | Overhead (%) time (cycles) | Overhead (%)
The Example (Figure 2) || 37349 39022 4.48% 37711 0.97%
FFT (small) 78696891 81596639 3.68% 79164981 0.59%
FFT (large) 471268795 912067050 93.53% 477295365 1.28%
IFFT (small) 137057269 140622324 2.60% 140622282 2.60%
IFFT (large) 472513514 716907862 51.72% 478710497 1.31%
String Search 5402119 9752968 80.54% 5970558 10.52%
MatMpy (small) 1495814 1596768 6.75% 1517411 1.44%
MatMpy (large) 278454909 389366176 39.83% 315239739 13.21%
QuickSort (small) 18715285 20016684 6.95% 19867346 6.16%
QuickSort (large) 196385271 212044087 7.97% 210545337 7.21%
| Average Overhead over Original Time. | 29.81% || | 4.53% |

Table 2. The comparison of the execution time of the original program and the protected programs.

software optimization method. The experimental results are
shown in Table 2.

From Table 2, we can see that the overhead is small. For
programs protected by bound checking without optimiza-
tion, the average overhead is 29.81%. Compared with the
previous work that has 2-5 times overhead, the improve-
ment comes from our write-only checking policy. The aver-
age overhead is 4.53% with the optimization. In the experi-
ments, we did not apply special bound checking instruction
in the optimization. We expect further performance opti-
mization by combining special bound checking instruction
into compilers in our future work. With such low overhead,
array & pointer bound check can be a practical solution to
defend against buffer overflow attacks.

6 Conclusions

Array & pointer bound checking is one of the most ef-
fective approaches for defending against buffer overflow at-
tacks. However, original array & pointer bound checking
causes too much overhead since it is designed to catch mem-
ory errors and it puts too many checks. In this paper, we
propose an efficient array & pointer bound checking strat-
egy to defend against buffer overflow attacks by only check-
ing the bounds of write operations. The experimental re-
sults show that our strategy can greatly reduce the overhead
of array & pointer bound checking with the optimization
via software/hardware. Our conclusion is that based on our
strategy, array & pointer bound checking can be a practi-
cal solution for defending systems against buffer overflow
attacks with tolerable overhead.

References

[1] T. M. Austin, E. B. Scott, and S. S. Gurindar. Efficient de-
tection of all pointer and array access errors. In Proceed-
ings of the ACM SIGPLAN ’94 Conference on Programming
Language Design and Implementation, pages 290-301, June
1994.

(2]

(3]

(4]

(3]

(6]

(7]
(8]

(9]

(10]

(11]

[12]

C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard:
Protecting pointers from buffer-overflow vulnerabilities. In
Proc. of the USENIX Security Symposium, August 2003.

C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grie, P. Wagle, and Q. Zhang. Stack-
guard: Automatic adaptive detection and prevention of
buffer-overflow attacks. In Proc. of the USENIX Security
Symposium, January 1998.

G. Fink, C. Ko, M. Archer, and K. Levitt. Towards
a property-based testing environment with applications to
security-critical software. In Proceedings of the 4th Irvine
Software Symposium, 1994.

R. Gupta. Optimizing array bound checks using flow analy-
sis. ACM Letters on Programming Languages and Systems,
2(1-4):135-150, March—December 1993.

M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown. Mibench: A free, commercially
representative embedded benchmark suite. In /EEE 4th An-
nual Workshop on Workload Characterization, Austin, TX,
December 2001.

S. C. Kendall. Bec: Runtime checking for ¢ programs. In
Proceedings of the Summer USENIX Conference, 1983.

S. LLC. SimpleScalor/ARM. World Wide Web,
http://www.eecs.umich.edu/ taustin/code/arm/simplesim-
arm-0.2.tar.gz.

H. Patil and C. Fischer. Low-cost, concurrent checking of
pointer and array accesses in ¢ programs. In the 2nd Interna-
tional Workshop on Automated and Algorithmic Debugging,
May 1995.

D. A. Patterson and J. L. Hennessy. Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann Pub-
lisher, 1996.

Z. Shao, Q. Zhuge, Y. He, and E. H--M. Sha. Defend-
ing embedded systems against buffer overflow via hard-
ware/software. In IEEE 19th Annual Computer Security
Applications Conference, pages 352-361, Las Vegas, Dec.
2003.

D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A first
step towards automated detection of buffer overrun vulnera-
bilities. In Network and Distributed System Security Sympo-
sium, pages 3—17, San Diego, CA, February 2000.

