
Approximation Algorithms Design for Disk Partial Covering Problem

Bin Xiao, Jiannong Cao
Department of Computing

Hong Kong Polytechnic University
Hung Hom, Kowloon, Hong Kong

{csbxiao, csjcao}@comp.polyu.edu.hk

Qingfeng Zhuge, Yi He, Edwin H.-M. Sha
Department of Computer Science

University of Texas at Dallas
Richardson, Texas 75083, USA

{qfzhuge, yxh011010, edsha}@utdallas.edu

Abstract

Mobile servers are established to provide services for
mobile nodes in an anticipated area. If the distribution of
mobile nodes can be foreseen, the location of mobile servers
becomes critical to the QoS of wireless systems. Under re-
source and topology constraints, it is very difficult to figure
out a solution, or unable to cover all given mobile nodes
within limited number of mobile servers. In this paper, we
study the issue of the partial covering problem such that
part of mobile nodes to be covered. Several approxima-
tion algorithms are proposed to cover the maximum num-
ber of elements. For real time systems, such as the battle-
field communication system, the proposed algorithms with
polynomial-time complexity can be efficiently applied. The
algorithm complexity analysis illustrates the improvement
made by our algorithms. The experimental results show that
the performance of our algorithms is much better than other
existing 3-approximation algorithm for the robust k-center
problem.

1 Introduction

In a battlefield, command servers are built to provide ser-
vices for communication mobiles. Command servers are
responsible for the successful information exchange among
all mobile units. Because of the mobility for both mo-
bile units and centers, the covering problem addressed is to
cover the most mobile units by a limited number of control
centers regarding to some constraints (such as landscape ob-
stacles and short transmission range). A mobile unit cov-
ered by a command center can contact others while an iso-
lated one loses its communication. This kind of problem is
analyzed as the clustering problem, which is clustering a set
of points into a few groups (servers). Given that the group
(server) number is k, the clustering problem is also referred
to the k-center problem. The k-center problem can be de-
scribed as follows: Suppose that S is a set of n objects,

generally representing n points in a d-dimensional metric
space. Given an integer k ≤ n, compute a k-clustering of S
of the smallest possible size; or given that each cluster with
the same size r, calculate the smallest number of k for the
k-clustering of S. In other words, the k-center problem is
formulated by covering S with k congruent disks either by
the smallest possible size of each disk, or to minimize the
number of k for disks with fixed size r. We always assume
that k disks have the same radius r. In this paper, we only
pay attention to the metric space by a plane (d = 2).

The k-center problem becomes NP complete when k ≥
3. Many heuristic algorithms [1, 2, 3, 4, 5] have been stud-
ied well to yield polynomial time running methods. There
are two major research directions. One direction assumes
that the number of disks is fixed to k and heuristic algo-
rithms aims to minimize the radius r of each disk. The
other focuses on the radius of each disk is fixed to r while
heuristic algorithms explore minimum number of disks to
cover all points. For the first approach, Gonzalez [6] gave a
2-approximation algorithm for the k-center problem in any
metric space with time complexity O(k · n). In the same
paper, Gonzalez proved that there is no polynomial-time
algorithm for an approximation factor smaller than 2 un-
less P=NP. Feder and Greene improved the 2-approximation
algorithm with complexity O(n log k) [7]. Some (1 + ε)
approximation algorithms [7, 8] are investigated for non-
polynomial time complexity. For the second approach, a
polynomial-time approximation scheme can be achieved
within approximation factors arbitrarily close to 1 [7]. Gon-
zalez proposed an 8-approximation algorithm for the fixed-
size disks covering problem in [9]. Huang devised a 7-
approximation algorithm for the 2-dimension metric space,
and a 21-approximation algorithm for the 3-dimension met-
ric space [10]. In [11], Franceschetti summarized the best
known results in a table. However, to achieve smaller ap-
proximation factor (α < 7), the polynomial running time
will be very huge. For example, the algorithm in [11] for an
approximation factor α = 6 will require the running time to
be O(k · n) with k ≈ 1016.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

A topic has been explored during these years for the k-
center problem is to cover partial points [12, 13]. Given
k disks with the same radius r, the partial covering issue
investigates the center locations of those k disks to cover
the most points among total n points. In some cases, there
is no solution for covering n points in a plane by k disks
with fixed radius. Examples are like building facilities to
provide service within a fixed radius to a certain fraction of
population, or allocating command centers in a battlefield
to support communications among mobile units. The prob-
lem defined in [12] is named by the robust k-center (RKC)
problem, which is to cover at least p points (p ≤ n) by k
disks with radius r. In this paper, we want to cover the most
points (at least p points) from n points in a plane by k avail-
able disks. Those k disks are assumed with the same radius
r. This kind of problem is NP-complete problem. The rea-
sons is that to cover at least p points, when we set p = n, it
will be the same to the k-center problem.

In order to cover as many points as possible (at least p
from n) with k disks, in this paper we have made the contri-
butions as follows: First, a new 2-approximation algorithm–
RKC2 to the robust k-center problem is proposed. In
[12], the authors only presented the best result with a 3-
approximation algorithm. When p is close to n, this new
2-approximation algorithm becomes polynomial-time run-
ning. Second, we present a greedy algorithm to cover part
points, and prove it to be a 2-approximation algorithm, such
that it can cover at least half points (n/2). The illustrated
RKC2 algorithm in Section 2 is adjusted to the RKCP2
algorithm in order to cover most points thereafter. Fur-
thermore, the 3-approximation algorithm for the robust k-
center problem in [12] is transfered to the RKCP3 algo-
rithm, which is also applicable to the problem of covering
most points.

The rest of this paper is organized as follows. In Sec-
tion 2 we introduce the RKC2 algorithm for the robust k-
center problem and prove it to be 2-approximation. Sec-
tion 3 shows different heuristic algorithms to cover the most
points and one example is illustrated. Experimental results
are presented in Section 4. And conclusions are drawn in
Section 5.

2 New Algorithm for the Robust K-Center
Problem

The robust k-center problem defined in this paper only
considers points in a plane (the dimension is 2). Let n be
the number of all points, p be a given positive integer such
that p ≤ n. If we have k disks with the same radius r,
the robust k-center problem can be defined as whether k
disks can cover at least p points. This problem is an NP-
complete problem. Suppose that n points in a plane area
are the clients we want to serve, the center of k disks are

(a) (b)

Figure 1. (a) To cover all points with k=4; (b)
To cover p points with k=2, p=13.

the facility location to cover p points among n points, then
the question studied here is the same as the facility location
problem with outlier defined in [12].

Figure 1 illustrates how robust measures lead to better
clustering solutions. In the example, to cover all points re-
quires at least k = 4 disks. However, if we need to cover the
most points with only 2 disks available, Figure 1(b) shows
the result to cover p = 13 points. When we set p = n,
the robust k-center problem is equivalent to the standard k-
center problem.

Following the same definition of algorithm approxima-
tion factor in [12], we show our RKC2 algorithm below and
prove it to be 2-approximation to the optimal cost. For some
cases, we can further know that it is impossible to cover p
points by k given disks. Let V be the set of all points in
a plane and |V | = n. The set of points satisfies the trian-
gular inequality. p is a given positive number and p ≤ n.
Let C be a set in our algorithm that includes all points to
be the centers of k disks. Ti is a temporary point set that
includes p points from V . Each disk has the same radius
r. We use Flag below to show whether it is possible for k
disks to cover at least p points within the point set V . The
dist(a, b) is the Euclidean distance between point a and b.
The algorithm RKC2 is as follows:

• Flag = No

• For i = 1, . . . ,
(
n
p

)
, do

– Select p different points from V , which generates
a new point set Ti with Ti �= Tm (m = 1, . . . , i-1)

– Arbitrarily select one point from Ti, let this point
be c1, C = {c1}

– For j = 2, . . . , k, do

∗ For a point t ∈ Ti and t /∈ C, let
dj(t) = min[dist(t, cl), for∀cl ∈ C]

∗ Let dj = maxt∈Ti
dj(t)

∗ Let cj be the point t, which makes dj to have
the maximum value

∗ C = C ∪ {cj}
– If dk ≤ 4r

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

∗ If k disks with centers in C by radius r can
cover at least p points in V
Return Yes

∗ Else
Flag = Yes

• If Flag = No
No solution exists for covering p points with k disks
Return No

• Else
It is possible to cover p points with k disks

We explain how this algorithm works. First, Flag is re-
set to be No. Whenever it is possible to cover p points with
the given k disks for a particular Ti by the above algorithm,
Flag is set to Yes. In the outer loop of i, p different points
from V are selected in every iteration. Those p points yield
a new point set Ti. Because there are

(
n
p

)
times of different

point sets, this outer loop will not end until i =
(
n
p

)
, which

means we already check all cases in the RKC2 algorithm.
For every created point set Ti, it contains p points. Sub-
sequently, one node is arbitrarily chosen from Ti and this
point becomes the center of one disk. The left task is to
decide the other k − 1 center positions for disks. Such k
points construct the center set C. After the decision of the
first center by point c1, the next center classified into C is
the point in Ti (not in C) that has the maximum distance
from itself to all points in C. When there are k points in C,
we already find k centers for the given k disks. The value
of dk means the maximum distance from ck (the kth cen-
ter) to every other centers (c1, . . . , ck−1). In other words,
if k disks have the diameter by dk, it is enough for them to
cover all points in Ti. If dk > 4r, it is impossible for k
disks with radius r to cover all p points in Ti, which will
be proved by Lemma 2.1. Otherwise, Flag should be set to
Yes to show the possibility that all points in Ti can be cov-
ered by the same k disks with radius r. Furthermore, if k
disks with centers in C by radius r can cover p points in V ,
the RKC2 algorithm already yields a solution to the robust
k-center problem and is ended by the return of Yes. The
Theorem 2.1 will prove it.

After
(
n
p

)
cases are tested and Flag remains No, it guar-

antees that there is no way to cover p points from V by the
same k disks with radius r. Since no solution is available
after checking all cases, the algorithm will return No.

In the RKC2 algorithm, the process to generate a center
set C within p points is similar to the greedy algorithm in
[6], which has been proved to be a 2-approximation algo-
rithm. Let dk+1 be the resulting distance to the k +1 center
to be added when executing the main loop with another iter-
ation. The new center point set C ′ becomes C∪{ck+1} that
has k+1 points in it. By the definition of dk+1, the distance
between any two points in C ′ is at least dk+1. Furthermore,

any k-clustering solution must place two points in C ′ into a
cluster for |C ′| = k + 1. Thus, the radius of disks for any
kind of k-clustering method in terms of points in Ti must be
no less than dk+1/2. However for the RKC2 algorithm, the
radius of the k-clustering disks with centers at points in C
is exactly dk+1. Hence, we have the lemma below:

LEMMA 2.1. Given p points in Ti, the RKC2 algorithm pro-
vides a factor 2 approximation to the minimum k-clustering
of Ti. In other words, the radius by disks with centers at
points in C is no larger than 2 times the radius of any k
clustering disks of Ti.

THEOREM 2.1. Given a set V of n points from an arbitrary
metric, an integer k ≤ n, and an integer p, the RKC2 algo-
rithm is a 2-approximation algorithm for the robust k-center
problem.

Proof. From Lemma 2.1, it is obvious that the RKC2 algo-
rithm generates a 2-approximation solution when dk ≤ 4r
happened during the algorithm execution. This is because
when dk ≤ 4r, the k disks with radius 2r can cover at least
p points. For the case that every time dk > 4r during p
points selection (

(
n
p

)
times) from V , it is impossible for k

disks to cover any p points with radius r. That means no
solution exists. Thus the RKC2 algorithm can not find a
center set C with radius 2r to cover p points.

Given p points in Ti, to generate k centers requires
O(p · k) time by the above RKC2 algorithm. A better way
to reduce the time complexity to O(p · log k) is shown in
[7]. Since the RKC2 algorithm will execute

(
n
p

)
times for

the different point set Ti, the time complexity should be
O(

(
n
p

) · p log k). When we want to cover the most points,
p should be set the same as n and the time complexity for
the robust k-center problem becomes O(n · log k). It is a
polynomial-time algorithm. Furthermore, when p is close
to n, the RKC2 algorithm can still remain polynomial-time
running.

3 Different Algorithms to Cover the Most
Points

3.1 Greedy Algorithm

For n points in a plane to be covered by disks with ra-
dius r, there are at most 2

(
n
2

)
different positions for disk

covering according to the following greedy algorithm. This
is because for any two points a and b, there are at most two
center positions, from which the distance to both points (a
and b) is r. In Figure 2, there are 2 different disk covering
for the point a and b, which can be disk O1 and O2. Be-
cause disk O3 covers the same points as O2, disk O3 is said
to be duplicated with disk O2. In other words, a disk can be

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

*

*

*O
2

b

a

*
O

4

O
3

O
1 c d

*
O

5e

Figure 2. To cover 2 points with a disk by the
greedy algorithm.

moved to uniquely represent two points with those points
on its circle edge. For the point c and d in Figure 2, there
is only one center position for disk covering since the dis-
tance between c and d is 2r (the diameter). The point e is
far away from any other point such that no disk can cover
another point beside point e. Thus, the center position for
the disk O5 is arbitrarily selected during the below greedy
algorithm. One disk covering is said to be unique if there
is at least one point different from any other disk covering
inside its covering area. Let D be the disk set such that each
contained disk is unique for its disk covering, and G be the
disk set returned by the greedy algorithm that has k units.
Below is the greedy algorithm to cover the most points.

• G = ∅

• For any two points to be covered by a disk, two new
disk units (Di, Dj) are built to cover them with those
two points on the circle edge. Suppose the number of
unique disk covering is m and m ≤ 2·(n

2

)
. These disks

make up with a disk set D = {D1, D2, . . . , Dm}.

• For i = 1, . . . , k, do

– Select the disk that covers the maximum number
of points from D. Let this disk be Di, D = D −
{Di}, G = G ∪ {Di}.

– Remove the points covered by Di from all disk
in D.

• Return G.

Given n points there are at most 2 · (
n
2

)
different disk

covering cases. Constructing all disk covering needs time
O(2 · (n

2

)
). In one iteration, the time to select the disk that

covers the maximum number of points is O(2 · (
n
2

)
). Af-

ter including Di to be in the disk set G, the greedy algo-
rithm will refresh the number of points covered by all other
remaining disks in D. Thus it requires an extra time by
O(2 · (

n
2

)
). In the greedy algorithm, k iterations are ex-

ecuted to generate the final disk set G. Hence, the com-
putation complexity for the greedy algorithm should be

O(2 ·(n
2

)
)+k ·O(2 ·(n

2

)
+2 ·(n

2

)
) = O(2 ·(n

2

)
)+O(4k

(
n
2

)
)

= O(k · n2).

THEOREM 3.1. Given n points (in the point set V) in a
plane and k disks with the same radius r, and suppose that
k disks can cover all points, the greedy algorithm is a 2-
approximation algorithm such that the number of points
covered is at least n/2.

Proof. The similar reasoning process as the proof for the
greedy algorithm to the set-cover problem can be applied
here. Suppose that m disks are needed to cover all n points
by the greedy algorithm. Let Di be the ith selected disk.
Thus we have |D1| ≥ |D2| ≥ · · · ≥ |Dm| and m ≥ k.
Let V ′ be the subset of V for points that are not covered
by the first k-iterations of the greedy algorithms. We as-
sume k disks can cover all points by an optimal solution
and let the optimal disk covering be O1, O2, . . . , Ok. Let
the points covered by the optimal solution for point set V ′

be O′
1, O

′
2, . . . , O

′
k respectively. Thus, for the number of

points in V ′, we have

|V ′| =
∞∑

i=k+1

|Di| =
k∑

i=1

|O′
i| (1)

By the definition of the greedy algorithm, we have:

|O′
i| ≤ |Dk+1| for i = 1, . . . , k (2)

|Dk+1| ≤ |Di| for i = 1, . . . , k (3)

From 1, 2 and 3,

k∑

i=1

|O′
i| ≤ k · |Dk+1| ≤

k∑

i=1

|Di| (4)

Thus

|V ′| ≤
k∑

i=1

|Di|

Because |V ′| + ∑k
i=1 |Di| = n, we have

∑k
i=1 |Di| ≥

n/2.

3.2 RKCP2 Algorithm

The algorithm design for the robust k-center problem
doesn’t request to cover all points for k available disks.
The RKC2 algorithm to solve the robust k-center problem
in Section 2 can be applied to the problem of covering the
most points with little change. Let p = n and that means
the RKC2 algorithm need to cover all points in a plane. All
points are in the point set V and C is a point set including
k units, which are the positions for the center of k disks.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Below is the RKCP2 algorithm procedure to cover the most
points from the 2-approximation algorithm RKC2 for the
robust k-center problem.

• Arbitrarily select one point from V , let this point be
c1, C = {c1}

• For i = 2, . . . , k, do

– For a point t ∈ V and t /∈ C, let
di(t) = min[dist(t, cl), for∀cl ∈ C]

– Let di = maxt∈V di(t)
– Let ci be the point t, which makes di to have the

maximum value

– C = C ∪ {ci}
• Return C

The time complexity for the above RKCP2 algorithm can
be O(n · log k) [7].

3.3 RKCP3 Algorithm

In [12], the authors illustrate a 3-approximation algo-
rithm for the robust k-center problem, which can be applied
to solve the problem of covering the maximum number of
points in a plane. The proposed 3-approximation algorithm
aims at covering p points from a point set V (n points in
total) by the same k disks of radius r. Given the condition
that an optimal solution O can cover all n points by k disks
with radius r (Cost(O) = r), that 3-approximation algo-
rithm can generate a solution S with cost(S) ≤ 3r for a
total covering.

For each point vi ∈ V , Gi (Ei, respectively) is denoted
as the set of points that are within distance r (3r, resp.) from
vi. The set Gi is referred as disks of radius r and the set
Ei as the corresponding expanded disks of radius 3r. The
RKCP3 algorithm procedure to cover the most points can
be described as follows from the original 3-approximation
algorithm in [12].

• Construct all disks and corresponding expanded disks.

• For i = 1, . . . , k, do

– Let Gi be the heaviest disk, i.e. contains the most
uncovered points.

– Mark as covered all points in the corresponding
expanded disk Ei.

– Update all the disks and expanded disks, i.e., re-
move from them all covered points.

• Return {G1, G2, . . . , Gk}.

The algorithm above has been proved to be a 3-
approximation algorithm for the robust k-center problem in
[12]. The time complexity for the algorithm is O(k · n).

1,000 m
180 m

*

O
1

*
O

2

Figure 3. The simulation model.

4 Simulation Results

We evaluate the performance of different algorithms
through covering points scattered in an area by available
disks. The performance of each algorithm is measured by
the number of points covered by given disks and how many
of them are used for the system.

The position of all points are randomly distributed in an
area by 1,000 * 1,000 meters, which is shown in Figure 3.
The total number of points is increased from 20 to 279 dur-
ing the simulation process. Suppose that all disks are fixed
with the same radius by 180 meters. The center of a disk
can be anywhere inside the square area. The number of
disks depends on how many points generated in the simula-
tion system. The relationship between the number of points
and disks follows the function: D = 	 P

20
 + 3, where D
represents how many disks available in the system, P is the
number of points inside the area defined in Figure 3. Ac-
cording to the relationship of the number between simulated
node and disk, we can see that an extra disk is available for
every 20 more points in the system. In Figure 3, the disk O1

is large enough to cover a small square area by 250 * 250
meters since the diagonal distance (354 meters) of the small
square area is smaller than the diameter of a disk (2r = 360
meters). The whole square is made up with 16 such ar-
eas. Hence, 16 disks can cover any number of points in that
square theoretically.

The results for different algorithms to cover the most
points are illustrated in this section. In Table 1, the per-
formance of the greedy, the 2-approximation (RKCP2) al-
gorithm and the 3-approximation (RKCP3) algorithm are
listed with the simulation model defined above. Inside the
square, 20, 50, 100, 200 and 270 points are randomly scat-
tered for one simulation event respectively. Under Col-
umn “# p”, the data shows the number of points covered
by one algorithm and the following Column “%” represents
the percentage of the covering part based on all available
points. During the simulation, the number of available disks
is changed according to the number of all points in the sys-
tem. To cover the points as many as possible, different al-
gorithms will consume different number of disks. The data

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

Algo. 20 points 50 points 100 points 200 points 270 points
p % # d # p % # d # p % # d # p % # d # p % # d

Greedy 16 80 4 39 78 5 93 93 8 199 99.5 13 270 100 15
2-Appr 7 35 4 12 24 5 51 51 8 174 87 13 257 95.2 16
3-Appr 6 30 2 18 36 4 33 33 4 63 31.5 3 91 33.7 4

Table 1. Covered points and consumed disks by different algorithms.

in Column “# d” is the result of used disks by the execution
of these three algorithms.

For the system with 270 points, there are 16 disks avail-
able. However, the greedy algorithm can cover all points
only with 15 disks for some cases. The RKCP3 algorithm
from the 3-approximation algorithm in [12] is not efficient
for the purpose of covering because only a part of available
disks involves in the computation. We can see from Table 1
that when 270 points scatter in the simulated area, 4 disks
with radius 720 meters (180 meters * 3) is probably enough
to cover them all. In contrast, the 2-approximation algo-
rithm always exhausts all disks to cover more points. Under
some special circumstances, such as less number of points
in the simulated area and fewer disks available, the RKCP3
algorithm yields a better performance than the RKCP2 algo-
rithm, which can be seen from Table 1 for the system with
50 points. In most cases, the greedy algorithm performs
the best while the 3-approximation algorithm generates the
worst results.

5 Conclusion

In this paper, the disk partial covering problem is dis-
cussed. This issue is also referred to the robust k-center
problem. The other best known heuristic algorithm for
the robust k-center problem is the 3-approximation algo-
rithm in [12] in the literature. In this paper a new 2-
approximation algorithm (RKC2) for the robust k-center
problem is presented, which is polynomial-time running
when p is close to n. Based on it, a practical polynomial-
time algorithm (RKCP2) is illustrated to cover the most
points. Furthermore, we proposed a greedy algorithm
that is 2-approximation based on the number of cov-
ered points. In other words, the greedy algorithm cov-
ers at least half the points compared to an optimal solu-
tion. The experimental results demonstrate this property.
Among those three heuristic polynomial-time algorithms
(greedy, RKCP2, RKCP3) for the robust k-center problem,
the greedy algorithm yields a good performance indicated
by the simulation. The outcome of the 3-approximation
(RKCP3) algorithm in [12] is poor because the percentage
of covered points is below 50% for most cases. When more
disks are available, the polynomial 2-approximation algo-
rithm (RKCP2) yields close results as the greedy algorithm
while the running time is O(n · log k).

References

[1] P. K. Agarwal and C. M. Procopiuc, “Approximation al-
gorithms for projective clustering,” in Proceedings of 11th
ACM-SIAM Sympos. Discrete Algorithms, pp. 538–547,
2000.

[2] D. Johnson, “Approximation algorithms for combinatorial
problems,” Journal of Computing and Systems Sciences,
vol. 9, pp. 256–278, 1974.

[3] H. Bronninamm and M. Goodrich, “Almost optimal set cov-
ers in finite vcdimension,” Discrete Computational Geome-
try, vol. 14, pp. 463–479, 1995.

[4] Z. Drezner, “The p-center problem: heuristic and optimal
algorithms,” J. Oper. Res. Soc., vol. 35, pp. 741–748, 1984.

[5] R. Z. Hwang, R. C. T. Lee, and R. C. Chang, “The slab di-
viding approach to solve the euclidean p-center problem,”
Algorithmica, vol. 9, pp. 1–22, 1993.

[6] T. Gonzalez., “Clustering to minimize the maximum inter-
cluster distance,” Theoretical Computer Science, vol. 38,
pp. 293–306, 1985.

[7] T. Feder and D. Greene, “Optimal algorithms for approxi-
mate clustering,” in Proceedings of the 20th Annual ACM
Symposium on the Theory of Computing (STOC), pp. 434–
444, 1988.

[8] P. K. Agarwal and C. M. Procopiuc, “Exact and approxima-
tion algorithms for clustering (extended abstract),” in Pro-
ceedings of 9th ACM-SIAM Sympos. Discrete Algorithms,
pp. 658–667, 1998.

[9] T. Gonzalez., “Covering a set of points in multidimensional
space,” Information Processing Letters, vol. 40, pp. 181–
188, 1991.

[10] H. Huang, A. W. Richa, and M. Segal, “Approximation algo-
rithms for the mobile piercing set problem with applications
to clustering in ad-hoc networks,” ACM Journal on Mobile
Networks (MONET), pp. 52–61, 2002.

[11] M. Franceschetti, M. Cook, and J. Bruck, “A geomet-
ric theorem for approximate disk covering algorithms,” in
http://www.paradise.caltech.edu/ETR.html, 2001.

[12] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan,
“Algorithms for facility location problems with outliers,” in
Proceedings of the Twelfth Annual ACM-SIAM Symposium
on Discrete Algorithms, pp. 642–651, 2001.

[13] R. Gandhi, S. Khuller, and A. Srinivasan, “Approxima-
tion algorithms for partial covering problems,” in Pro-
ceedings of the Twenty-Eighth International Colloquium on
Automata, Languages, and Programming (ICALP), LNCS
2076, pp. 225–236, Jul. 2001.

Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN’04)
1087-4089/04 $ 20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	footer1: 0-7803-8367-2/04/$20.00 ©2004 IEEE
	01: 3
	02: 4
	03: 5
	04: 6
	05: 7
	06: 8
	07: 9
	08: 10
	09: 11
	10: 47

