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Personal Authentication using Finger Knuckle Surface 

Ajay Kumar, Ch. Ravikanth 

This paper investigates a new approach for personal authentication using finger back surface 

imaging. The texture pattern produced by the finger knuckle bending is highly unique and 

makes the surface a distinctive biometric identifier. The finger geometry features can be 

simultaneously acquired from the same image, at the same time and integrated to further 

improve the user identification accuracy of such system. The finger back surface images from 

each of the users are normalized to minimize the scale, translation and rotational variations in 

the knuckle images. This paper details the development of such an approach using peg-free 

imaging. The experimental results from the proposed approach are promising and confirm the 

usefulness of such approach for personal authentication.  

1. Introduction  

The rapid growth in the use of e-commerce applications and penetration of information 

technology into the daily life requires reliable user identification for effective and secured 

access control. The hand-based biometrics has received considerable attention in recent years 

which exploits several internal and external features that are quite distinct in an individual. The 

user-acceptance for hand-based biometrics system is very high. These systems are becoming 

more convenient and user-friendly with the introduction of peg-free and touchless imaging. 

The usage of these hand-based systems for large scale personal authentication requires further 

efforts to explore additional features that can be simultaneously extracted from the hand 

images. In this work our efforts are focused to develop an automated method to extract knuckle 

texture and geometrical features from finger-back surface and investigate its performance for a 

potential biometric system.  

1.1 Related Work 

The hand-based biometrics has attracted lot of attention and personal identification using 

palmprint [1]-[2], [4]-[6], [14]-[15] hand-geometry, [7]-[8], 3D finger-geometry [9]-[10], and 
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hand vein [11]-[13] have been proposed in the literature. The earlier approaches achieved the 

results by constraining the position and posture of hands by using pegs [2], [8], [11]. However, 

such approaches presented inconvenience and difficulties for some user groups especially the 

children and elderly. Therefore a lot of emphasis has been laid on touchless and peg-free image 

acquisition [4], [10], [12], [16] [38]. The peg-free imaging, although highly convenient to users, 

generates images with more rotational and scale changes. Therefore the efforts are further 

required to improve the reported performance [14], [16].  

The finger surface posses unique patterns that have been utilized in the personal 

identification [9]-[10]. Woodard and Flynn [9] have examined the fine features of finger 

surface for its use in biometric system. Authors have presented promising results using 

curvature and shape-based index from finger surface features extracted from 3D range images. 

However, the work detailed in [9] does not exploit the texture information that can be 

simultaneously extracted from the intensity images of hands. Malassiotis et al. [10] have also 

illustrated the utility of 3D finger geometry features using peg-free imaging. This approach has 

illustrated promising results while combining the color and 3D information to authenticate user 

hands in the cluttered background. The finger shape information is generally believed to be less 

discriminative and only suitable for small scale user identification. The limited number of cross 

sectional 3D measurements and absence of any finger texture information in [10] poses further 

limitations on the scalability of this approach for its real usage. Ribaric and Fratric [5], [35] 

employed appearance based features from the finger and palm surface images for the personal 

identification. However, the authors in [5], [35] have employed scanner for imaging which is 

very slow and hence not suitable for online user authentication. Also, in [5] the geometrical 

features from the acquired images were not utilized which could offer further performance 

improvement [35] when utilized in conjunction with palm texture features. The work detailed 

in [5], [35] is promising but it relies on crease and wrinkle details on the palm-side of fingers 

which are quite limited. The anatomy of fingers allows them to bend in forward (palm-side) 
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direction and resist backward motion. This asymmetry results in very limited amount of crease 

and wrinkles on the palm-side of the fingers.      

1.2 Motivation 

The anatomy of human hand is quite complicated and closely related to the medicine and other 

branches of biology. The finger-back surface, also known as dorsum of hand, can be highly 

useful in user identification and has not yet attracted the attention of researchers. The image 

pattern formation from the finger-knuckle bending is highly unique and makes this surface a 

distinctive biometric identifier. The finger geometry features can be acquired from the same 

image, at the same time and integrated to improve the performance of the system. The peg-free 

imaging of the finger back surface is highly convenient to users. Such images can be acquired 

online and used to extract scale, translation and rotational invariant knuckle features for user 

authentication.  

 

Figure 1: Block diagram of the personal authentication using finger-back surface. 

1.3 Proposed System 

In this paper, a new user authentication system using finger-back surface imaging is 

investigated. The proposed system employs peg-free imaging and develops a robust approach 

adapted to the resulting hand-pose variations and problems due to the appearance of the rings. 

An important aspect of our approach is the simultaneous extraction of finger-geometry features 

which are employed to achieve further performance improvement. The block diagram of the 

proposed approach is shown in figure 1. The details of the imaging setup are provided in 

section 2.1. The image contours extracted from the acquired images are used for image 

normalization and the extraction of region of interest (ROI) is detailed in section 2.2 while the 
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extraction of finger geometry features is detailed in section 3-4. The automated extraction of 

four hand fingers and then the knuckle region images is illustrated in section 5. This section 

also considers two different methods of extracting knuckle regions and details the problem due 

to finger rings. The analysis of knuckle texture images using appearance-based techniques is 

detailed in section 6 which includes the details on the combination of matching scores from 

four knuckles. The experiments and results from this work are summarized in section 7. This 

section also includes discussion on performance analysis and the key comparisons. Finally, the 

main conclusions from this paper are summarized in section 8. 

 

 

 

 

 

                     (a)                                       (b) 

Figure 2: Image acquisition setup in (a) and acquisition of a sample finger back image in (b) 

2. Image Acquisition and Preprocessing  

2.1 Image Acquisition 

An acquisition system has been developed for the collection of finger-back images as there is 

no public database available to date for such images. A very user-friendly, peg-free imaging 

system is constructed and shown in figure 2. This imaging system uses a digital camera 

focused against a white background under uniform illumination. The camera has been set and 

fixed at a distance of 20 cm from the imaging surface. Non-uniform illumination cast shadows 

and reflections at the hand boundaries which significantly reduces the performance. Therefore, 

the image acquisition is uniformly illuminated by a fixed light source above the hand. The 

resolution of the acquired image is 1600  1200 pixels. Each subject is requested to place the 

hand on the support with their back hand facing the sensor. The subject can visualize the 
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placement of their hand from the live-feedback on small plasma display. The acquisition of a 

sample image is shown in figure 2(b). The prior work on hand-based biometric identification 

[4]-[5], [8] used black background during the image acquisition. However, the white 

background is chosen in our imaging. The reason is that the finger back texture is often dark 

and requires relatively simpler pre-processing as compared to with those images acquired with 

dark background.  

2.2 Preprocessing 

Each of the acquired hand images are firstly subjected to thresholding operation to obtain the 

binarized image.  The magnitude  of thresholding  limit   is computed by maximizing the 

 

 

 

 

(a)                            (b)                            (c) 

Figure 3: The acquired image in (a), binarized image in (b), and the extracted contour image in (c) 

object function )(opJ , which denotes the measure of separablity between the two classes of 

pixels in the image; 
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where the numbers of pixels in class 1 and 2 are represented by )(1 P  and )(2 P , )(1   and 

)(2  are the corresponding sample mean [17]. The resulting binarized image contains small 

sporadic dots that generate spurious results in the extraction of finger geometry features. These 

spurious pixels are also observed due to the hairs at the finger boundaries. Therefore 

morphological erosion operation using a 3 × 3 structuring element is employed on the 

binarized images to remove sporadic dots. This operation also helps to smoothen the image 

contour. Then the boundary of the resultant image is extracted using contour tracing (figure  

M 
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Figure 5: Prominent finger points for finger geometry feature extraction 

    

          

 

 

 

 

 

 

Figure 4: Distribution of the contour distances from the center point M 

3-c). Even after removing small contours, we ensure that correct contour boundary is extracted 

by employing only the largest possible contour in the image because hand contour is the largest 

contour. 

3. Locating Fingers 

The contour pixels, as shown in figure 3(c), from the shape boundary are stored in a vector 

named as BPV (Border Pixel Vector). The midpoint of the palm-wrist is marked as M (figure 

3-b) and used for image normalization. The Euclidean distances between the BPV points and M 

are computed and resulting distance distribution diagram is illustrated in figure 4. The pattern 

in the distance distribution (figure 4) is quite similar to the shape of the hand. The local minima 

correspond to the valleys of the hand. The extreme base points of the hands, shown as E1 and 

E2 in figure 5, are located from the shortest distance of the pixel in the contour of the image  
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from the adjacent valley points. Therefore the point E2 is located by calculating the shortest 

distance from V3 (located from the contour distance in figure 4) among the first few BPV points. 

Similarly, the point E1 is located using V1. The initial dip points are computed as the mid point 

of these valley points. Thus for the middle finger shown in figure 5, the initial dip point is 

estimated as mid point of V2 and V3 (marked as dot). Next, the base points of each of the 

fingers (B1 and B2) are determined from the points of BPV which are at minimum distance from 

the initial dip point of that corresponding finger. The dip point of the finger is updated as the 

midpoint of the base points of the finger and shown as DIP in figure 5 for the middle finger. 

Next the contour pixels between the base points of the finger are divided into 6 parts for the 

calculation of widths. The mid point of the base points along the border of the finger is marked 

as the finger tip. 

4. Finger Geometry Features  

The finger geometry parameters extracted from the hand images in the previous section are 

employed to locate the gray-level pixels belonging to the four individual fingers. The located 

finger pixels are used to extract the knuckle regions for feature extraction. Firstly, four 

additional points are located from the finger contour. Two of them are at one-third of the 

distance between the fingertip and the base points of the finger and the other two at the 

two-third distance (F1, F2, F3, and F4 in figure 5). The line joining the middle points of the 

line segments F1-F2 and F3-F4 defines the line of symmetry of the finger-strip region. The 

length of the strip is chosen to be the length of the finger. The width of the strip is chosen to be 

the minimum distance between the base points of the finger (B1-B2). With this length and 

width, the ROI pixels for each of the four fingers are extracted symmetrically on both sides of 

the symmetry line. A total of six finger geometry features are computed from each of the 

fingers resulting in a total of 24 finger geometry features. These include one finger length, 

three finger widths, finger perimeter, finger area, and summarized as follows: 
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                    (a)                         (b)           (c)          (d)           (e) 

• Finger Length: The finger length is estimated as the distance between the finger tip and the 

midpoint of the base points of the finger (referred here as dip point).  The distance between 

TIP and DIP in figure 5 denotes the finger length. 

• Finger Width: Three finger widths are estimated as shown in the figure 5. The finger 

contour is partitioned into six equal segments and the distance between the intermediate 

points are estimated as finger widths. The three finger widths w1, w2, and w3 are estimated 

from acquired images as follows: 

 w1 = dist(B1,B2), w2 = dist(F1,F2), w3 = dist(F3,F4)                   (2) 

• Perimeter: The perimeter is estimated as the number of pixels on the contour of the finger.  

• Area: The number of pixels covered within the contour of the finger are computed and 

estimated as the finger area.  

4.1 Normalization 

The normalization of extracted geometrical features is essential because their varying ranges 

and order, e.g., the magnitude of the estimated finger area is significantly larger as compared to 

the finger widths. Several feature normalization techniques have been detailed in the literature  

 

 

 

 

 

 

 

Figure 6: The acquired image (a) and the fingers extracted, (b) little, (c) ring, (d) middle, and 

(e) index finger.  
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[18]. We considered two computationally simpler normalization schemes to obtain the 

normalized feature vector ikx . 

 Min-Max Normalization: 
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where }, ,...,{ 21 iNiiik xxxx  is the feature vector with N values and ikx  is the 

corresponding normalized feature vector.  

 Z-Score Normalization:  
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where   and   are the mean and variance of the corresponding feature. It was observed 

that Min-Max normalization achieves better performance than Z-Score normalization for our 

approach. The comparative performance from geometrical features using two normalization 

schemes considered are provided in section 7. 

5. Extraction of Knuckles 

Once the finger regions are segmented, the knuckle regions are located for the extraction of 

reliable features. Figure 6 shows the four fingers extracted from a typical acquired hand image. 

It may be noted that the finger images extracted from each of the hand images are of varying  

 

 

 
 
 
 

 

 

                 (a)                                    (b) 

Figure 7: Method A: Extracted finger from acquired image (a) and corresponding Knuckle region 

obtained. 
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sizes. We investigated two methods for extracting knuckle regions from the segmented fingers. 

(1) Method A: In this approach a fixed size knuckle region of the finger is extracted based on  

the finger length. For example, along the central line of the finger, a region of fixed size 80 × 

100 pixels is extracted symmetrically from the middle finger at a distance of one-third of the 

length from the tip of the finger as shown in figure 7. Similarly, a region of 50 × 100 pixels is 

extracted from little and index fingers while a region of 80 × 100 is extracted from ring finger. 

(2) Method B:  Another method was investigated to further improve the localization of the 

region of interest. The Canny edge-detector is firstly applied on the extracted finger image. The 

density of the high intensity pixels in the resultant image is used for ROI extraction. As can be 

seen in figure 8, in the knuckle region the high intensive pixels’ density is very high. This 

region can be centrally extracted on either side of the central line as is the case with the 

previous method. Therefore a 80 × 100 pixel highly dense region, i.e. region with most edge 

elements along finger symmetry line, is extracted centrally from the base part of the finger. In a 

similar manner, fixed regions of size 50 × 100 pixels are extracted from little and index fingers.   

 

 

 

 

 

 

 

 

 

 

 

 (a)        (b)               (c) 

Figure 8: Method B: Finger image (a), corresponding image after edge detection (b), and the extracted 

knuckle (c). 

5.1 Analysis of two Methods  

The two methods considered above extract a fixed size knuckle ROI from the fingers of  
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Figure 9: Automated extraction of four finger knuckles from the acquired images in (a)-(g) 

varying sizes. These methods are observed to be quite robust to rotation and translation 

variations of the fingers in the acquired hand image. Figure 9 shows the different set of knuckle 

regions extracted from the acquired images with varying position using method B. These 

results suggest that our approach of automatically extracting the knuckle regions has been 

highly effective. This can also be ascertained from figure 10 that shows the knuckles extracted 

from an image, which is a part of the database, even  with  the high rotation of the presented 
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Figure 10: One of the poor samples of the rotated image from our database and the extracted 

knuckle samples 

hand during image acquisition. Comparatively, method A produces less accurate localization as 

compared to method B primarily because the extracted fingers are not of fixed size. On the 

other hand, method B suffers from the sensitivity of empirically determined threshold values 

for edge-detection. Also the presence of ring-bearing fingers extremely affects the localization 

accuracy as shown in figure 11. The problem due to the rings is eliminated by firstly detecting 

the presence of rings from their extremely high shiny (thereby high pixel intensity value) 

surface. The pixel intensities along the center of extracted finger, (top and central region) are 

counted and compared with a threshold to detect the presence of ring. The summation plot of 

pixel intensities along the row of the image is shown in figure 12 and illustrates the ring 

detection. Once a ring is detected, the fixed knuckle region is extracted from the rest of the 

finger following the detected ring. 

                                 
Figure 11: Image sample with ring and corresponding knuckle image (method B) without ring 

detection module. 
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Figure 12: Two examples in (a) and (b) showing the ring bearing fingers and their summation 

plots. 

6. Matching Knuckle Images 

The knuckle images present a random texture which is observed to be quite unique in each of 

the user. The information content from the extracted knuckle image consists of certain local 

and global features which are observed to be quite stable. This information from knuckle 

images can be extracted by registering the variations in a ensemble of knuckle images, 

independent of any judgment of creases or lines. This information can then be used to 

authenticate individual users. In this work we considered three appearance-based approaches 

for generating matching scores from the knuckle images. 

6.1 Principal Component Analysis 

The principal component analysis (PCA) determines the basis vectors spanning an optimal 

subspace such that the mean square error between the projection of the training images onto 

this subspace and the original images is minimized. We call this set of optimal basis vectors as 

eigenknuckles since these are simply the eigenvectors of the covariance matrix computed from 

the vectorized images in the training set. The feature extraction steps begins with firstly 

representing each of the N  M pixel knuckle image by a vector and then computing its 

covariance matrix of these normalized vectors j  as follows: 
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The computation of eigenvectors of N*M  N*M covariance matrix   is cumbersome due to 

the memory and computational constraints. Therefore the simplified method implemented in 

[32] is employed. The set of projection coefficients for each of the training knuckle images, 

from the set of eigenknuckles, is computed during training phase and employed for generating 

matching scores for test images.   

6.2 Linear Discriminant Analysis 

The Linear Discriminant Analysis (LDA) is defined by Y=Wopt
TX where the columns of the 

Wopt matrix are the eigenvectors of Sw
-1Sb. The columns of Wopt are the orthonormal vectors. 

The matrices Sw and Sb are computed through the following equations [20]: 
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This transformation is strongly effected by the number of classes (C), the number of samples 

(M), and the original space dimensionality (d). The number of training images is much smaller 

than the number of pixels in the knuckle images which often results in the singularity of Sw 

matrix. In order to avoid this, firstly, an intermediate transformation (PCA) is applied to reduce 

the dimensionality of the image space. In summary, the LDA searches for those vectors in the 

underlying space that best discriminate among classes (rather than those that best describe the 

data). 

6.3 Independent Component Analysis 

The subspace techniques that can create spatially localized features are receiving increasing 

attention in the literature [20]-[21]. Such techniques are expected to be more tolerant to the 

occlusion as the localized features help to implement region-based identification. The 

independent component analysis (ICA) is the most common subspace method of generating 
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spatially localized features. The goal is to find a linear representation of non-Gaussian data so 

that the components are statistically independent and not just linearly decorrelated like PCA. 

The key principle of ICA estimation is the non-Gaussianity [36]. The connection between the 

independence and non-Gaussianity is explained by central limit theorem. This theorem states 

that distribution of sum of i.i.d. (independent identically distributed) random variables tend to 

be more Gaussian than any of the original ones. In summary, higher is the independence among 

sources if their distributions have more non-Gaussianity. A quantitative measure of 

non-Gaussianity is required for its use in ICA estimation. The cumulant-based measures like 

kurtosis or entropy-based measures like negentropy are classically used for such measurement. 

The ICA representations have shown to capture the essential feature of the data. This approach 

can be viewed as if the eigenvectors of PCA are replaced by the independent source vectors in 

ICA. The ICA decomposition detailed in [22]-[23], [33] provides rapid convergence and was 

employed to extract basis vectors from the learning data.  

6.4 Score Generation 

The choice of subspace distance metric highly influences the performance and is empirically 

determined. In this work, the Euclidean distance metric was found to be most effective and 

used to generate the distance between the projection coefficients from training and test images. 

The matching scores obtained from the three individual sub-space methods (PCA, LDA, ICA) 

can also be combined to further improve the performance. The fusion of matching scores from 

these subspace methods has shown to offer effective performance improvement in the 

identification of human faces [24]-[26]. In this work the matching score combination using 

fixed fusion rules was employed as they are computationally simple. The combined matching 

score for every user i,  i = 1, 2, … C, using SUM and PROD rule is quite effective and 

obtained as follows: 
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where sij is the individual matching score from ith user using jth classifier, i.e., sub-space 

method, ma(i) and mp(i) represents the consolidated matching scores using SUM and PROD 

rule respectively. In addition to the SUM and PROD rule, one can also combine the two 

sub-space methods using SUM rule and then use the PROD rule to further consolidate the 

resulting matching score with the score from third sub-space method. We refer such 

combination as the product of sum (POS) in this paper and is also investigated for performance 

improvement. 

7. Experimental Results 

The performance of the user authentication approach detailed in previous sections was 

evaluated on the real biometric data. Since there is no publicly available finger-back surface 

image database, to the best of our knowledge, we have to acquire the database of hand images 

for performance evaluation. The acquisition system constructed (figure 2) was used to collect 

the finger-back image database. The database was collected over a period of seven months, in 

two phases, with an average interval of about four weeks. The database of finger-back images 

from male and female subjects in the age group of 18-60 years from various ethnic groups was 

acquired. The majority of data was collected from the adults between age group of 20-25 years. 

The users were requested to keep the fingers wide open while imaging. A live display is 

provided for them to view the position of the hand. They were asked to change the orientation 

of the hand freely. No restriction is imposed on wearing of rings on one or more fingers and 

therefore the database has several images from users with rings. We acquired four images 

during the first phase and two images in the second phase. The database from 105 users with 

630 images was used for the experimental evaluation. 

  The  rigorous experiments were conducted to ascertain the best possible performance on 
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Figure 13: The ROC plots for combined performance in (a), finger geometry features in (b), 

middle, index, ring and little finger in (c), (d), (e) and (f) respectively. 

(b) 

(f) 

(a) 

(c) (d) 

(e) 
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the test data acquired during second phase. In our experiments, we computed separate subspace 

for each of the four fingers. This resulted in 12 subspaces and is judicious as the texture 
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patterns employed from four fingers are different. In our experiments, all the eigenvectors 

corresponding to the non-zero eigenvalues (401 in our case) were retained for the feature 

extraction. The number of eigenvectors employed LDA is (r-n) where r is the number of 

training samples and n represents the number of training classes. In ICA, a closed-form block 

source separation maximizing the contrast (2, 4), the sum of squares of fourth-order marginal 

cumulants for real data and mixtures is used [22]. We acquired two images from every user in 

the test phase and therefore 210 images are used for experiments. The number of clients in the 

experiments are 210 while the number of imposters in the experiments were 21840 

(1051042). The receiver operating characteristics (ROC) illustrating the performance from 

different sub-space methods, on four knuckles, are shown in figure 13. The ROCs from 

individual knuckles suggests that PCA has performed better than LDA and ICA at lower FAR. 

The observed performance from the little finger knuckle is poorer than other three knuckles. 

The matching score combination from SUM and PROD rules has been most common in the 

literature [18]. Therefore ROC plots from these combinations using SUM and PROD rule are 

illustrated in figure 13-a. This figure also shows the ROC from the proposed product of sum 

rule which achieves better performance than conventional SUM or PROD rule.  

 

 

 

 

 

 

 

Figure 14: The ROC plots for combined performance from knuckles and finger geometry 
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The matching scores generated from PCA, LDA and ICA sub-space methods were 

analyzed individually and also for their rigorous combination. The table 1 presents summary of 

these experiments where i (1, 2, 3, and 4) represents the four different knuckles. The various 

combinations for matching scores from four extracted knuckles corresponding to the three 

sub-space methods are investigated. The 20th combination in this table, i.e. ∏ (Pi + Ii) * Li, 

achieves the best performance among all the combinations investigated. It performs better than 

all other combinations especially at lower FAR in table 1. The ROC corresponding to this 

combination is shown in figure 13(a). The figure 13-b shows the ROC plots obtained from the 

finger geometry features. The finger geometry features performed better as compared with the 

individual finger knuckles. 

The matching scores generated from the finger geometry features were further 

combined with the best combination of three sub-space methods considered in this work. The 

ROC plot from this combination is shown in figure 14. The comparison of this plot with those 

in figure 13-a suggests that the combination of finger geometry features has been effective in 

achieving further performance improvement. The distribution of genuine and imposter 

matching scores from this combination is shown in figure 15.  This distribution (histogram) is  

 

 

 

 

 

 

 

 

  

Figure 15: The Distribution of genuine and imposter matching scores 
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 Table 2: Performance indices from the experiments 

 

 

 

 

 

quite similar to the Gaussian distribution and therefore the Decidability Index (DI) can also be 

used to ascertain the performance. 
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where g and i are the mean while g and i are the variances of the genuine and imposter 

matching scores respectively [34].  The equal error rate (EER) and DI from the experimental 

results, corresponding to the best combinations in table 1, are summarized in table 2. Our 

experimental results illustrate that the combination (PCA+ICA)*LDA*FG achieves the best 

performance with EER of 1.39 and DI of 2.35. 

7.1 Discussion 

The experimental results shown in figure 13-a illustrate considerable improvement in the 

performance while consolidating the matching scores using fixed combination rules. The 

proposed POS scheme performed better than other combination schemes investigated (table 1) 

in our work. The SUM rule has been shown [27]-[28] to be useful for combining matching 

scores from the correlated feature spaces in which case the errors from the classifiers are 

independent. Thus the prior conclusions on the usage of SUM rule makes it most suitable for 

combining PCA- and ICA-based features as both of these sub-space methods employ natural 

Analysis EER (%) Decidability Index 

PCA 3.97 2.22 

LDA 5.81 2.19 

ICA 4.94 2.11 

PCA+LDA+ICA 2.95 2.44 

PCA*LDA*ICA 2.59 1.38 

(PCA+ICA)*LDA 1.95 2.09 

(PCA+ICA)*LDA*FG 1.39 2.35 
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appearance based features of images and does not exploit class-dependent information. 

However, the LDA extracts features based on the class separability criterion estimated over the 

learning set and thus the features are highly class-dependent, as compared to those from PCA- 

and ICA-based features, and thus the PROD rule is argued to gain maximally on the 

assumption of independence in data representation. This could be a plausible explanation for 

the better performance of POS rule observed from the experiments. Furthermore, the knuckle 

texture from four fingers are observed to be highly independent and therefore the product of 

consolidated matching scores from each of the knuckles, generated from POS combination, is 

expected to perform better as also observed from the experimental results. The performance 

from little finger knuckle texture is poor as compared with those from other finger knuckles. 

This could be possibly due to its small image size and extended distance between the camera 

and little finger, especially during high rotation that also generates some distortion in the 

extracted little finger knuckle image (figure 10). The motivation behind employing only the 

knuckle region for identification, as compared to the larger finger surface, is that knuckle 

region presents most discriminative texture patterns that can be conveniently identified in the 

low resolution finger images. The remaining finger region is often obscured by hairs which 

makes the extraction of stable features extremely difficult. 

Table 3: Typical computational timing for key processes 

Process Time (msec) 

Image Loading 130 

Image Binarization 20 

Locating Contour Points 10 

Finger Geometry Parameters 0.8 

Knuckle Extraction (from all four fingers) 370 

The proposed system was entirely implemented in C++ using the OpenCV [31] library. The 
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computational complexity of the key processes is summarized in table 3. The processes are run 

on Intel Pentium (4) CPU 3.00 GHz processor, with 1.97GB of RAM, and used GNU C++ 

compiler for the compilation. It can be observed from this table that the automated knuckle 

ROI extraction is the most computationally expensive operation. However, little time is 

required in the estimation of finger geometry features. In order to reduce computational 

complexity, two knuckle regions can be employed for feature extraction rather than all the four 

knuckles, preferably the ring and the middle finger knuckles as they achieve better 

performance (figure 12). The image loading (acquisition) time is considerable and can be 

significantly reduced by employing multi-threaded implementation. 

 

Figure 16:  User authentication using graphical user interface 

8. Conclusions 

This paper has presented a new approach for personal authentication using finger back surface. 
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The developed system automatically extracts the knuckle texture and simultaneously acquires 

finger geometry features to reliably authenticate the users. The proposed method of knuckle 

region segmentation, finger ring detection, and the extraction of finger geometry features has 

been quite effective in achieving higher performance. The system is rigorously experimented 

on specially acquired finger-back image database from 105 users and achieved promising 

results. The experimental results presented in section 7 should be interpreted in view of the 

peg-free imaging setup as such images present significantly higher image variations as 

compared to those employing user-pegs to restrict the hand movement. The appearance-based 

features are extracted from the segmented knuckles using sub-space methods and a 

comparative study is reported. The computational analysis of the implemented modules 

presented in section 7.1 illustrates the suitability of the approach for online authentication. The 

graphical user interface (figure 16) allows user-friendly and easy access to the developed 

modules of the system for user authentication.  

 The palmprint and fingerprint features can be simultaneously extracted from the palm side 

hand images and combined to achieve the performance improvement [19], [30]. However, the 

size of finger knuckle is very small as compared with the palmprint and offers more attractive 

alternative as it also requires less processing as compared to palmprint. Therefore the finger 

knuckle features can be simultaneously† acquired along with the fingerprint features and 

combined to further improve the performance. The performance of the proposed authentication 

scheme highly depends on the accuracy of knuckle segmentation from the presented hands. 

Therefore further performance improvement can be achieved with the development of more 

accurate knuckle segmentation, which can also be achieved from some tradeoff in user 

convenience by employing user pegs (as in [2]) during imaging. It should be noted that the 

deformations generated in the knuckle texture due to variations in the finger bending and due 

                                                 
† The finger knuckles are invariably presented for identification on finger surface which is opposite to the 
fingerprint imaging surface. 
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to some disease, e.g. diabetes [37], are likely to degrade the performance and requires further 

investigation. In this work we acquired a medium size database for performance evaluation of 

the proposed scheme. However, in the near future we plan to acquire a large scale database of 

the order of 500 to 1000 users for further research and performance evaluation. Although more 

work remains to be done, our results to date indicate that the combination of finger-knuckle and 

finger-geometry features constitutes a promising addition to the hand-based personal authentication 

systems. 

9. References 

1. P. H. Hennings-Yeomans, B. V. K. Kumar, and M. Savvides, “Palmprint classification using multiple 

advanced correlation filters and palm-specific segmentation,” IEEE Trans. Information Forensics and 

Security, vol. 2, no. 3, pp. 613-622, Sep. 2007. 

2. D. Zhang, W. K. Kong, J. You, and M. Wong, “On-line palmprint identification,” IEEE Trans. Pattern 

Analysis and Machine Intelligence, vol. 25, pp. 1041-1050, Sep. 2003. 

3. A. K. Jain, A. Ross, and S. Pankanti, “A Prototype hand geometry-based verification system”, Proc. 

of 2nd
 

International Conference on Audio and Video-Based Biometric Person Authentication, 

Washington DC, pp.166-171, Mar.1999. 

4. A. Kumar and D. Zhang, “Personal recognition using hand shape and texture”, IEEE Trans. Image 

Processing, vol. 15, no. 8, pp. 2454- 2461, 2006. 

5. S. Ribaric, and I. Fratric, “A Biometric Identification System Based on Eigenpalm and Eigenfinger 

Features,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol.27, no.11, Nov. 2005. 

6. X. Lu, D. Zhang, and K. Wang, “Fisherpalms based palmprint recognition,” Pattern Recognition 

Letters, vol. 24, pp. 2829-2838, Nov. 2003. 

7. A. Kumar and D. Zhang, “Hand geometry recognition using entropy-based discretization,” IEEE 

Trans. Information Forensics and Security, vol. 2, pp. 181-187, Jun. 2007. 

8. Sanchez Paper HG R. Sanchez-Reillo, C. Sanchez-Avila, and A. Gonzalez-Macros, “Biometric 

Identification through Hand Geometry Measurements”, IEEE Trans. Pattern Analysis and Machine 

Intelligence, vol.22, no.10, pp. 1168-1171, Oct. 2000.  

9. D. L. Woodard, P. J. Flynn, “Finger surface as a biometric identifier”, Computer Vision and Image 

Understanding, pp. 357-384, vol. 100, Aug. 2005.  

10. S. Malassiotis, N. Aifanti, and M. G. Strintzis, “Personal Authentication using 3-D finger geometry”, 

IEEE Trans. Information Forensics and Security, vol.1, no.1, pp.12-21, Mar. 2006.  

11. J.-G. Wang, W.-Y. Yau, A. Suwandy, and E. Sung, “Person recognition by fusing palmprint and 

palm vein images based on “Lapacianpalm” representation,” Pattern Recognition, vol. 41, pp. 

1531-1544, 2008.  



 27

12. A. Kumar and K. V. Prathyusha, “Personal authentication using hand vein triangulation,” Proc. SPIE 

Biometric Technology for human identification, vol. 6944, Orlando, pp. 69440E-69440E-13, Mar. 2008 

13. C.-L. Lin and K.-C. Fan, “Biometric Verification Using Thermal Images of Palm-Dorsa Vein 

Patterns” IEEE Trans. Circuits & Sys. for Video Technology, vol. 14, pp. 199 – 213, Feb. 2004. 

14. A. Kumar and D. Zhang, “Personal Authentication using multiple palmprint representation,” 

Pattern Recognition, vol. 38, pp. 1695-1704, Mar. 2005. 

15. Z. Sun, T. Tan, Y. Yang, and S. Z. Li, “Ordinal palmprint representation for personal identification,” 

Proc. CVPR 2005, pp. 279-284, 2005. 

16. X. Jiang, W. Xu, L. Sweeney, Y. Li, R. Gross, and D. Yurovsky, “New directions in contact free 

hand recognition,” Proc. ICIP 2007, pp. 389-392, 2007. 

17. N. Otsu, “A threshold selection method from gray-level histograms”, IEEE Trans. Systems, Man 

and Cybernetics, vol. 9, no. 1, pp. 62-66, 1979.  

18. Handbook of Multibiometrics, A. Ross, K. Nandakumar, and A. K. Jain, Springer, 2006. 

19. A. Kumar and D. Zhang, “Combining fingerprint, palmprint and hand-shape for user 

authentication,” Proc. ICPR 2006, pp. 549-552, Hong Kong, Aug, 2006. 

20. B. A. Draper, K. Baek, M. S. Bartlett, and J. R. Beveridge, “Recognizing faces with PCA and ICA,” 

Computer Vision and Image Understanding, vol. 91, pp. 115-137, July 2003.  

21. C. Havran, L. Hupet, J. Czyz, J. Lee, L. Vandendorpe, and M. Verleysen, “ Independent Component 

Analysis for face authentication”, Proc. KES, Knowledge Based Intelligent Information and 

Engineering Systems, Crema (Italy), pp. 1207-1211, Sep., 2002. 

22. A. Hyvärinen, “Fast and robust fixed-point algorithms for independent component analysis,” IEEE 

Trans. Neural Networks, vol. 10, no. 3, pp. 626-634, May 1999. 

23. Y. Wang and J. Qiang Han, “Iris Recognition using Independent Component Analysis”, Proc. of 4th 

Intl. Conference on Machine Learning and Cybernetics, Guangzhou, vol. 7, pp. 4487-4492, Aug., 2005. 

24. X. Lu, Y. Wang, and A. K. Jain, “Combining classifiers for face recognition”, Proc. ICME, vol. 3, 

pp.13-16, Jul. 2003. 

25. G. L. Marcialis and F. Roli, “Fusion of LDA and PCA for Face Verification”, Proc. ECCV Workshop 

Biometric Authentication, pp. 30-38, 2002. 

26. J. Yi, J. Kim, J. Choi, J. Han and E. Lee, “Face Recognition based on ICA combined with FLD”, 

Proc. ECCV Workshop Biometric Authentication, pp. 10-18, 2002. 

27. D. M. J. Tax, M. V. Breukelen, R. P. W. Duin, and J. Kittler, “Combining multiple classifiers by 

averaging or multiplying,” Pattern Recognition, vol. 33, pp. 1475-1485, 2000. 

28. D. M. J. Tax, R. P. W. Duin, and M. van Breukelen, “Comparison between product and mean 

classifier combination rules,” Proc. First Intl. workshop on Statistical Techniques in Pattern 

Recognition, Institute of Information Theory and Automation, pp. 165-170, Jun. 1997. 

29. http://www.solitontech.com/products_machine_vision_cameras.htm 

30. R. K. Rowe, U. Uludag, M. Demirkus, S. Parthasaradhi and A. K. Jain, “A multispectral 

whole-hand biometric authentication system,” Proc. Biometric Symposium, Baltimore, Sep. 2007. 



 28

31. http://sourceforge.net/projects/opencvlibrary 

32. K. Okada, J. Steffens, T. Maurer, H. Hong, E. Elagin, H. Neven, and C. von der Malsburg, “The 

Bochum/USC face recognition system and how it fared in the FERET phase III test,” Face Recognition: 

From Theory to Applications, H. Wechsler, P.J. Phillips, V. Bruce, F.F. Soulie and T.S. Huang (Eds.), 

Springer-Verlag, pp. 186-205, 1998. 

33. http://www.cis.hut.fi/projects/ica/fastica 

34. Biometric Systems: Technology, Design and Performance Evaluation, J. Wayman, A. K. Jain, D. 

Maltoni, and D. Maio (Eds), Springer, 2005. 

35. S. Ribaric and I. Fratric, “An online biometric authentication system based on eigenfingers and 

finger-geometry,” Proc. 13th European Signal Processing Conf., Antalya, Turkey, Sep. 2005. 

36. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, John Wiley, 2001. 

37. C. Guarneri, F. Guarneri, F. Borgia, and M. Vaccaro, “Finger pebbles in a diabetic patient: 

Huntley's papules,” Int. J. Dermatology, vol. 44, issue 9, pp. 755-756, Dec. 2004. 

38. A. Kumar, “Incorporating cohort information for reliable palmprint authentication,” Proc. 6th 

Indian Conf. Computer Vision, Graphics, and Image Processing, Bhubaneswar, India, Dec. 2008, pp. 

583–590. 2008. 

 


