[image: image1]Contents:

1) Introduction

2) Getting started with VHDL

3) Concurrent statements

4) Sample VHDL programs

5) Process Statement

Introduction

VHDL (Very high speed integrated circuit (VHSIC) Hardware Description Language) is an industry standard language used to describe hardware from the abstract to the concrete level. It is used by tens of thousands of engineers around the globe to digital hardware products. VHDL is a powerful language with numerous language constructs that are capable of describing very complex behavior. We will learn few of these constructs through this document.

[image: image3.png]@ — y
? 0
b—d B ybar
[ —
ENTITY exor IS
Entity Name
PORT(
Port Name a: IN BIT;
b: IN_BIT;
y:ouT BIT!
y_bar: OUT BIT—|————— Port Type
END e)x'.,r- Port Direction





Important instructions

· VHDL is not case sensitive. So signal names digital, DIGITAL, DiGiTaL are all names of the same signal.

· All the language constructs are shown in UPPER BOLD case and signals, variables declared by the programmer are printed in lowercase.

· Every VHDL statement ends with a semicolon ;
· -- represents a VHDL comment

· All comments in this documentation have been shown by lowercase Italic.

· At the start of your code don’t forget to add the following two lines.

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;
Getting started with VHDL

Any hardware description in VHDL basically consists of two parts viz., ENTITY and ARCHITECTURE.

· ENTITY


[image: image4.png]ARCHITECTURE logic_func1 OF exor IS

BEGIN

y<=((NOT a) AND b ) OR (a AND (NOT b));
y_bar <= (NOT a OR b) AND ( a OR NOT b);

END logic_funct;

j_y_bar

L_M




Entity represent pins of the chip/gate you wish to design; No functionality, only interface with external world.


Syntax for Entity:
ENTITY <entity name> IS


PORT(



<pin1 name>   : <Pin1 direction>
<Pin1 data type>;



<pin2 name>   : <Pin2 direction>
<Pin2 data type>;




.

.


.




.

.


.




.

.


.

<pinN name>   : <PinN direction>
<PinN data type>


          );

END <entity name>;


<entity name> may comprise of combinations of alphabets, numbers,  and an underscore _.

<Pin direction> can be any of IN, OUT or INOUT.

<Pin data type> can be BIT, STD_LOGIC, BIT_VECTOR, INTEGER, REAL… or one can define his/her custom data types.

Example:

ENTITY and_gate IS

PORT(



a, b
: IN
BIT;


y, yb
: OUT
BIT


);

END and_gate;

· ARCHITECTURE


[image: image2]
It specifies functionality of the entity. Single entity may have multiple architectures. All the statements within the architecture are executed concurrently. Sequence of the statements is not important.


Syntax for Architecture:

ARCHITECTURE <architecture name> OF <entity name> IS

<define signals, components here>

BEGIN

--add comments like this

< write concurrent statements here>

END <architecture name>;


Example:

ARCHITECTURE logic_func OF custom_gate IS

BEGIN

c <= a AND b OR d; -- read as c is scheduled to get the value of a AND b OR c 

d <= b XOR c; 
a <= b AND d;

END logic_func;

· Signals

· Represent internals wires / storage

· NOT visible outside entity

ENTITY comb_logic IS


PORT (



i1, i2, i3, i4 : IN      BIT;



o1, o2        : OUT  BIT


            );

END comb_logic;

ARCHITECTURE data_flow1 OF comb_logic IS

SIGNAL temp : BIT;

BEGIN

temp <= i1 AND i2 AND i3;

o1 <= temp XOR i2;

o2 <= temp OR i4;

END data_flow;

Concurrent Statements

All the statements within the architecture are concurrent. (Executed whenever RHS part changes. LHS parts are sensitive to RHS parts ALL THE TIME.)


In the above example c is scheduled to change (or the first statement will be evaluated) whenever anyone of a, b or c change. After evaluating the last statement a <= … if a changes then the c<= …statement is evaluated again. This continues till a steady state is reached. The steady state values are finally assigned and the simulation clock moves ahead.

Order of Execution of concurrent statements:

Execution is independent of specification order.

Example:

a <= b OR c;
d <= a AND b;
b <= c XOR a;
is identical to,

d <= a AND b;
b <= c XOR a;
a <= b OR c;
You can write any one of the 3 possible combinations. Final interpretation by the compiler and hence the result will be identical in all cases. This fact becomes clear if we actually construct the hardware manually. We shall reach at the same circuit in all the cases!

Signal Assignments:

· Signals assignments are not immediate but are scheduled on next simulation delta (read on for explanation) if no delay is specified explicitly. When no delay is specified then inertial delay is made use of by default. Inertial delay accounts for the propagation delay observed in the practical devices. One may treat delta as an infinitesimally small interval of time which is very less than the frequency at which the circuit is operating.

Simulation Delta method of evaluating the given circuit’s code:

ALGORITHM:

· Assigned signal (left hand part from <= sign) is always sensitive to the right hand side part (from <= sign) of the concurrent signal assignment statement. (For example, In a <= b AND c; signal a is sensitive to the signals b and c)

· Whenever any signal on the RHS changes (in VHDL jargon, whenever an event occurs on the RHS signals) that statement should be evaluated and the calculated values should be scheduled to the LHS signal. (Each of this intermediate signal value scheduling steps is termed as a SIMULATION DELTA).

· After executing last delta advance the simulation clock.

Example: If a makes a transition from ‘1’ to ‘0’ write all the simulation delta evaluations and results before advancing the simulation clock for the following VHDL statements. Assume signal c to have value ‘1’ initially.

b <= NOT a;
c <= b NAND ‘1’;
d <= b AND c;
Delta 1: (execute all the statements sensitive to signal a…first one)

Hence b is scheduled to have a value of ‘1’. Steady state reached no statement has to be executed now. So assign the value ‘1’ to b.

Delta 2: (execute all the statements sensitive to signal b…second and third statements)

On executing second statement c is scheduled to have value ‘0’ and simultaneously executing third statement gives a scheduled value of ‘1’ for d. Note we cannot use the newly scheduled value of c on the same delta in which it is scheduled. Statements sensitive to the new value of c can be executed only in the next simulation delta.

Delta 3: (execute all statements sensitive to the signals c and d…third statement)

No statement is sensitive to signal d. Only third statement will be executed and that will assign a value ‘0’ to the signal d.

Delta 4: (execute all the statements sensitive to signal d…none)

None of the statements is sensitive to d and hence steady state has been reached. Assign the value ‘0’ to d and advance the simulation clock.

Completely worked out example for EX-OR gate:


LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

ENTITY exor IS


PORT(



a, b
: IN
BIT;



y, yb
: OUT
BIT


);

END exor;
ARCHITECTURE data_flow OF exor IS
SIGNAL temp : BIT;
BEGIN

temp
<= ((NOT a) AND b) OR ( a AND NOT b);
y 
<= temp;
yb
<= NOT temp;
END data_flow;
Process Statement

· All the statements within a process are SEQUENTIAL i.e., executed one after the other sequentially as specified in the source file.
· Now note here that whenever an assignment is done the value of the LHS signal is the one carried from the previous simulation delta and the not one assigned to it during the process. This is because the assignment statement causes schedules a signal event and does not actually assigns it till the process ends. It may also happen that the scheduled value may actually be destructed (re-scheduled) by some other assignment to the same signal.
Sensitivity list

The process can have explicit sensitivity list. This list defines the signals that cause the statements inside the process to execute whenever one or more statements of the list change value. It is a list of signals that will cause the process to execute. The process has to have an explicit sensitivity list or a WAIT statement.

Example: 

PROCESS(a, b) –Signals a, b are on the sensitivity list of the process

VARIABLE : temp : BIT; --Variables are local to processes and imply temporary storage. Any

 -- assignment to a variable IS IMMEDIATE unlike as that for a signal.

BEGIN

temp := NOT (a AND b); -- Note that we use := symbol for variable asg. and <= for signal asg.

--Now follow few sequential statements.

d <= a; --d is scheduled to have a value of signal a

d <= a AND b; --Now previously scheduled event on d is cancelled and d is scheduled to have the -- value of a AND b.

IF (temp = ‘1’) THEN
c <= temp; -- Signal assignment will take place while exiting from the process.

ELSIF(temp = ‘0’) THEN
c <= ‘a’;
ELSE

NULL; -- Do nothing

END PROCESS;


IMPORTANT!

· All the processes within the architecture are concurrent. But statements within the process are sequential.

· IF…THEN …ELSE is a sequential statement, so are CASE, LOOP, WAIT…

· Variable assignments are immediate.

References:

Douglas L. Perry, VHDL Programming by example, 4th Ed, Tata McGraw Hill, 2004.

Please visit lab website for more references and useful links.

Introduction to VHDL








PAGE  
6
EEP 201, Department of Electrical Engineering, IIT Delhi


